REDUCTIONS AND COMPLETENESS

Reductions and Completeness

- ➤ Reductions between problems
- ➤ Examples of reductions
- ➤ Composing reductions
- ➤ Completeness and hard problems
- ➤ Table method
- ➤ Computation as a Boolean circuit
- ➤ Capturing nondeterministic computation

(C. Papadimitriou: Computational complexity, Chapters 8.1–8.2)

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

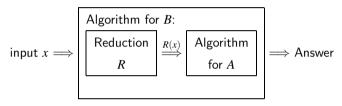
1. Reductions between Problems

- ➤ A complexity class is an infinite collection of languages. **Example.** The class NP contains languages such as TSP(D), SAT, HORNSAT, REACHABILITY, ...
- ➤ Not all decision problems seem to be equally hard to solve; can problems be somehow ordered by difficulty?
- > Such an ordering relation is definable using a notion of a *reduction*:

A is at least as hard as B if B reduces to A.

Basic requirements for reductions

- \blacktriangleright A problem B reduces to A if there is a transformation R which for every input x of B produces an equivalent input R(x) of A.
- \blacktriangleright Here equivalent means that the "yes" / "no" answer for R(x)considered as A's input is the correct answer to x as an input of B, i.e., $x \in B$ iff $R(x) \in A$.
- \blacktriangleright To solve B on input x we need to compute R(x) and solve A on it:



© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

Limiting resources in reductions

- ➤ The notion of a reduction seems reasonable to capture that A is at least as hard as B except when R is very hard to compute (e.g., when reducing TSP(D) to REACHABILITY).
- ➤ Possible limits on resources in reductions:
 - Cook reductions (polynomial-time Turing reductions)
 - Karp reductions (polynomial-time many-one reductions)
 - Log-space reductions (used here)

Definition. A language L_1 is reducible to L_2 ($L_1 \leq_L L_2$) iff there is a function R from strings to strings computable by a deterministic Turing machine in space $O(\log n)$ such that for all inputs x,

$$x \in L_1$$
 iff $R(x) \in L_2$.

The function R is called a *reduction* from L_1 to L_2 .

Time efficiency of reductions

Proposition. If R is a reduction computed by a deterministic TM M, then for all inputs x, M halts after a polynomial number of steps.

Reductions and Completeness

Proof sketch.

- As M works in space $O(\log n)$, there are $O(nc^{\log n})$ possible configurations for M on input x where |x| = n.
- ➤ Since *M* is deterministic and halts on every input, it cannot repeat any configuration. Hence *M* halts in at most

$$c_1 n c^{\log n} = c_1 n n^{\log c} = \mathcal{O}(n^k)$$

steps for some k.

Note that as output string R(x) is computed in a polynomial number of steps, its length is also polynomial w.r.t. |x|.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

2. Examples of Reductions

We will consider a number of reductions, i.e.

- 1. from HAMILTON PATH to SAT,
- 2. from REACHABILITY to CIRCUIT VALUE,
- 3. from CIRCUIT SAT to SAT, and
- 4. from CIRCUIT VALUE to CIRCUIT SAT.

In each case, we present a reduction R from the former language (say L_1) to the latter language (say L_2) such that for every string x based on the alphabet of L_1 ,

- (i) $x \in L_1$ iff $R(x) \in L_2$ and
- (ii) R(x) can be computed in $O(\log n)$ space.

Reducing HAMILTON PATH to SAT

Definition. The problem HAMILTON PATH is defined as follows: INSTANCE: A graph G.

QUESTION: Is there a path in G that visits every node exactly once?

- ➤ To show that SAT is at least as hard as HAMILTON PATH we must establish a reduction *R* from HAMILTON PATH to SAT.
- For a graph G, the outcome R(G) is a conjunction of clauses such that G has a Hamilton path iff R(G) is satisfiable.
- \blacktriangleright Suppose G has n nodes, $1, 2, \ldots, n$.
- ➤ Then R(G) has n^2 Boolean variables x_{ij} where $1 \le i, j \le n$ and x_{ij} denotes that the ith node on the path is j.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

_

Reducing a graph G to a Boolean formula R(G) in CNF

For a graph G with n nodes, the reduction function R produces a formula R(G) which is the conjunction of the following clauses:

- 1. For each node $j: x_{1j} \vee \cdots \vee x_{nj}$ (node j appears on the path).
- 2. For all j, i, k where $i \neq k$: $\neg x_{ij} \lor \neg x_{kj}$ (node j cannot be the ith and kth node simultaneously).
- 3. For all $i: x_{i1} \lor \cdots \lor x_{in}$ (some node is the *i*th node).
- 4. For all i, j, k where $j \neq k$: $\neg x_{ij} \lor \neg x_{ik}$ (no two nodes can be ith simultaneously)

Proof of correspondence

 (\Leftarrow) Let R(G) have a satisfying truth assignment T.

