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Overview

• Basic concept of correlation attacks on stream ciphers

• A correlation attack on the GSM cipher A5/1

• A correlation attack on the Bluetooth cipher E0
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• Linear cryptanalysis studies the correlation between linear

combinations of input and output bits of functions.

• In the usual case of (binary additive) stream ciphers

– the function under study is a nonlinear combiner function;

– the input bits to the function are bits from LFSR bitstreams;

– the output bits are the keystream bits;

– known plaintext-ciphertext sequences allow us to obtain

known keystream.
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Principles of the correlation attack
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Divide-and-conquer attack

• Assume a nonlinear combining generator with N LFSR-s of

lengths l1, . . . , lN .

• Exhaustive search then has to be performed over

N
∏

i=1

(2li − 1)

initial states.

• If each of the LFSR streams is correlated with the (known)

keystream, we can test each of the LFSR-s separately, so the

complexity reduces to
N
∑

i=1

(2li − 1).
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• Example: the Geffe generator (1973) is defined by three

maximum-length LFSR-s and a combining function

f(x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3.

• P (z(t) = x1(t)) =
3

4
, P (z(t) = x3(t)) =

3

4

• If the combining function is correlation immune to the 1st order,

we need to consider the LFSR-s pairwise, etc.

• If a boolean function f is mth order correlation immune, then the

nonlinear order of f is at most n − m.

• The correlation immunity-nonlinear order tradeoff can be

avoided by e.g.

– irregular clocking, as in the case of A5/1 or

– using memory in the function, as in the case of E0.
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The GSM encryption cipher A5/1
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A correlation attack on A5/1

• The initial state of the A5/1 generator is a linear function of the

key and the frame number (IV).

• Each output bit of an LFSR is a linear combination of key and

frame number bits:

sR
t =

64
∑

i=1

cR
itki +

22
∑

i=1

dR
itfi

• Separate the key and frame number parts in each of the LFSR-s:

sR
t = k̂R

t + f̂R
t .

• The sequences k̂R
0 , k̂R

1 , . . . are unknown, but remain the same for

all frames.

• The sequences f̂R
0 , f̂R

1 , . . . can be derived for each frame.
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Basic idea for the attack

• Each of the LFSR-s is clocked on average three times out of four

• Assume for a moment that after 101 clockings, each of the

LFSR-s has been clocked exactly 76 times. Then

s1
76 + s2

76 + s3
76 = z1,

or

k̂1
76 + k̂2

76 + k̂3
76 = f̂1

76 + f̂2
76 + f̂3

76 + z1 (1)

• Denote the known rhs of (1) for frame j by O
j

(76,76,76,1)

• Then we obtain a correlation for the key bit combinations:

P (k̂1
76 + k̂2

76 + k̂3
76 = O

j

(76,76,76,1)) =

= P (assumption correct) · 1 + P (assumption wrong) ·
1

2
.
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A refinement of the attack

• The probability of the particular clocking (76, 76, 76, 1) is around

10−3.

• The basic attack requires a few million frames (hours of

conversation) to determine information about the key.

• Consider now all keystream positions where a clocking triple has

a non-negligible probability of occuring and take a weighted

decision for each frame:

p
j
cl1,cl2,cl3

= P (k̂1
cl1

+ k̂2
cl2

+ k̂3
cl3

= 0) =

=
∑

v∈I

P (cl1, cl2, cl3, v) · [Oj
cl1,cl2,cl3,v−100 = 0] +

+
1

2
· (1 −

∑

v∈I

P (cl1, cl2, cl3, v)).
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• To evaluate clocking probabilities, assume that the clock control

bits are uniformly distributed independent bits:

P (cl1, cl2, cl3, v) =

(

v

v−cl1

)(

v−(v−cl1)
v−cl2

)(

v−(v−cl1)−(v−cl2)
v−cl3

)

4v
.

