	Example. Consider a $\Sigma = \{0, 1, \sqcup, \triangleright\}$ and a	Turing transitio	machine n functi	$M = (K, \Sigma)$ on δ define	(δ, s) with K d as follows:	$=\{s,q\},$
		$p \in K$	$\sigma \in \Sigma$	$\delta(p,\sigma)$		
		<i>s</i> ,	0	$(s, 0, \rightarrow)$		
		<i>s</i> ,	1	$(s, 1, \rightarrow)$		
		<i>s</i> ,	\Box	(q,\sqcup,\leftarrow)		
		<i>s</i> ,	\triangleright	$(s, \rhd, ightarrow)$		
		q,	0	(h,1,-)		
		q,	1	$(q,0,\leftarrow)$		
		q,	\Box	$(q,\sqcup,-)$		
		q,	\triangleright	$(h, \triangleright, \rightarrow)$		
	The machine aims to	compute	es $n+1$	for a natura	al number <i>n</i>	in <i>binary</i> .
	© 2007 TK	K, Laborat	ory for The	eoretical Comp	uter Science	
2	T-79.5103 / Autumn 20	07	т	uring Machines		4
	Transition functions	5				
	> Function δ is the	"progra	m" of th	ne machine.		
For the current state $a \in K$ and the current symbol $\sigma \in \Sigma$						E.

- For the current state $q \in K$ and the current symbol $\sigma \in \delta(q, \sigma) = (p, \rho, D)$ where
 - -p is the new state,
 - $-\rho$ is the symbol to be overwritten on σ , and
 - $-D \in \{ \rightarrow, \leftarrow, -\}$ is the direction in which the cursor will move.
- ► For any states p and q, $\delta(q, \triangleright) = (p, \rho, D)$ with $\rho = \triangleright$ and $D = \rightarrow$.
- ➤ If the machine moves off the right end of the string, it reads ⊥ (the string becomes longer but it cannot become shorter; thus it keeps track of the space used by the machine).

TURING MACHINES

- ► Basic definitions
- ► Turing machines as algorithms
- ► Turing machines with multiple strings
- ► Linear speedup
- ► Space bounds

(C. Papadimitriou: *Computational complexity*, Chapters 2.1–2.5) Additional references:

M. Sipser: Introduction to the Theory of Computation, Chapter 3.P. Orponen: Tietojenkäsittelyteorian perusteet, Luku 4.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

Turing Machines

1. Basic Definitions

- ► Turing machines are used as the formal model of algorithms.
- ➤ Will be shown:

T-79.5103 / Autumn 2007

Turing machines can simulate arbitrary algorithms with inconsequential loss of efficiency using a single data structure: a string of symbols.

Definition. A Turing machine is a quadruple $M = (K, \Sigma, \delta, s)$ with

- a finite set of states K,
- a finite set of symbols Σ (*alphabet* of *M*) so that $\sqcup, \triangleright \in \Sigma$,
- a transition function δ :

a halting state h, an accepting state "yes", a rejecting state "no", and cursor directions: \rightarrow (right), \leftarrow (left), and - (stay).

