RELATIONS BETWEEN COMPLEXITY CLASSES

- ► Basic requirements for complexity classes
- ► Complexity classes
- ► Hierarchy theorems
- ► Reachability method
- ► Class inclusions
- ► Simulating nondeterministic space
- ► Closure under complement
- (C. Papadimitriou: *Computational complexity*, Chapter 7)

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Relations between Complexity Classes

1. Basic Requirements for Complexity Classes

A complexity class is specified by

- ► model of computation (multi-string TMs)
- ▶ mode of computation (deterministic, nondeterministic,...)
- ► resource (time, space, ...)
- \blacktriangleright bound (function f)

A complexity class is the set of all languages decided by some multi-string Turing machine M operating in the appropriate mode, and such that, for any input x, M expends at most f(|x|) units of the specified resource.

Reasonable bound functions

Definition. A function $f : \mathbf{N} \to \mathbf{N}$ is a *proper complexity function* if f is nondecreasing and there is a *k*-string TM M_f with input and output such that on any input x,

- 1. $M_f(x) = \sqcap^{f(|x|)}$ where \sqcap is a *quasi-blank* symbol,
- 2. M_f halts after O(|x| + f(|x|)) steps, and
- 3. M_f uses O(f(|x|)) space besides its input.
- **>** Examples of proper complexity functions f(n):
 - c, n, $\lceil \log n \rceil$, $\log^2 n$, $n \log n$, n^2 , $n^3 + 3n$, 2^n , \sqrt{n} , n!, ...
- ▶ If f and g are proper, so are, e.g., f + g, $f \cdot g$, 2^g .
- > Only proper complexity functions will be used as bounds.

C 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Relations between Complexity Classes

4

Precise Turing machines

Definition. Let *M* be a deterministic/nondeterministic multi-string Turing machine (with or without input and output).

Machine *M* is *precise* if there are functions *f* and *g* such that for every $n \ge 0$, for every input *x* of length *n*, and for every computation of *M*,

- 1. *M* halts after precisely f(|x|) steps and
- 2. all of its strings (except those reserved for input and output whenever present) are at halting of length precisely g(|x|).

(Precise bounds will be convenient in various simulation results).