- By clauses (1,2) for every node j there is unique i such that $T(x_{ij}) = \mathbf{true}$.
- By clauses (3,4) for every i there is unique node j such that $T(x_{ij}) = \mathbf{true}$.
- Thus T represents a permutation $\pi(1), \ldots, \pi(n)$ of the nodes where $\pi(i) = j$ iff $T(x_{ij}) = \mathbf{true}$
- By clauses (5) for all k, there is an edge $(\pi(k), \pi(k+1))$ in G. Hence $(\pi(1), \dots, \pi(n))$ a Hamilton path.

(\Rightarrow) Let G have a Hamilton path $(\pi(1), \dots, \pi(n))$ where π is a permutation. Then R(G) is satisfied by a truth assignment T defined by $T(x_{ij}) = \mathbf{true}$ if $\pi(i) = j$ else $T(x_{ij}) = \mathbf{false}$.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

Reductions and Completeness

10

Proof of logarithmic space consumption

We show that R(G) can be computed in space $O(\log n)$.

Given G as an input, a TM M outputs R(G) as follows:

- M first outputs clauses (1-4) not depending on G one by one using three counters i, j, k.
- ullet Each counter is represented in binary within $\log n$ space.
- M outputs clauses (5) by considering each pair (i,j) in turn: if (i,j) is not an edge in G (M checks this first), then M outputs clauses $\neg x_{ki} \lor \neg x_{(k+1)j}$ one by one for all $k=1,\ldots,n-1$.
- Again space is needed only for the counters i, j, k, i.e. at most $3\log n$ in total.

Hence, R(G) can be computed in space $O(\log n)$.

Reducing REACHABILITY to CIRCUIT VALUE

We devise a reduction function R which for a graph G gives a variable-free circuit R(G) such that

the output of R(G) is **true** iff there is a path from 1 to n in G.

- \blacktriangleright The gates of R(G) are of the following two forms:
 - $-g_{ijk}$ with $1 \le i, j \le n$ and $0 \le k \le n$ and
 - $-h_{ijk}$ with $1 \le i, j, k \le n$.
- Now g_{ijk} is intended to be **true** iff there is a path in G from i to j not using any intermediate node bigger than k; and h_{ijk} is intended to be **true** iff there is a path in G from i to j not using any intermediate node bigger than k but using k.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

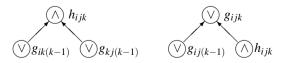
Reductions and Completeness

12

The structure of the circuit R(G)

Given a graph G, R(G) consists of the following gates:

- ➤ For k = 0, the gate g_{ijk} is an input gate in R(G): g_{ij0} is a **true** gate if i = j or (i, j) is an edge in G and a **false** gate otherwise.
- ▶ For k = 1, 2, ..., n, there are the following gates in R(G):



- ➤ The gate g_{1nn} is the output of R(G).
- The circuit R(G) is acyclic and variable-free.

Correct value assignment for h_{ijk} and g_{ijk}

We show that the gates h_{iik} and g_{iik} satisfy their intended meaning by induction on $k = 0, 1, \ldots, n$.

Reductions and Completeness

- \blacktriangleright The base case k=0 is covered by the definition of input gates.
- For k > 0, the circuit assigns $h_{ijk} = g_{ik(k-1)} \wedge g_{ki(k-1)}$. By the inductive hypothesis (IH) h_{ijk} is **true** iff there is a path from i to k and from k to j not using any intermediate node bigger than k-1 iff there is a path from i to j not using any intermediate node bigger than k but going through k.
- ► For k > 0, the circuit assigns $g_{ijk} = g_{ij(k-1)} \vee h_{ijk}$. By IH g_{ijk} is **true** iff there is a path from i to j not using any node bigger than k-1; or a path not using any node bigger than k but going through k iff there is a path from i to j not using any intermediate node bigger than k.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

14

13

Correctness of the reduction

- \blacktriangleright In fact, the circuit R(G) implements the Floyd-Warshall algorithm for REACHABILITY.
- ➤ The output of R(G) is **true** iff g_{1nn} is **true** iff there is a path from 1 to n in G without any intermediate nodes bigger than n iff there is a path from 1 to n in G.
- \blacktriangleright The circuit R(G) can be computed in $O(\log n)$ space using only three counters i, j, k.
- \blacktriangleright Note that R(G) is a monotone circuit (no NOT gates).