The program starts with (i) initial state s. Configurations reached in several steps (ii) the string initialized to $\triangleright x$ where x is a finitely long string in $(\Sigma - \{\sqcup\})^*$ (x is the *input* of the machine) and ▶ Yields in k steps: $(q, w, u) \xrightarrow{M^k} (q', w', u')$ (iii) the cursor pointing to \triangleright . iff there are configurations $(q_i, w_i, u_i), i = 1, \dots, k+1$ such that ► A machine has *halted* iff one of the 3 halting states $-(q, w, u) = (q_1, w_1, u_1),$ (h, "yes", "no") has been reached. $(q_i, w_i, u_i) \xrightarrow{M} (q_{i+1}, w_{i+1}, u_{i+1}), i = 1, \dots, k$, and ► If "yes" has been reached, the machine *accepts* the input. $-(q', w', u') = (q_{k+1}, w_{k+1}, u_{k+1})$ If "no" has been reached, the machine rejects the input. ► Yields: $(q, w, u) \xrightarrow{M^*} (q', w', u')$ \blacktriangleright Output M(x) of a machine M on input x: iff there is some $k \ge 0$ such that $(q, w, u) \xrightarrow{M^k} (q', w', u')$. (i) If M accepts/rejects, then M(x) = "yes" / "no". (ii) If h has been reached, M(x) = y► Hence. $\stackrel{M^*}{\rightarrow}$ is the transitive and reflexive closure of $\stackrel{M}{\rightarrow}$. where $\triangleright y \sqcup \sqcup \ldots$ is the string of *M* at the time of halting. (iii) If M never halts on input x, then $M(x) = \nearrow$ © 2007 TKK, Laboratory for Theoretical Computer Science © 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 **Turing Machines** 6 T-79.5103 / Autumn 2007 **Turing Machines Operational semantics** 2. Turing Machines as Algorithms \blacktriangleright A configuration (q, w, u): Turing machines are natural for solving problems on strings: $q \in K$ is the current state and $w, u \in \Sigma^*$ where ► Let $L \subset (\Sigma - \{\sqcup\})^*$ be a language. (i) *w* is the string to the left of the cursor including the symbol scanned by the cursor and A Turing machine *M* decides *L* iff for every string $x \in (\Sigma - \{\sqcup\})^*$, (ii) u is the string to the right of the cursor. if $x \in L$, M(x) = "yes" and if $x \notin L$, M(x) = "no". ➤ The relation \xrightarrow{M} (*yields* in one step): $(q, w, u) \xrightarrow{M} (q', w', u')$ Let σ be the last symbol of w and $\delta(q, \sigma) = (p, \rho, D)$. \blacktriangleright If L is decided by a Turing machine, L is a *recursive* language. Then q' = p, and w', u' are obtained according to (p, ρ, D) . \blacktriangleright A Turing machine *M* computes a (string) function **Example.** If $D = \rightarrow$, then $f: (\Sigma - \{\sqcup\})^* \to \Sigma^*$ iff for every string $x \in (\Sigma - \{\sqcup\})^*$, (i) w' is w with its last symbol replaced by ρ and the first symbol of u M(x) = f(x).appended to it (\sqcup if *u* is empty) and ▶ If such an *M* exists, *f* is called a *recursive function*.

(ii) u' is u with the first removed (or empty, if u is empty).

8

	T-79.5103 / Autumn 2007	Turing Machines		9	T-79.5103 / Autumn 2007	Turing Machines
	Example. A Turing machine $M = 0$	(K, Σ, δ, s) deciding t	he language			
	$L = \{x \in \{0,1\}^* \mid \text{ the number of sy} \}$	mbols "1" in x is ev	ven } where			
	$K = \{s,t\}, \Sigma = \{0,1,\sqcup,\triangleright\}$ and the	transition function δ				
	$p \in K$ $\sigma \in \Sigma$ $\delta(p,\sigma)$	$p \in K \sigma \in \Sigma \delta$	$\delta(p,\sigma)$			······································
	s , \triangleright $(s, \triangleright, \rightarrow)$	t, riangle	$(t, \triangleright, ightarrow)$		Solving problems using Turn	ing machines
	$s, \qquad 0 \qquad (s,0,\rightarrow)$	t, 0 ((t,0, ightarrow)		Instances of the problem n	eed to be represented by strings
	s , 1 $(t, 1, \rightarrow)$	t, 1 ($(s, 1, \rightarrow)$			
	s , \Box ("yes", \Box , $-$)	<i>t</i> , ⊔ (("no",⊔,−)		Solving a decision problem consisting of the oncoding	amounts to deciding the language
	The respective Turing machine M decides $101 \in \{0,1\}^*$ as follows: $(s, \triangleright, 101) \xrightarrow{M} (s, \triangleright 1, 01)$					n is solved by a Turing machine that
					An optimization problem is	
	\xrightarrow{M} $(t, \triangleright 10, 1)$	1			(where the output is similar	function from strings to strings
	\xrightarrow{M} $(t, \triangleright 101, \epsilon$	2)			(where the output is sinne	ing represented as a string).
	$\stackrel{M}{\longrightarrow}$ (s, >101	,ε)				
	\xrightarrow{M} ("yes", \triangleright	$(01 \sqcup, \epsilon)$. $(M(101) =$	"yes")			
		, , , ,				
	© 2007 TKK, Laboratory for	Theoretical Computer Scie	nce		© 2007 TKK, Laborato	ry for Theoretical Computer Science
	T-79.5103 / Autumn 2007	Turing Machines	:	10	T-79.5103 / Autumn 2007	Turing Machines
	Recursively enumerable languages				How does representation af	fect solvability?
	A Turing machine M accepts I	, iff for every string ;	$x \in (\Sigma - \{\sqcup\})^*,$		► Any "finite" mathematical	object can be represented by a finite
	if $x \in L$, then $M(x) =$ "yes" but	t if $x \notin L$, $M(x) = \nearrow$			string over an appropriate	alphabet.
► If <i>L</i> is accepted by some Turing machine, <i>L</i> is a <i>recursively</i>				Example.		
	enumerable language.		-		Graph	Representations as a string
	➤ We will later encounter examp	es of r.e. languages.			1 ^	Representations as a stilling.
	Proposition. If <i>L</i> is recursive, then	it is recursively enu	merable.			$``\{(1,10),(1,11),(10,100)\}''$
	In terms recursive and recursi	rsively enumerable su	uggest that			"(0110,0001,0000,0000)"

The terms recursive and recursively enumerable suggest that Turing machines are equivalent in power with arbitrarily general (recursive) computer programs.

