
'

&

$

%

Fast Correlation Attacks and Linear Codes

Lauri Tarkkala

November 25, 2004

1

'

&

$

%

Brief Recap: Stream ciphers

Let P be the set of plaintext symbols. Let K be the set of
keystream symbols. Let C be the set of ciphertext symbols. Let
P = K = C.

A synchronous stream cipher produces a cyclic keystream K∗ given
as input a constant length key k. Encryption is performed by
adding the synchronous keystream symbol by symbol to the
plaintext modulo |K|. Decryption is performed by adding the
inverse of each keystream symbol to the ciphertext symbol by
symbol modulo |K|.
Note that stream ciphers by their very nature are vulnerable to
chosen ciphertext attacks. Analysis of stream ciphers therefore
limits itself often to considering known plaintext attacks, e.g. the
computation of k given a keystream sequence.

2

'

&

$

%

Brief Recap: Linear Feedback Shift Registers

A Linear Feedback Shift Register (LFSR) is an n-bit register. A set
of bit positions are designated as “taps”. Every clock cycle the
register is shifted towards the most significant bit. The least
significant bit is set to the sum of the tap registers modulo 2. The
most significant bit is the output.

A LFSR is often described using a “feedback polynomial”
g(x) = 1 +

∑n−1
i=1 gix

i + anxn where gi = 1 if i corresponds to a
“tap” and gi = 0 otherwise. If the polynomial is irreducible and
primitive then the LFSR cycle length is 2n − 1.

The amount of non-zero co-efficients in g(x) is called the weight of
the feedback polynomial.

A bitsequence output from an LFSR adheres to a set of linear
equations over the bitstream. The output bits “are linear”.

3

'

&

$

%

Brief Recap: LFSRs in stream ciphers

Stream ciphers often contain a least one LFSR as a primitive. One
can in these cases consider the stream cipher to consist of a
pseudorandom bit generator, the LFSR and a function F that
combines the two component keystreams into a keystream.

- -F

Key

Generator

Pseudorandom

bitstream

LFSR

keystream Stream Cipher

Keystream
?

LFSR

4

'

&

$

%

Binary Symmetric Channel

A Binary Symmetric Channel (BSC) is a communication channel
that with probability p flips a bit. The probability 1− p is called
the cross-over probability.

Error-correcting codes have been designed for reliable data
transmission over these channels.

The cryptanalysis problem in this case can be understood as an
attempt to correctly decode the “code” generated by the LFSR.
The probability 1− p is the “correlation” probability between the
LFSR output and the F output.

Due to trade-offs in the resiliency and non-linearity of F it is
assumed that p < 0.5 in practice. Exploiting this to compute the
initial state of the LFSR is called a ’correlation attack’.

5

'

&

$

%

Convolutional Codes

A convolutional encoder when input a sequence of B + 1 input
symbols outputs a code for the first input symbol in the sequence.
The parameter B is called the “memory” of the encoder.

A convolutional code is linear. The relation between an an output
symbol and the B + 1 input symbols is a linear equation.

A binary convolutional encoder for each input bit outputs c output
bits. The ratio R = 1/c is called the rate of the code.

6

'

&

$

%

Convolutional Codes

The structure of a binary convolutional code can be described using
a set of binary linear equations. The codewords are linear
combinations of B + 1 different c-bit components that are labeled
Gi.

If the plaintext was a N bits in length then the encoder could be
written as the following N × cN -matrix G and the plaintext as an
N -element row vector.

G =




G0 G1 ... GB

G0 G1 ... GB

G0 G1 ... GB

...

... ... GB




7

'

&

$

%

Convolutional Codes

A binary convolutional code has 2B different states.

The decoding operation is quite trivial, assuming the channel is
error-free. If the channel is a binary symmetric channel with
cross-over probability greater than 0 then a maximum-likelihood
(ML) decoding algorithm is used.

The decoder receives as input a sequence of received bits
r = r0

0r
1
0...r

c−1r0
1.....

The decoder now for each codeword ri = r0
i ...rc−1

i attempts to
compute the plaintext symbol yi such that the conditional
probability p(ri|yi) is maximal when yi ∈ {0, 1}.
The Viterbi algorithm decodes a binary convolutional code. The
runtime grows expontentially in B.

8

'

&

$

%

Stream Ciphers and Convolutional Codes

The stream cipher is assumed to be of the form described earlier
consisting of an LFSR, a pseudorandom bit-generator and a
combination function F .

Let l be the length of the LFSR under analysis.

Let g(x) = 1 + g1x
1 + ... + glxl be the feedback polynomial. Let t

be the number of taps and t + 1 be the weight.