1-79.5103 / Autumn 2007 Relations between Complexity Classes 5	T-79.5103 / Autumn 2007 Relations between Complexity Classes
Simulating TMs with precise TMs	Key Complexity Classes
Proposition. Let <i>M</i> be a deterministic or nondeterministic TM	
deciding a language L within time/space $f(n)$ where f is proper.	$\mathbf{P} = \mathbf{TIME}(n^k)$
Then there is a precise TM M' which decides L in time/space $O(f(n))$.	$\mathbf{NP} = \mathbf{NTIME}(n^k)$
	PSPACE = SPACE (n^k)
Proof sketch.	NPSPACE = NSPACE (n^k)
The simulating machine M' on input x	$\mathbf{EXP} \qquad = \mathbf{TIME}(2^{n^k})$
1. computes a yardstick/alarm clock $\sqcap^{f(x)}$ using M_f and	$\mathbf{L} = \mathbf{SPACE}(\log(n))$
2. using the vardstick	\mathbf{NL} = $\mathbf{NSPACE}(\log(n))$
simulates M for exactly $f(x)$ steps or simulates M using exactly $f(x)$ units of space.	The relationships of these classes will be studied in the sequel.
© 2007 TKK, Laboratory for Theoretical Computer Science	© 2007 TKK, Laboratory for Theoretical Computer Science
\bigodot 2007 TKK, Laboratory for Theoretical Computer Science	$\ensuremath{\mathbb{C}}$ 2007 TKK, Laboratory for Theoretical Computer Science
© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes 6	© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes
© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes 6	© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes
© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes 6 2. Complexity Classes	© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes
© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes C. Complexity Classes Given a proper complexity function <i>f</i> , we obtain following classes:	© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Complements of decision problems Ciucn on alphabet Σ and a language $L \subset \Sigma^*$ the complement of L
 © 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes 6 2. Complexity Classes For a proper complexity function f, we obtain following classes: TIME(f) (deterministic time) 	© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Complements of decision problems Solution Given an alphabet Σ and a language $L \subseteq \Sigma^*$, the complement of L $\overline{L} = \Sigma^* - L$
© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes 6 2. Complexity Classes Given a proper complexity function <i>f</i> , we obtain following classes: TIME(<i>f</i>) (deterministic time) NTIME(<i>f</i>) (nondeterministic time)	© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Complements of decision problems Solution Given an alphabet Σ and a language $L \subseteq \Sigma^*$, the complement of L $\overline{L} = \Sigma^* - L$.
© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes 6 2. Complexity Classes Since a proper complexity function <i>f</i> , we obtain following classes: TIME(<i>f</i>) (deterministic time) NTIME(<i>f</i>) (nondeterministic time) SPACE(<i>f</i>) (deterministic space)	 © 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Complements of decision problems Given an alphabet Σ and a language L ⊆ Σ*, the complement of L
© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes 6 2. Complexity Classes Signer a proper complexity function <i>f</i> , we obtain following classes: TIME(<i>f</i>) (deterministic time) NTIME(<i>f</i>) (nondeterministic time) SPACE(<i>f</i>) (deterministic space) NSPACE(<i>f</i>) (nondeterministic space)	 © 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Complements of decision problems Given an alphabet Σ and a language L ⊆ Σ*, the complement of L
© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes 6 2. Complexity Classes Siven a proper complexity function <i>f</i> , we obtain following classes: TIME(<i>f</i>) (deterministic time) NTIME(<i>f</i>) (nondeterministic time) SPACE(<i>f</i>) (deterministic space) NSPACE(<i>f</i>) (nondeterministic space) The bound <i>f</i> can be a family of functions parameterized by a	 © 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Complements of decision problems Given an alphabet Σ and a language L ⊆ Σ*, the complement of L
 © 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Complexity Classes Given a proper complexity function <i>f</i>, we obtain following classes: TIME(<i>f</i>) (deterministic time) NTIME(<i>f</i>) (nondeterministic time) SPACE(<i>f</i>) (deterministic space) NSPACE(<i>f</i>) (nondeterministic space) The bound <i>f</i> can be a family of functions parameterized by a non-negative integer <i>k</i>; meaning the union of all individual classes. 	 (c) 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Complements of decision problems Given an alphabet Σ and a language L ⊆ Σ*, the complement of L L = Σ* - L. For a decision problem A, the answer for the complement "A COMPLEMENT" is "yes" iff the answer for A is "no". Example. SAT COMPLEMENT: given a Boolean expression φ in CNE is φ unsatisfiable?
 © 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Autumn 2007 Relations between Complexity Classes Complexity Classes Given a proper complexity function <i>f</i>, we obtain following classes: TIME(<i>f</i>) (deterministic time) NTIME(<i>f</i>) (nondeterministic time) SPACE(<i>f</i>) (deterministic space) NSPACE(<i>f</i>) (nondeterministic space) The bound <i>f</i> can be a family of functions parameterized by a non-negative integer <i>k</i>; meaning the union of all individual classes. The most important are: TIME(<i>n^k</i>) = 1 ↓ a TIME(<i>n^j</i>) 	 © 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Relations between Complexity Classes Complements of decision problems Given an alphabet Σ and a language L ⊆ Σ*, the complement of L L = Σ* - L. For a decision problem A, the answer for the complement "A COMPLEMENT" is "yes" iff the answer for A is "no". Example. SAT COMPLEMENT: given a Boolean expression φ in CNF, is φ unsatisfiable? Example. REACHABILITY COMPLEMENT: given a graph (V F)

Closure under Complement

For any complexity class C, $\mathbf{co}C$ denotes the class

 $\{\overline{L} \mid L \in C\}.$

Example. As SAT \in **NP**, then SAT COMPLEMENT \in **coNP**.