3

4

11

12

Representation vs. solvability?

- All acceptable encodings are related polynomially: If A and B are both "reasonable" representations of the same set of instances, and representation A of an instance is a string with *n* symbols, the representation B of the same instance has length at most *p*(*n*) for some polynomial *p*.
- Exception: unary representation of numbers requires exponentially more symbols than the binary representation.
- A reasonably succinct input representation is assumed.
 In particular, numbers are always represented in binary.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Turing Machines

3. Turing Machines with Multiple Strings

- Turing machines with multiple strings and associated cursors are more convenient from the programmer's point of view.
- They can be simulated by an ordinary Turing machine with an inconsequential loss of efficiency.
- A k-string Turing machine with an integer parameter k ≥ 1 is a quadruple M = (K,Σ,δ,s) where the transition function δ has been generalized to handle k strings simultaneously:

 $\delta: K \times \Sigma^{k} \to (K \cup \{h, \text{``yes''}, \text{``no''}\}) \times (\Sigma \times \{ \to, \leftarrow, - \})^{k}$

> This definition yields an ordinary Turing machine when k = 1.

Generalized transitions

Transitions are determined by $\delta(q, \sigma_1, \dots, \sigma_k) = (p, \rho_1, D_1, \dots, \rho_k, D_k).$

If *M* is in the state *q*, the cursor of the first string is scanning σ_1 , that of the second σ_2 and so on, then the next state is *p*, the first cursor will write ρ_1 and move D_1 and so on.

- ► A configuration is defined as a 2k + 1-tuple $(q, w_1, u_1, \dots, w_k, u_k)$.
- \blacktriangleright A *k*-string machine with input *x* starts from the configuration

 $(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon).$

▶ Relations \xrightarrow{M} , $\xrightarrow{M^{t}}$, $\xrightarrow{M^{*}}$ are defined in analogy to ordinary machines.

© 2007 TKK, Laboratory for Theoretical Computer Science

/	
≻	Output is defined as for ordinary machines:
	If $(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M^*} ($ "yes" $, w_1, u_1, \ldots, w_k, u_k)$, then
	M(x) = "yes".
	If $(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M^*} (\text{``no''}, w_1, u_1, \ldots, w_k, u_k)$, then
	M(x) = "no".
	If $(s, \triangleright, x, \triangleright, \varepsilon, \dots, \triangleright, \varepsilon) \xrightarrow{M^*} (h, w_1, u_1, \dots, w_k, u_k)$, then $M(x) = y$
	where y is $w_k u_k$ with the leading \triangleright and trailing \sqcup s removed.
	(<i>Output</i> read from the <i>last</i> (<i>kth</i>) <i>string</i> .)
≻	The <i>time required</i> by M on input x is t iff
	$(s, \triangleright, x, \triangleright, \varepsilon, \ldots, \triangleright, \varepsilon) \xrightarrow{M^{t}} (H, w_1, u_1, \ldots, w_k, u_k)$ where
	$H \in \{ extsf{h}, extsf{`'yes''}, extsf{`'no'''}\}.$
	If $M(x) = \nearrow$, then the time required is thought to be ∞ .

T-79.5103 / Autumn 2007

18

Complexity classes

- Performance is measured by the amount of time (or space) required on instances of size n using a function of n.
- ➤ Machine *M* operates within time f(n) if for any input string x, the time required by *M* on x is at most f(|x|).
- Function f(n) is a *time bound* for M.
- ➤ A complexity class TIME(f(n)) is a set of languages L decided by a multistring Turing machine operating within time f(n).
- ▶ Notice that *worst-case inputs* are taken into account.

T-79.5103 / Autumn 2007

Turing Machines

Multiple strings vs. a single string

Theorem. Given any *k*-string Turing machine *M* operating within time f(n), we can construct a Turing machine *M'* operating within time $O(f(n)^2)$ and such that for any input *x*, M(x) = M'(x).

