T-79.5103 / Autumn 2007 Boolean Logic

4 N
BOOLEAN LOGIC]

O Syntax

O Semantics

O Normal forms

O Satisfiability and validity

0 Boolean functions and expressions
U Boolean circuits

(C. Papadimitriou: Computational complexity, Chapter 4)

N /

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

a)

O Logic involves interesting computational problems.

O Logic is “the calculus of computer science”:
digital circuit design, programming language semantics,
specification and verification, constraint programming, logic
programming, databases, artificial intelligence, knowledge
representation, machine learning, ...

O In computational complexity theory:
Computational problems from logic are of central importance; they
can be used to express computation at various levels.
This leads to important connections between complexity concepts
and actual computational problems.

N /

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

4 N

O The syntax of Boolean logic (i.e. the set of well-formed Boolean

expressions) is based on the following symbols:
— Boolean variables (or atoms): X = {x1,X,...}.
— Boolean connectives: V (or), A (and) , and — (negation).
O The set of Boolean expressions (formulae) is the smallest set such

that all Boolean variables are Boolean expressions and if @ and @
are Boolean expressions, so are =@, (@1 A @), and (@1 V @).

O An expression of the form X or —X; is called a literal where X; is a
Boolean variable.

Example. ((X1VX2) A—X3) is a Boolean expression but ((X1 V X2)—X3)
is not.

N /

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

Some notational conventions.

O Simplified notation: (((X1V—X3) VX2)V (XaV (X2V Xs5))) is written
as X1 VX3V XoVXgVXoVXg or X1 V-aXzVXoVXgVXs.

O Disjunctions and conjunctions involving N members:
— VL1 6i stands for ¢1V -~V dn.
— AlL1¢; stands for ¢1 A -+ Adn.

O Frequently appearing abbreviations:
— An implication @1 — @ stands for =@ V @,.
— An equivalence @ < @ stands for (=@ V @) A (—@V @1).

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

-

2. Semantics.

How to interpret Boolean expressions?

0 Boolean expressions are propositions that are either true or false.

They speak about a world where certain atomic proposition
(Boolean variables) are either true or false.

This induces truth values for Boolean expressions as follows.
O A truth assignment T is mapping from a finite subset X’ C X to
the set of truth values {true,false}.

O Let X(@) be the set of Boolean variables appearing in @.

Definition. A truth assignment T : X’ — {true,false} is
appropriate to @ if X(¢) C X'.

-

J

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

Satisfaction relation .

O Let a truth assignment T : X’ — {true false} be appropriate to @,
ie. X(g) C X',

O T E @ (T satisfies @) is defined inductively as follows:
If @is a variable from X', then T = @iff T(g) =true.
If = —q@q, then T = @iff T = @u.
fo=@A@, then TEQIff TE@ and T = @.
fo=@ V@, then TEQIffFTE@or T @.

Example. Let T(x1) =true, T(x2) =false.
Then T EXx1 VX2 but T B (X1 V —X2) A (X1 A X2).

-

~

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

Logical equivalence I

for all truth assignments T appropriate to both of them,

TE@IffTE@.
Example.
(V@)= (RVe)
(@A @) AG3) = (@A (92N ¢3))
Q=0
(@ AG) V)= (V@) A (@Y ¢3))
(@ AR) = (V)
(V@) = (LA)
(Vo) =@

-

Definition. Expressions @ and @, are logically equivalent (@1 = @) iff

~

J

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

-~

3. Normal Forms
O The most frequently used normal forms for Boolean expressions
are conjunctive and disjuntive normal forms (CNF/DNF).
O These forms are defined by
CNF (I]_]_\/"‘\/Ilnl)/\"'/\(Im]_\/"'\/lmnm)
DNF: (lll/\"'/\|1n1>\/“’\/(Iml/\”’/\lmnm)
where each ljj is a literal (Boolean variable or its negation).
O A disjunction I1V--- VI of literals is called a clause.
O A conjunction I3 A--- Al of literals is called an implicant.
O We can assume that normal forms do not have repeated
clauses/implicants or repeated literals in clauses/implicants.
Example. (—X1V X1V X2) = (X1 V X2).
Theorem. Every Boolean expression is equivalent to one in
onnjunctive (disjunctive) normal form.

~

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

CNF/DNF transformation I

Any Boolean expression can be transformed into CNF/DNF as follows.

e Remove < and —:
(maVvB)A(=BVva) (1)
-avp (2)

a—pB ~
G—>[3 ~>

e Push negations in front of Boolean variables:

-0 ~ o (3)
(VB ~ —an=B o (4)
~(@AB) ~ -av-p (5)

|:| The result is a mixed conjunction and disjunction of literals.

_ /

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

CNF/DNF transformation—cont’d I

The next phase depends on the normal form being pursued:

e For a CNF, move A connectives outside VV connectives:
(avB)A(avy) (6)
(@vy)ABvy) (7)
e For a DNF, move V connectives outside A connectives:
(aAB)V(any) (8)
(@ny)v(BAY) (9)

Note: Normal forms can be exponentially bigger than the original

av(Bay) -~
(AAB)VY ~

an(Bvy -~
(aVB)AYy ~

expression in the worst case.