- All deterministic time and space complexity classes are closed under complement. Hence, e.g., P = coP.
 - $\mathsf{Proof.}\xspace$ Exchange "yes" and "no" states of the deciding machine.
- The same holds for nondeterministic space complexity classes (to be shown in the sequel).
- An important open question: are nondeterministic *time* complexity classes closed under complement? For instance, NP = coNP?

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Relations between Complexity Classes

3. Hierarchy Theorems

- We derive a quantitative hierarchy result: with sufficiently greater time allocation, Turing machines are able to perform more complex computational tasks.
- ▶ For a proper complexity function $f(n) \ge n$, define
 - $H_f = \{M; x \mid M \text{ accepts input } x \text{ after at most } f(|x|) \text{ steps}\}.$
- Thus H_f is the time-bounded version of H, i.e. the language of the HALTING problem.

Upper bound for H_f

Lemma. $H_f \in \text{TIME}((f(n))^3)$.

Proof sketch.

- A 4-string machine U_f deciding H_f in time $f(n)^3$ is based on
- (i) the universal Turing machine U,
- (ii) the single-string simulator of a multi-string machine,
- (iii) the linear speedup machine, and
- (iv) the machine M_f computing the yardstick of length f(n) where n is the length of the input x.

\bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Relations between Complexity Classes

12

Proof-cont'd.

The machine U_f operates as follows:

- 1. M_f computes the alarm clock $\sqcap^{f(|x|)}$ for M (string 4).
- 2. The description of *M* is copied on string 3 and string 2 initialized to encode the initial state *s* and string 1 the input $\triangleright x$.
- 3. Then U_f simulates M and advances the alarm clock. If U_f finds out that M accepts input x within f(|x|) steps, then U_f accepts, but if the alarm clock expires, then U_f rejects.

Observations:

- ➤ Since *M* is simulated using a single string, each simulation step takes O(f(n)²) time.
- ➤ The total running time is $O(f(n)^3)$ for f(|x|) steps.

Lower bound for H_f

Lemma. $H_f \notin \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor))$

Proof sketch.

- ► Suppose there is a TM M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$.
- ➤ Consider $D_f(M)$: if $M_{H_f}(M;M) =$ "yes" then "no" else "yes". Thus D_f on input M runs in time $f(\lfloor \frac{2|M|+1}{2} \rfloor) = f(\lfloor M \rfloor)$.
- ▶ If $D_f(D_f) =$ "yes", then $M_{H_f}(D_f, D_f) =$ "no", hence, $D_f; D_f \notin H_f$ and D_f fails to accept input D_f within $f(|D_f|)$ steps, i.e. $D_f(D_f) =$ "no", a contradiction.
- ▶ Hence, $D_f(D_f) \neq$ "yes". Then $D_f(D_f) =$ "no" and $M_{H_f}(D_f, D_f) =$ "yes". Therefore, $D_f; D_f \in H_f$, and D_f accepts input D_f within $f(|D_f|)$ steps, i.e., $D_f(D_f) =$ "yes", a contradiction again.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

1	T-79.5103	/	Autumn	2007

Relations between Complexity Classes

The time hierarchy theorem

Theorem. If $f(n) \ge n$ is a proper complexity function, then the class **TIME**(f(n)) is strictly contained within **TIME** $((f(2n+1))^3)$.

- ► **TIME** $(f(n)) \subseteq$ **TIME** $((f(2n+1))^3)$ as f is nondecreasing.
- ▶ By the first lemma: $H_{f(2n+1)} \in \mathbf{TIME}((f(2n+1))^3)$.
- ► By the second lemma: $H_{f(2n+1)} \notin \mathbf{TIME}(f(\lfloor \frac{2n+1}{2} \rfloor)) = \mathbf{TIME}(f(n)).$

Corollary. P is a proper subset of EXP.

- ► Since $n^k = O(2^n)$, we have $\mathbf{P} \subseteq \mathbf{TIME}(2^n) \subseteq \mathbf{EXP}$.
- ➤ It follows by the time hierarchy theorem that $TIME(2^n) \subset TIME((2^{2n+1})^3) \subseteq TIME(2^{n^2}) \subseteq EXP.$

The space hierarchy theorem

Theorem. If $f(n) \ge n$ is a proper complexity function, then the class **SPACE**(f(n)) is a *proper* subset of **SPACE** $(f(n)\log f(n))$.