Reducing CIRCUIT SAT to SAT

We devise a reduction function R which given a Boolean circuit C produces a Boolean formula R(C) in CNF such that C is satisfiable iff R(C) is satisfiable.

The formula R(C) uses all variables of C and it includes for each gate gof C a new variable g and the following clauses.

- 1. If g is a variable gate x: $(g \lor \neg x), (\neg g \lor x)$. $[g \leftrightarrow x]$
- 2. If g is a **true** (resp. **false**) gate: g (resp. $\neg g$).
- 3. If g is a NOT gate with a predecessor h: $(\neg g \lor \neg h), (g \lor h), [g \leftrightarrow \neg h]$
- 4. If g is an AND gate with predecessors h, h':

$$(\neg g \lor h), (\neg g \lor h'), (g \lor \neg h \lor \neg h'). \qquad [g \leftrightarrow (h \land h')]$$

5. If g is an OR gate with predecessors h, h':

$$(\neg g \lor h \lor h'), (g \lor \neg h'), (g \lor \neg h). \qquad [g \leftrightarrow (h \lor h')]$$

6. If g is also the output gate: g.

We skip the correctness proof which is straightforward.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

16

Reducing CIRCUIT VALUE to CIRCUIT SAT

- ➤ CIRCUIT VALUE is a special case of CIRCUIT SAT: all inputs of CIRCUIT VALUE are also inputs of CIRCUIT SAT and for those CIRCUIT VALUE and CIRCUIT SAT coincide.
- ➤ Thus CIRCUIT SAT is a generalization of CIRCUIT VALUE.
- \blacktriangleright There is a trivial reduction, i.e. identity function I(x) = x, from CIRCUIT VALUE to CIRCUIT SAT.

3. Composing Reductions

Reductions and Completeness

- ➤ So far, we have established a chain of reductions, i.e. REACHABILITY \leq_L CIRCUIT VALUE \leq_L CIRCUIT SAT \leq_L SAT.
- ▶ But do reductions compose, i.e., is \leq_L transitive? For instance, does REACHABILITY \leq_L SAT hold?

Proposition. If R is a reduction from language L_1 to L_2 and R' is a reduction from language L_2 to L_3 , then the composition $R \cdot R'$ is a reduction from L_1 to L_3 .

- \blacktriangleright As R, R' are reductions, $x \in L_1$ iff $R(x) \in L_2$ iff $R'(R(x)) \in L_3$.
- ► It remains to show that R'(R(x)) can be computed in $O(\log n)$ space where n = |x|.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

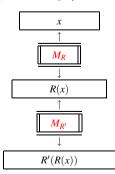
Reductions and Completeness

18

17

Logarithmic space consumption

- ➤ To construct a machine M for the composition $R \cdot R'$ working in space $O(\log n)$ requires care as the intermediate result computed by M_R cannot be stored (possibly longer than $\log n$).
- A solution: simulate $M_{R'}$ on input R(x) by remembering the cursor position i of the input string of $M_{R'}$ which is the output string of M_R . Only the index i is stored (in binary) and the symbol currently scanned but not the whole string.



Space consumption—cont'd

- ▶ Initially i = 1 and it is easy to simulate the first move of $M_{R'}$ (scanning ▷).
- ▶ If $M_{R'}$ moves right, simulate M_R to generate the next output symbol and increment i by one.
- ▶ If $M_{R'}$ moves left, decrement i by one and run M_R on x from the beginning, counting symbols output and stopping when the ith symbol is output.
- The space required for simulating M_R on x as well as $M_{R'}$ on R(x) is $O(\log n)$ where n = |x|.
- The space needed for bookkeeping the output of M_R on x is $O(\log n)$ as $|R(x)| = O(n^k)$ as we need only indices stored in binary.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

20

4. Completeness and Hard Problems

- ➤ The reducibility relation \leq_L orders problems with respect to their difficulty as it is reflexive and transitive (a preorder).
- ▶ Maximal elements in this order are particularly interesting. **Definition.** Let C be a complexity class and let L be a language in C. Then L is C-complete if for every $L' \in C$, $L' \leq_L L$.
- ▶ A language L is called C-hard if any language $L' \in C$ is reducible to L but it is not known whether $L \in C$ holds.
- ➤ The main complexity classes (P,NP,PSPACE,NL,...) have natural complete problems (as we shall see).