_ /

© 2007 TKK, Laboratory for Theoretical Computer Science

10

T-79.5103 / Autumn 2007 Boolean Logic

-

Transform (X1 VX2) — (X2 < X3) into CNF.
(Xl\/Xz) — (Xz — X3) (1)

—\(Xl\/Xz) vV (Xz — X3) (2)

(VX)) V(%2 Vxs) A (X3 VX2)) (4)
XA X))V (%2 VX3) A (—x3V X)) (7)

(=X1V (%2 VX3)) A (—X1V (—X3 V X2)))

A (5% V (X2 VX3) A (—X3VX2))) (6)
((=x1V (=% VX3)) A (—X1V (—X3 V X2)))

A (% V (%2 VX3)) A (%2 V (—X3V X2))) (Simplification)
(=X1V X VX3) A (=X VX3V X2) A (mX2 VX3) A (X2 V —X3 V X2)

N

(
(=X V ((—%2 VX3) A (X3 V X2))) A (7% V (X2 V Xa) A (mX3 V' X2))) (6)
(

/

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

-

4. Satisfiability and Validity

O A Boolean expression @ is satisfiable iff
there is a truth assignment T appropriate to it such that T = @.

O A Boolean expression @ is valid/tautology (denoted by = @) iff
for every truth assignment T appropriate to it, T = @.

O The interconnection of satisfiability and validity:

E @iff —@is unsatisfiable.

OO Moreover, for any Boolean expressions 1 and 2,

W1 = Yy iff = W1« Wy iff =(P1 < Ya) is unsatisfiable.

|:| Satisfiability forms a fundamental computational problem.

N

~

/

© 2007 TKK, Laboratory for Theoretical Computer Science

11

12

T-79.5103 / Autumn 2007 Boolean Logic

Satisfiability Problem I

O SAT problem: Given ¢ in CNF, is ¢ satisfiable?

Example. (X3 V —Xp) A —xq is satisfiable
but (X1 V —X2) A —X1 A Xy is unsatisfiable.

O SAT can be solved in O(n?2") time (e.g., truth table method).
O SAT € NP but SAT € P remains open!

A nondeterministic Turing machine for ¢ € SAT:
for all variables x in ¢ do

choose nondeterministically: T(X) :=true or T(x) := false;
if T = ¢ then return “yes" else return “no”

N

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

Horn clauses

O An interesting special case of SAT concerns Horn clauses, i.e.,
clauses (disjunction of literals) with at most one positive literal.
Example. —x1 VX2V =Xz and —X1 V —X3, X2 are Horn clauses but
—X1 V X2 V X3 is not.

O A Horn clause with a positive literal is called an implication and
can be written as (X3 AX3) — X2
(or — X2 when there are no negative literals).

O HORNSAT problem:

Given a conjunction of Horn clauses, is it satisfiable?

© 2007 TKK, Laboratory for Theoretical Computer Science

13

14

T-79.5103 / Autumn 2007 Boolean Logic

Polynomial Time Algorithm for HORNSATI

Algorithm hornsat(S)

/* Determines whether S€ HORNSAT */
T:=0 /*T is the set of true atoms */
repeat

if there is an implication (X AX2 A-+-AXy) —Yin S
such that {Xg,..., X} CT but y¢ T then
T:=TuU{y}

until T does not change
if for all purely negative clauses =X V-V =X, in §

there is some literal —X; such that x; € T then
return Sis satisfiable

else return Sis not satisfiable

D HORNSAT € P.

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

-

5. Boolean Functions and Expressions'

O An n-ary Boolean function is a mapping
{true,false}" — {true,false}.
Example. The connectives VV, A, —, and < can be viewed as
binary Boolean functions and — is a unary function.

O Similarly, any Boolean expression @ can be interpreted as an n-ary

Boolean function fy, where n= |X(¢@)|.

O A Boolean expression @ with variables X1, ..., Xy expresses the

n-ary function f if for any n-tuple of truth values t = (t1,...,t),

true, if T =@

f(t) =
false, if T [~ @.

where T satisfies T(X) =t; for every i =1,...,n.

© 2007 TKK, Laboratory for Theoretical Computer Science

15

16

T-79.5103 / Autumn 2007 Boolean Logic

4 N

Proposition. Any n-ary Boolean function f can be expressed as a

Boolean expression @ involving variables Xy, ..., Xn.

O The idea: model the rows of the truth table of

o Example.
f giving true as a disjunction of conjunctions.

O Let F be the set of all ntuples t = (ti,...,tn) X1 | Xo
with f(t) =true.

O For each t, let Dt be a conjunction of literals
X if tj =true and —x; if tj = false.
U Let @r = Vicr Dt

Note that @ may get big in the worst case:
o(n2M.