However, counter-intuitive results are obtained if non-proper complexity functions are allowed.

Theorem. (The Gap Theorem).

There is a recursive function f from the nonnegative integers to the nonnegative integers such that $TIME(f(n)) = TIME(2^{f(n)})$.

Proof sketch.

The bound f can be defined so that no TM M computing on input x with |x| = n halts after number of steps between f(n) and $2^{f(n)}$.

C 2007 TKK, Laboratory for Theoretical Computer Science

Proof of NTIME $(f(n)) \subseteq$ **SPACE**(f(n))

- ► Let L ∈ NTIME(f(n)). Hence, there is a precise nondeterministic Turing machine N that decides L in time f(n).
- ➤ We show how to construct a deterministic machine M that simulates N within the space bound f(n).
- Let d be the degree on nondeterminism of N (maximal number of possible moves for any state-symbol pair in Δ).
- ➤ Any computation of N on input x is a f(n)-long sequence of nondeterministic choices (represented by integers 0, 1,...,d-1) where n = |x|.
- ➤ The simulating deterministic machine *M* considers all such sequences of choices and simulates *N* on each.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

Relations between Complexity Classes

Proof—cont'd.

T-79.5103 / Autumn 2007

- ➤ With sequence (c₁, c₂,..., c_{f(n)}) M simulates the actions that N would have taken had N taken choice c_i at step i.
- If a sequence leads N to halting with "yes", then M does, too.
 Otherwise it considers the next sequence. If all sequences are exhausted without accepting, then M rejects.
- There is an exponential number of simulations to be tried but they can be carried out in *space* f(n) by carrying them out one-by-one, always erasing the previous simulation to reuse space.
- ➤ As f(n) is proper, the first sequence 0^{f(n)} can be generated in space f(n).

Proof of NSPACE $(f(n)) \subseteq \mathbf{TIME}(c^{\log n + f(n)})$

The *reachability method* is used to prove the claim.

- Consider a k-string *nondeterministic* TM M with input and output which decides a language L within space f(n).
- ➤ We develop a deterministic method for simulating the nondeterministic computation of *M* on input *x* within time c^{logn+f(n)} where n = |x| and c is a constant depending on *M*.
- ➤ The configuration graph G(M,x) of M is used: nodes are all possible configurations of M and there is an edge between two nodes (configurations) C₁ and C₂ iff C₁ ^M→ C₂.
- Now x ∈ L iff there is a path from C₀ = (s,▷,x,▷,ε,...,▷,ε) to some configuration of the form C = ("yes",...) in G(M,x).

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Relations between Complexity Classes

20

Proof—cont'd.

- ➤ A configuration (q, w₁, u₁,..., w_k, u_k) is a complete "snapshot" of a computation.
- Since *M* is a machine with input and output *deciding L* for the configuration:
 - the output string can be neglected,
 - for the input string, only the cursor position can change, and - for all other k-2 strings, the length is at most f(n).
- ➤ A configuration can be represented as (q, i, w₂, u₂,..., w_{k-1}, u_{k-1}) where 1 ≤ i ≤ n gives the cursor position on the input string.
- ► How many possible configurations does M have? At most $|K|(n+1)(|\Sigma|^{f(n)})^{2(k-2)} \leq |K|2n(|\Sigma|^{2(k-2)})^{f(n)} \leq nc_1^{f(n)} \leq c_1^{\log n+f(n)}$ for some constant c_1 depending on M.

Proof—cont'd.

- ▶ Hence, deciding whether $x \in L$ holds can be done by solving a reachability problem for a graph with at most $c_1^{\log n+f(n)}$ nodes.
- ➤ The problem can be solved, say, with a quadratic algorithm in time $c_2c_1^{2(\log n+f(n))} \le c^{\log n+f(n)}$ with $c = c_2c_1^2$.
- ➤ The graph G(M,x) needs not to be represented explicitly (e.g., as an adjacency matrix) for the reachability algorithm.
- ➤ Given machine *M* the existence of an edge from *C* to *C'* can be determined on the fly by examining *C*, *C'*, and the input *x*.