The role of completeness in complexity theory

➤ Complete problems are a central concept and methodological tool in complexity theory.

Reductions and Completeness

- ➤ The complexity of a problem is *categorized* by showing that it is complete for a complexity class.
- ➤ Complete problems capture the essence of a class.
- ➤ Completeness can be used to give a *negative complexity result*:

 A *complete problem is the least likely* among all problems in C to *belong to a weaker class* C' ⊂ C.

(If it does, then the whole class C coincides with the weaker class C' as long as C' is closed under reductions; see below.)

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

22

Closure under reductions

- ▶ A class C' is *closed under reductions* if whenever L is reducible to L' and $L' \in C'$, then $L \in C'$.
 - **Proposition.** P,NP,coNP,L,NL,PSPACE,EXP are all closed under reductions.
- ➤ For example, if a **P**-complete problem L is in **NL**, then **P** = **NL**. Proof. We know that **NL** \subseteq **P**.
 - Let $L' \in \mathbf{P}$. As L is **P**-complete, then L' is reducible to L. Since \mathbf{NL} is closed under reductions, $L' \in \mathbf{NL}$. Hence, $\mathbf{P} \subseteq \mathbf{NL}$.
- \blacktriangleright Similarly, if an NP-complete problem is in P, then P = NP.

Proving the equality of complexity classes

Proposition. If two complexity classes C and C' are

- 1. both closed under reductions and
- 2. there is a language L which is complete for C and C'.

then C = C'.

Proof.

- (\subseteq) Since L is complete for C, all languages in C reduce to $L \in C'$. As C' is closed under reductions, $C \subseteq C'$.
- (⊇) Follows by symmetry.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

24

5. Table Method

- ➤ How to establish that a problem is a complete one for a class?
- ➤ Finding the first complete problem is the most problematic case (then things become more straightforward as we shall see).
- ➤ To establish the first one we need capture in a problem the essence of the computation mode and resource bound for the class in question.
- ➤ Below we do this for the classes **P** and **NP** using the so-called *table method* in which logic plays a major role.

Computation table

- ightharpoonup Consider a polynomial time TM $M=(K,\Sigma,\delta,s)$ deciding a language L based on Σ .
- lts computation on input x can be thought of as a $|x|^k \times |x|^k$ computation table T where $|x|^k$ is the time bound for M.
- ➤ Each row in the table is a time step of the computation ranging from 0 to $|x|^k 1$.
- ➤ Each column is a position in the string (same range).
- ➤ The entry (i, j) in T, (i.e. $T_{i,j}$) represents the contents of position j of the string of M at time i (after i steps of M on x).

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

26

Example

i/j	0	1	2	3	 $ x ^{k} - 1$
0	\triangle	0_s 0_q 1	1	1	 Ш
1	⊳	0_q	1	1	 Ц
2	⊳	1	1_q	1	 Ш
$ x ^k - 1$	⊳	"yes"	Ш	Ш	 Ш

Computation table—cont'd

Some standardizing assumptions are made:

- ➤ *M* has only one string.
- ► M halts on any input x after at most $|x|^k 2$ steps (k is chosen so that this is guaranteed for |x| > 2).
- \blacktriangleright Strings in the table are padded with \sqcup s to be of same length $(|x|^k)$.
- ➤ If at time i the state is q and the cursor is scanning jth symbol σ , then the entry $T_{i,j}$ is σ_q (rather than σ); except for "yes" / "no" for which the entry is "yes" / "no".
- ➤ The cursor starts at the first symbol of the input (not at ▷).

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Computation table—cont'd

Reductions and Completeness

28

- ➤ The cursor never visits the leftmost \triangleright which is achieved by merging two moves of M if M is about to visit the leftmost \triangleright . \triangleright The first symbol of each row is always \triangleright (never \triangleright_a).
- ▶ If M halts before its time bound $|x|^k$ expires $(T_{i,j} = \text{"yes"}/\text{"no" for some } i < |x|^k 1 \text{ and } j)$, then all subsequent rows will be identical.
- ➤ The table is *accepting* iff $T_{|x|^k-1,j} =$ "yes" for some j.