= + O O
» O B O
o r B O

Qo = (—\Xl /\Xz) V

|:| Not all Boolean functions can be expressed (XA =Xp).

concisely.

_ /

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

a o N
6. Boolean chuuts.

A more economical way to represent Boolean functions

Syntax: Example.
O A Boolean circuit is a graph C = (V,E)
whereV ={1,2,...,n} is the set of gates
and C must be acycllc (i < j for all edges
(i,j) €E) and)
O all gates i have a sort s(i) €

{true,false, A, v, =} U {x1,%2,...}.
—If s(i) € {true,false} U{xq, x2,...}, the
indegree of i is 0 (inputs).
— If §(i) = -, the indegree of i 1.
—If s(i) € {V,A}, the indegree of i is 2.

In the figure sorts
denoted by OR (V),
AND (A), NEG (ﬂ)j

KD Node n is the output of the circuit.

© 2007 TKK, Laboratory for Theoretical Computer Science

17

18

T-79.5103 / Autumn 2007 Boolean Logic

@)

A truth assignment is a function T : X(C) — {true,false} where X(C)
is the set of variables appearing in a circuit C.

The truth value T(i) for each gate i is defined inductively:

e If (i) =true T(i) =true and if s(i) =false, T(i) =false.

e If s(i) € X(C), then T(i) =T(s(i)).

o If s(i) = —, then T(i) =trueif T(j) =false, otherwise T (i) =false
where (],i) is the unique edge entering i.

o If s(i) = A, then T(i) =trueif T(j) =T(j’) =trueelse
T(i) = false where (j,i) and (j’,i) are the two edges entering i.
o If s(i) =V, then T(i) =trueif T(j) =trueor T(j') =trueelse
T(i) = false where (j,i) and (j’,i) are the two edges to i.
e T(C)=T(n), i.e. the value of the circuit C.

_ /

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

4 N

Boolean Logic

Example.
Consider a truth assignment T such that
Circuit C T(x1) = T(x) =false.
° Then
T(1) = T(x) = false
T(2) =T(x) =false
° T(3) =false (as T(1) =false, T(2) =false)
T(4) =false
T(5) =true
T(6) =true
2 () Hence, the value of the circuit C

T(C)=T(6) =true

© 2007 TKK, Laboratory for Theoretical Computer Science

19

20

T-79.5103 / Autumn 2007 Boolean Logic

-

Boolean circuits vs. Boolean expressions'

0 For each Boolean circuit C, there is a corresponding Boolean

expression (c.

O For each Boolean expression @, there is a corresponding Boolean
circuit Cy such that for any T appropriate for both,

T(Cy) =trueiff T = q.

Idea: just introduce a new gate for each subexpression of @.

O Notice that Boolean circuits allow shared subexpressions but
Boolean expressions do not.

_

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

-

Example.

Consider the circuit C Boolean circuit Cy. for @c:

(X2 A (X1 V X2)) V —(X1 V X2)

* (o)
e
(o] AN S
s ()
X1 X2

A corresponding

Note the difference:

Boolean expression @c: .
P % in C substructure shared.

(XA (X1 VX2)) V(X V X2)

_

© 2007 TKK, Laboratory for Theoretical Computer Science

21

22

T-79.5103 / Autumn 2007 Boolean Logic

4 N

Computational problems related with Boolean circuits.

O CIRCUIT SAT:

Given a circuit C, is there a truth assignment
T : X(C) — {true,false} such that T(C) =true?

O CIRCUIT SAT € NP.
O CIRCUIT VALUE:

Given a circuit C with no variables, is it the case that T(C) =true?

O CIRCUIT VALUE € P.
(No truth assignment is needed as X(C) = 0).

_ /

(© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Boolean Logic

4 N

Circuits computing Boolean functions.

0 A Boolean circuit with variables Xi,...,Xq computes an n-ary
Boolean function f if for any n-tuple of truth values
t=(t1,....,tn), f(t) =T(C) where T(x;)) =ti fori=1,...,n.

O Any n-ary Boolean function f can be computed by a Boolean
circuit involving variables X,...,Xn.

O Not every Boolean function has a concise circuit computing it.

Theorem. For any n> 2 there is an n-ary Boolean function f such
that no Boolean circuit with 5—; or fewer gates can compute it.

However, nobody has been able to come up with a natural family of
Boolean functions that require more than a linear number of gates to
compute.

_ /

© 2007 TKK, Laboratory for Theoretical Computer Science

23

24

T-79.5103 / Autumn 2007 Boolean Logic

-

Learning Objectives'

You should deeply understand the syntax and semantics of
Boolean expressions — including their use in practice.

The relationship/difference between Boolean expressions and
circuits.

Knowing the idea of representing Boolean functions in terms of
Boolean expressions and circuits.

Four computational problems related with Boolean logic and
circuits: SAT, HORNSAT, CIRCUIT SAT, and CIRCUIT VALUE.

J

(© 2007 TKK, Laboratory for Theoretical Computer Science

25