Which inclusions are proper?

Corollary. The class L is a proper subset of PSPACE.

Proof. The space hierarchy theorem tells us $\mathbf{L} = \mathbf{SPACE}(\log(n)) \subset \mathbf{SPACE}(\log(n)\log(\log(n))) \subseteq \mathbf{SPACE}(n^2) \subseteq \mathbf{PSPACE}. \square$

It is believed that *all* inclusions of the complexity classes in $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$ are proper.

However, we only know that

- ➤ at least one of the inclusions between L and PSPACE is proper (but don't know which) and
- ➤ at least one of the inclusions between P and EXP is proper (but don't know which).

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

Savitch's theorem

Theorem. REACHABILITY \in **SPACE**($\log^2 n$).

Proof sketch.

- ➤ Given a graph G and nodes x, y and i ≥ 0, define PATH(x, y, i): there is a path from x to y of length at most 2ⁱ.
- If G has n nodes, any simple path is at most n long and we can solve reachability in G if we can compute whether PATH(x,y, [logn]) holds for any given nodes x, y of G.
- This can be done using *middle-first search* within space bound $\log^2 n$.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Relations between Complexity Classes

26

Proof—cont'd.

➤ function path(x,y,i) /* middle-first search */ if i = 0 then

if x = y or there is an edge (x, y) in G then return "yes" else for all nodes z do

if path(x,z,i-1) and path(z,y,i-1) then return "yes"; return "no"

Proof that path(x,y,i) correctly determines PATH(x,y,i) by induction on i = 0, 1, 2, ...:

If i = 0, then clearly *path* correctly determines PATH(x, y, 0). For i > 0, path(x, y, i) returns "yes" iff there is a node *z* with path(x, z, i-1) and path(z, y, i-1) holding. By the inductive hypothesis there are paths from *x* to *z* and from *z* to *y* both at most 2^{i-1} long. Then there is a path from *x* to *y* at most 2^{i} long.

Proof—cont'd.

- ▶ The algorithm is started with $path(x, y, \lceil \log n \rceil)$.
- ➤ O(log² n) space bound can be achieved by handling recursion using a stack containing a triple (x, y, i) for each active recursive call.
 For each node z put (x, z, i 1) into the stack and call path(x, z, i 1). If this fails, erase (x, z, i 1) and put (x, z', i 1) for the next z' otherwise erase (x, z, i 1) and put (z, y, i 1).
- ➤ As there are at most log n recursive calls active with each taking at most 3log n space, the O(log² n) space bound is achieved.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Relations between Complexity Classes

Corollary. For any proper complexity function $f(n) \ge \log n$,

NSPACE $(f(n)) \subseteq$ **SPACE** $((f(n))^2)$.

Proof.

- To simulate an f(n)-space bounded NTM M on input x, run the previous algorithm on the configuration graph G(M,x).
- The edges of the graph G(M, x) are determined on the fly by examining the input x.
- ▶ The configuration graph has at most $c_1^{\log n + f(n)} \leq c^{f(n)}$ nodes.
- ➤ By Savitch's theorem, the algorithm needs at most (log c^{f(n)})² = f(n)²log² c = O(f(n)²) space.

Corollary. PSPACE = **NPSPACE**.

 \bigcirc Nondeterminism is less powerful with respect to space than time.

28

7. Closure under Complement

- A key result about reachability will be established: the number of nodes reachable from a node x can be computed in nondeterministic log n space!
- The complement (the number of nodes not reachable from x) can be handled in nondeterministic log n space, too!
 (This quantity can be obtained by a simple subtraction.)
- It is open (and doubtful) whether nondeterministic time complexity classes are closed under complement.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

Relations between Complexity Classes

(

Functions computed by NTMs

T-79.5103 / Autumn 2007

When does a NTM M compute a function F from strings to strings?