Proof sketch:

- ► *M'* is based on an extended alphabet $\Sigma' = \Sigma \cup \underline{\Sigma} \cup \{ \triangleright', \triangleleft \}$.
- \blacktriangleright M' represents a configuration of M by concatenation

 $(q, w_1, u_1, \dots, w_k, u_k) \mapsto (q, \triangleright, w_1' u_1 \triangleleft w_2' u_2 \triangleleft \dots w_k' u_k \triangleleft \triangleleft)$

where each w'_i is w_i with the leading \triangleright replaced by \triangleright' and the last symbol σ_i by σ_i to keep track of cursor positions.

► Initial configuration: $(s, \triangleright, \underline{\triangleright'}x \triangleleft \underline{\triangleright'} \triangleleft \dots \underline{\triangleright'} \triangleleft \triangleleft)$

- The simulation of a step of M by M' takes place as follows:
 1. pass: symbols underlined (scanned) on the k strings
 2. pass: change in the underlined (scanned) symbols
- ➤ The strings of *M* have a total length of O(kf(n)). To simulate one step of *M*, *M'* needs O(k²f(n)) steps.
- ➤ Since M makes at most f(n) steps, M' makes O(f(n)²) steps (k is fixed and independent of x).

Thesis: No conceivable "realistic" improvement on the Turing machine will increase the domain of the language such machines decide, or will affect their speed more than polynomially.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Turing Machines	21	T-79.5103 / Autumn 2007	Turing Machines		
 Proof sketch Let M = (K,Σ,δ,s) be a k-string machine deciding L in time f(We construct a k'-string machine M' = (K',Σ',δ',s') operating within time bound f'(n) and simulating M. (If k > 1, k' = k and if k = 1, then k' = 2). Performance savings are obtained by adding word length: Each purchase of M' and the summary purchase of M and 	n).	 ► It holds for any time bound f(n) such that f(n) ≥ n, (i) if f(n) = cn, then f'(n) ≈ n and (ii) if f(n) is superlinear, e.g., f(n) = 20n² + 11n, then f'(n) ≤ n (arbitrary linear speedup). ► If L is polynomially decidable, then L ∈ TIME(n^k) for some integer k > 0. 			
 Each symbol of M encodes several symbols of M and each move of M' several moves of M. Given M and ε we take some integer m and use m-tuples of symbols of M in M'. The linear term (n+2) in the theorem is due to condensing inp 	t.	Definition. The set of all lang polynomial time P is defined a	guages decidable by Turing machines in is the union $\bigcup_{k>0} \mathbf{TIME}(n^k)$		
© 2007 TKK, Laboratory for Theoretical Computer Science T-79.5103 / Autumn 2007 Turing Machines	22	© 2007 TKK, Laborate T-79.5103 / Autumn 2007	ory for Theoretical Computer Science Turing Machines		
 M' simulates m steps of M in at most a constant (6) number of steps in a stage. In such a stage M' reads the adjacent symbols (m-tuples) on bousides of the cursors (this takes 4 steps). The state of M' records all symbols at or next to all cursors. Now M' can predict the next m moves of M which can be implemented in 2 steps. The time spent by M' on input x is x +2+6[f(x)/m]. The speedup is obtained if m = [6/ε]. Notice that a lot of new states have to be added: K * m^k Σ ^{3max} 	f oth ^k .	 5. Strings cannot become shows Thus the sum of lengths or definition of the space corright of the space corright. There is an overcharge: su This suggests us to exclude writing the output as regarded. 	orter during computation. of the final strings provides a preliminary nsumed by a computation. ublinear space bounds are not covered! de the effects of reading the input and ords the consumption of space.		

24

Definition. A *k*-string Turing machine (k > 2) with *input and output* is an ordinary *k*-string Turing machine with the following restrictions on the program δ :

If $\delta(q, \sigma_1, \dots, \sigma_k) = (p, \rho_1, D_1, \dots, \rho_k, D_k)$, then

- (a) $\rho_1 = \sigma_1$ (read-only input string),
- (b) $D_k \neq \leftarrow$ (write-only output string), and
- (c) if $\sigma_1 = \sqcup$, then $D_1 = \leftarrow$ (end of input respected).

Proposition. For any *k*-string Turing machine *M* operating within time bound f(n) there is a (k+2)-string Turing machine *M'* with input and output which operates within time bound O(f(n)).

C 2007 TKK, Laboratory for Theoretical Computer Science

Space complexity classes

Definition. A space complexity class SPACE(f(n)) is a set of languages L decidable by a Turing machine with input and output operating within space bound f(n).

Definition. The class **SPACE**(log(n)) is denoted by **L**.

Theorem. Let $L \in \mathbf{SPACE}(f(n))$. Then for any $\varepsilon > 0$, $L \in \mathbf{SPACE}(2 + \varepsilon f(n))$.

© 2007 TKK, Laboratory for Theoretical Computer Science