Proposition.

 ${\it M}$ accepts input ${\it x}$ iff the computation table of ${\it M}$ on ${\it x}$ is accepting.

6. Computation as a Boolean Circuit

Reductions and Completeness

Any deterministic polynomial time computation can captured as a problem of determining the value of a Boolean circuit!

Theorem. CIRCUIT VALUE is P-complete.

- ▶ As CIRCUIT VALUE ∈ \mathbf{P} , to establish \mathbf{P} -completeness it is enough to show that for every language $L \in \mathbf{P}$, there is a reduction R from L to CIRCUIT VALUE.
- For an input x, the result R(x) is to be a variable-free circuit such that $x \in L$ iff the value of R(x) is **true**.
- \blacktriangleright In the sequel, we consider a TM M deciding L in time n^k .

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

30

Reduction from $L \in \mathbf{P}$ to CIRCUIT VALUE

Consider the computation table T of M on input x:

- ▶ When i = 0 or j = 0 or $j = |x|^k 1$, the value of $T_{i,j}$ is known a priori: in the first case x or \sqcup s, in the second \triangleright , and \sqcup in the third.
- ➤ Any other entry $T_{i,j}$ depends only on the contents of the same or adjacent positions $T_{i-1,j-i}$, $T_{i-1,j}$ and $T_{i-1,j+1}$ at time i-1:

➤ The idea is to encode this relationship using a Boolean circuit.

A binary encoding for T

T-79.5103 / Autumn 2007

- ► Let Γ denote the set of all symbols appearing in the table T. Encode each symbol $\sigma \in \Gamma$ as a bit vector $(s_1, s_2, ..., s_m)$ where $s_1, s_2, ..., s_m \in \{0, 1\}$ and $m = \lceil \log |\Gamma| \rceil$.
- ➤ The computation table can be thought of as a table of binary entries $S_{i,j,l}$ with $0 \le i, j \le n^k 1$ and $1 \le l \le m$.
- \triangleright Thus each $S_{i,i,l}$ depends only on 3m entries

$$S_{i-1,i-1,l'}, S_{i-1,i,l'}, \text{ and } S_{i-1,i+1,l'}$$

where $1 \le l' \le m$

➤ So there are Boolean functions $F_1, ..., F_m$ with 3m inputs each such that for all i, j > 0,

$$S_{i,j,l} = F_l(S_{i-1,j-1,1}, \dots, S_{i-1,j-1,m}, S_{i-1,j,1}, \dots S_{i-1,j+1,m}).$$

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

32

A binary encoding for T—cont'd

➤ Since every Boolean function can be represented by a Boolean circuit, there is a Boolean circuit *C*

$$S_{i-1,j-1,1} \dots S_{i-1,j+1,m}$$

$$C$$

$$S_{i,j} \dots S_{i,j,m}$$

with 3m inputs and m outputs that computes the binary encoding of $T_{i,j}$ given the binary encodings of $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$ for all $i=1,\ldots |x|^k$ and for all $j=1,\ldots |x|^k-2$.

➤ Note that *C* depends only on *M* and has a fixed constant size independent of the length of input *x*.

The definition of the reduction

➤ The reduction R(x) of x consists of $(|x|^k - 1) \times (|x|^k - 2)$ copies of circuit C one for each entry $T_{i,j}$ that is not on the top row or the two extreme columns (call this $C_{i,i}$)

Reductions and Completeness

- \blacktriangleright For $i \ge 1$, the input gates of $C_{i,j}$ are identified by the output gates of C_{i-1} i-1, C_{i-1} i, C_{i-1} i+1.
- \triangleright The sorts (**true**/**false**) of the input gates of R(x) correspond to the known values of the first row and the first and last column.
- ➤ The output gate of R(x) is the first output of $C_{|x|k-1,1}$ (assuming that M halts always with cursor in the second string position and the first bit of "yes" is 1 and that of "no" is 0).

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

Correctness of the reduction

➤ The value of R(x) is **true** iff $x \in L$:

Suppose that the value of R(x) is **true**.

It can be shown by induction on i that the output values of $C_{i,i}$ give the binary encoding of the *i*th row of *T*.

As R(x) is **true**, then the entry $T_{|x|^k-1.1}$ is "yes". Hence, the table is accepting and so is M implying $x \in L$.