- > On input x, each computation of M either
 - outputs the correct answer F(x) or
 - enters the rejecting "no" state.
- ➤ At least one computation must end up with F(x) which must be unique for all such computations.
- ➤ Such a machine observes a space bound f(n) iff for any input x, at halting all strings (except the ones reserved for input and output) are of length at most f(|x|).

Immerman-Szelepscényi theorem

Theorem. Given a graph G and a node x, the number of nodes reachable from x in G can be computed by a NTM within space $\log n$.

Proof.

- ➤ Let us define S(k) as the set of nodes in G which are reachable from x via paths of length k or less.
- ➤ The strategy is to compute values |S(1)|, |S(2)|,..., |S(n-1)| iteratively and recursively, i.e. |S(i)| is computed from |S(i-1)|.
- Siven that the number of nodes in G is n, the number of nodes reachable from x in G is |S(n-1)|.
- ▶ Let G(v,u) mean that v = u or there is an arc from v to u in G.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Relations between Complexity Classes	32
Proof-cont'd	
The nondeterministic algorithm:	
S(0) := 1	
for $k := 1, 2,, n-1$ do	
l := 0;	
for each node $u := 1, 2,, n$ do	
check whether $u \in S(k)$ and set <i>reply</i> accordingly;	
/* See below how this is implemented */	
if $reply = true$ then $l := l + 1$;	
end for;	
S(k) := l	
end for	

Proof–cont'd.

/* Check whether $u \in S(k)$ and set reply */ m := 0; reply := false; for each node v := 1, 2, ..., n do /* check whether $v \in S(k-1) */$ $w_0 := x$; path := truefor p := 1, 2, ..., k-1 do guess a node w_p ; if not $G(w_{p-1}, w_p)$ then path := falseend for if path = true and $w_{k-1} = v$ then m := m+1; /* $v \in S(k-1)$ holds */ if G(v,u) then reply := trueend if end for if m < |S(k-1)| then "give up" (end in "no" state)

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Relations between Complexity Classes

34

Proof—cont'd.

➤ Note that only log n-space is needed as there are only nine variables: |S(k)|, k, l, u, m, v, p, w_p, w_{p-1}

which each (an integer) can be stored in $\log n$ space.

- > The algorithm computes correctly |S(k)| (by induction on k):
 - If k = 0, then |S(k)| = 1 as given by the algorithm.
 - For k>0, consider a computation that does not "give up". We need to show that counter l is incremented iff $u\in S(k).$

```
If counter l is incremented, then reply=true implying that u\in S(k), i.e. there is a path (x=)w_0,\ldots,w_{k-1}(=v),u.
```

If $u \in S(k)$, then there is some $v \in S(k-1)$ such that G(v,u). But as the computation does not "give up", m = |S(k-1)| (which is the correct value by induction) and therefore all $v \in S(k-1)$ are verified as such and, thus, reply is set to *true*.

– Moreover, clearly there is at least one accepting computation where paths to the members of S(k-1) are correctly guessed.

T-79.5103 / Autumn 2007

Closure under Complement

Corollary. If $f(n) \ge \log n$ is a proper complexity function, then **NSPACE**(f(n)) =**coNSPACE**(f(n)).

Proof sketch.

- ➤ Suppose L ∈ NSPACE(f(n)) is decided by an f(n)-space bounded NTM M. We build an f(n)-space bounded NTM M̄ deciding L̄.
- ➤ On input x, M̄ runs the previous algorithm on the configuration graph G(M,x) associated with M and x.
- ▶ \overline{M} rejects if it finds an accepting configuration in any S(k).
- ➤ Since G(M,x) has at most $n_g = c^{f(n)}$ nodes, then \overline{M} can accept if $|S(n_g 1)|$ is computed without an accepting configuration.
- ▶ Due to bound n_g , \overline{M} needs at most $\log c^{f(n)} = O(f(n))$ space.

© 2007 TKK, Laboratory for Theoretical Computer Science