Let L denote the set of LFSR sequences (|L| = 2l).

Truncate the LFSR sequences in L to length N . These sequences
form a [N, l] block code. Call this code C. Assume
N >> l/(1 + p log2 p) s.t. a unique decoding is feasible.

Denote the keystream sequence by z = (z1, z2, ..., zN) as the output
of the BSC F . Denote the output of the LFSR as
u = (u1, u2, ..., uN).

9

'

&

$

%

Fast Correlation Attacks

If the feedback polynomial has low weight, then fast correlation
attacks may be possible. This is performed by writing out sets of
linear “parity check” equations that have only a few binary
variables and then using these to decode the code.

Write out the equations for LFSR involving output index n, e.g.
un = g1un−1 + g2un−2 + ... + gn−lun−l. There are t + 1 equations
that contain un as a variable.

Note that g(x)j = g(xj) when j = 2k. Use this relation to create
new parity check equations untill the degree of g(x)2

k

is greater
than N . The above relation guarantees that each polynomial has
only weight t + 1. This creates again t + 1 equations involving un

for each value of k when shifting g(x)2
k

.

We now have approx log2(N/2l)(t + 1) equations. Assume these
equations hold for any bit in u. Decode z.

10

'

&

$

%

Fast Correlation Attacks

The decoding is done using a memoryless decoder.

One algorithm (“A”) attempts to maximize
p∗ = P (un = zn|h equations holds).

Another algorithm (“B”) iteratively flips bits in zn untill for a
sufficient amount of bits p∗ exceeds a set treshold.

Simulation results by Johansson and Jönsson.

N/l Algorithm B Algorithm A

103 0.092 0.096

104 0.104 0.122

11

'

&

$

%

Fast Correlation Attack using Convolutional Codes

Attack proposed by Thomas Johansson and Fredrik Jönsson.

This attack improves the decoding process by adding a memory of
the B previous bits to the decoder. The attack is based on the
observation that a LFSR creates a very low-rate convolutional code
and the decoder used is the Viterbi algorithm. The memory
required is 10 states and each codeword is assumed to be 4 bits.

The N -bit code output by a l-bit LFSR can be written as the
product of 1× l vector and a l×N generator matrix called GLFSR.
Then u = u0GLFSR where u0 is the LFSR initial state.

GLFSR =


 IB+1 ZB+1

0l−B−1 Zl−B−1




Ix denotes an x× x identity matrix.

12

'

&

$

%

Fast Correlation Attack using Convolutional Codes

The code generated by the LFSR is considered to be systematic
convolutional code.

Parity check equations are generated for un = uB+1 by considering
the bits NOT in the initial state. Find linear combinations of
columns of Zl−B−1 that add to the all zero column vectors (e.g.
uj11 = u0 ∗ [...] and uj21 = u0 ∗ [....]) s.t. the value of un differs in
these equations. Sum these two equations to generate a parity
check equation.

This technique finds parity check equations with weight t = 2.

Write these equations as un =
∑B

i=1 ci1un−1 + uj1l
+ uj2l

where l is
the index of equation.

13

'

&

$

%

Fast Correlation Attack using Convolutional Codes

Based on the m equations un =
∑B

i=1 ci1un−1 +uj1l
+uj2l

construct
a convolutional code. Write the parity equations so that they hold
when a bitstream is encoded using the constructed encoder.




G0

G1

...

GB




=




1 1 ... 1

0 c11 ... c1m

...

0 cB1 ... cBm




G =




...

G0 G1 ... GB

G0 G1 ... GB

...




14

'

&

$

%

Fast Correlation Attack using Convolutional Codes

If a codeword vi
n = un (non-parity bit) then P (vi

n = zn) = 1− p. If
a codeword vi

n = uj1i + uj21 then P (vi
n = zj1i + zj2i) = (1− p)2 + p2.

Let r = r0
nr1

n...rm
n r0

n+1...r
m
n+1... be the bitsequence received by the

decoder and let r0
n = zn and ri

n = zj1i + zj21 , 1 ≤ i ≤ m.

Now we only have to decode l consecutive codewords correctly to
be able to backtrack to the initial state. This is performed using
the Viterbi algorithm.

15

'

&

$

%

Simulation Results

Maximum correlation probability p for a realistic probability for a
succesful attack according to simulations by Johansson and
Jönsson. Simulation used a 40 bit LFSR with a weight 17 feedback
polynomial.

N/l B = 13 B = 14 B = 15

103 0.19 0.22 0.26

104 0.37 0.39 0.40

16