If $x \in L$, the table is accepting and the value of R(x) is **true**.

 \blacktriangleright The circuit R(x) can be computed in logarithmic space: Input gates can be constructed by counting up to $|x|^k$ and inspecting input x (O(log n) space).

Other gates can be generated by manipulating indices in $O(\log n)$ space as the size of C is fixed and independent of |x|.

Other P-complete problems

- ➤ Note that NOT gates can be eliminated from variable-free circuits: Move NOTs downwards by applying De Morgan's laws until input gates are reached where ¬true is changed to false and vice versa.
- ➤ We call circuits containing only AND and OR gates (but no NOT gates) monotone circuits.
- ➤ Monotone circuits can only compute *monotone Boolean functions*. (A Boolean function is monotone if it satisfies the following property: if one of the inputs changes from false to true, the value of the function cannot changes from **true** to **false**.)

Corollary, MONOTONE CIRCUIT VALUE is P-complete.

Corollary. HORNSAT is **P**-complete.

(See tutorials.)

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

36

7. Capturing nondeterministic computation

Any nondeterministic polynomial time computation can captured as a circuit satisfiability problem!

Theorem. CIRCUIT SAT is **NP**-complete.

Proof.

- ➤ CIRCUIT SAT is in NP.
- \blacktriangleright Let $L \in \mathbf{NP}$. We'll describe a reduction R which for each string x constructs a Boolean circuit R(x) such that

 $x \in L$ iff R(x) is satisfiable.

 \blacktriangleright Let M be a single-string NTM that decides L in time n^k .

Standardizing choices made by M

➤ It is assumed that M has exactly two nondeterministic choices $(\delta_1, \delta_2 \in \Delta)$ at each step of computation.

The cases that $|\Delta| > 2$ or $|\Delta| < 2$ can be avoided by adding new states to M or by assuming that choices coincide ($\delta_1 = \delta_2$).

Reductions and Completeness

- ➤ Under this assumption, a sequence of nondeterministic choices c can be represented as a bit string $(c_0, c_1, \dots, c_{|x|^k-2}) \in \{0, 1\}^{|x|^k-1}$.
- \triangleright If we fix the sequence of choices c, then the computation of M becomes effectively deterministic.
- \triangleright Let us define the computation table $T(M,x,\mathbf{c})$ corresponding to the machine M. an input x. and a sequence of choices \mathbf{c} .

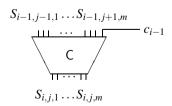
© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

A binary encoding for $T(M,x,\mathbf{c})$

- ➤ The top row and extreme columns are predetermined as before.
- \blacktriangleright All other entries $T_{i,i}$ depend only on $T_{i-1,j-1}$, $T_{i-1,j}$, $T_{i-1,j+1}$, and the *choice* c_{i-1} at the previous step. There is a Boolean circuit C



with 3m+1 inputs and m outputs that computes the binary encoding of $T_{i,j}$ given the binary encodings of $T_{i-1,j-1}$, $T_{i-1,j}$, $T_{i-1,i+1}$ and the previous choice c_{i-1} .

Correctness of the reduction

T-79.5103 / Autumn 2007

- \blacktriangleright The circuit R(x) is constructed as in the deterministic case but circuitry for c must be incorporated.
- \blacktriangleright The circuit R(x) can be computed in logarithmic space as C has a fixed constant size independent of |x|.
- \blacktriangleright Moreover, the circuit R(x) is satisfiable iff there is a sequence of choices \mathbf{c} such that the computation table is accepting iff $x \in L$.

Corollary. (Cook's theorem) SAT is NP-complete.

Proof. Let $L \in \mathbf{NP}$. Hence. L is reducible to CIRCUIT SAT as CIRCUIT SAT is NP-complete. But CIRCUIT SAT is reducible to SAT. Hence, L is reducible to SAT as reductions compose.

On the other hand, SAT \in **NP** so that SAT is **NP**-complete.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Reductions and Completeness

40

Learning Objectives

- ➤ The idea of reducing one problem, or language, into another.
- ➤ You should know the basic properties of L-reductions (e.g. compositionality) and be able to construct reductions on your own.
- ➤ The definitions of C-hard and C-complete problems/languages for a complexity class C.
- ➤ Understanding the role of complete problems in complexity theory.
- ➤ Fundamental completeness results regarding CIRCUIT VALUE, HORNSAT, CIRCUIT SAT, and SAT.