• Use the log-likelihood ratio

Λ(cl1,cl2,cl3) =
m
∑

j=1

ln
p

j
cl1,cl2,cl3

1 − p
j
cl1,cl2,cl3

to estimate the linear combination k̂1
cl1

+ k̂2
cl2

+ k̂3
cl3

.
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• Recall that the bit k̂R
cli

is the ith output bit of the LFSR R, when

loaded only with key bits.

• If we recover enough (consecutive) bits k̂R
cli

, we can load them

into the registers, clock the cipher (regularly) backwards, load a

frame number and check against the known keystream.

• If we consider all clocking triples in an interval of length N , we

obtain N3 linear equations with 3N variables.

• The problem of finding the variables is equivalent to decoding a

linear code.
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Divide and conquer

• We need 64 bits of information — exhaustive search over one

interval of length at least 22 gives no advantage over brute-force

attack.

• Consider instead several shorter intervals, e.g. pick N = 8 and

intervals [79, . . . , 86], [87, . . . , 94], [95, . . . , 102].

• We now need to perform exhaustive searches over only 24

variables.

• What if the closest solution is erroneous?

• We can either increase the number of received frames...

• ... or check for T closest solutions.
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• T solutions from each interval give T 3 combinations of solutions.

• To reduce the number of solutions to be verified, use overlapping

intervals and the properties of the feedback polynomials.

• With parameters N = 9 and T = 1000, the attack has been

implemented and gives 75% success probability, using 70000

frames (5 min) of known plaintext.
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The Bluetooth encryption cipher E0
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• Integer addition over Z2 defines a nonlinear function with

memory whose correlation immunity is maximum.

• This idea was first employed in the summation generator (1985)
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A correlation attack on E0

• The only nonlinear part of the keystream is the sequence c0
t .

• Correlations for the sequence have been identified, e.g.

P (c0
t ⊕ c0

t−5 = 0) =
1

2
+ 0.04883.

• To mount a correlation attack, we can replace the nonlinear part

with a sequence of random variables having certain correlation

probability.
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Divide and conquer

• Guess the initial state of LFSR1 and denote its output sequence

by (xt).

• Model the other three LFSR-s as a single LFSR and denote its

(unknown) output sequence by (ut).

• Assume that (ct) is a random noise sequence with the above

correlation probability 1
2 + ε.

• Then

zt = xt ⊕ ut ⊕ ct,

or

zt ⊕ xt = ut ⊕ ct,

where the lhs (denote it by vt) is known.
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• We shall now identify a correlation probability for vt to verify

our guess.

• For this, we need to eliminate the influence of the sequence ut.

• The sequence u= (u0, u1, . . . , uN−1) has generator matrix G such

that u = u0G.

• Suppose we are able to find k columns i1, . . . , ik in G that add up

to a zero-column.

• Then also ut+i1 + . . . + ut+ik
= 0 for any time index t (since the

code is cyclic).
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• Now
∑

i∈I

vt+i + vt+i−5 =
∑

i∈I

(ct+i + ut+i) + (ct+i−5 + ut+i−5) =

=
∑

i∈I

ct+i + ct+i−5

and

P

(

∑

i∈I

vt+1 + vt+i−5 = 0

)

=
1

2
+ 2k−1εk.
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• The attack has two parameters that will influence the length of

the received keystream:

– w, the value of the highest index in I (or, in other words, the

number of columns required to find k columns that sum to a

zero-column) and

– m, the number of time samples required to gain statistical

significance.

• Theorem Assume a cyclic code with a random generator

matrix. The total number of columns, w, required to find k

columns that add up to the all-zero column is approximately

2
l

k−1 , where l is the number of rows in the matrix.

• Hence, w decreases when k increases.
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• On the other hand, when k increases, the probability 1
2 + 2k−1εk

tends to 1
2 , i.e. the correlation gets weaker.

• Hence, m increases when k increases.

• Recall that the available keystream from one frame is at most

2745 bits.

• The required length of keystream is found to be > 234 bits, thus,

the attack cannot be applied on the actual Bluetooth encryption

scheme.
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