2

T-79.5103 / Autumn 2007

POLYNOMIAL SPACE

Polynomial space-bounded computation has a variety of alternative characterizations and natural complete problems.

- ► QSAT
- ► Games
- ► Verification
- ► Periodic Optimization
- (C. Papadimitriou: Computational Complexity, Chapter 19)

© 2007 TKK, Laboratory for Theoretical Computer Science

Polynomial Space

T-79.5103 / Autumn 2007 \blacktriangleright QSAT (QBF): given a Boolean expression ϕ in CNF with variables x_1, \ldots, x_n , is there is a truth value for the variable x_1 such that for both truth values of x_2 there is a truth value for x_3 and so on up to x_n , such that ϕ is satisfied by the overall truth assignment? $\exists x_1 \forall x_2 \exists x_3 \cdots O_n x_n \phi$

- \blacktriangleright QSAT is a generalization of the $\Sigma_i \mathbf{P}$ -complete problem QSAT_i.
- ► QSAT is **PSPACE**-complete.

- Polynomial space—cont'd
- ► Recall $AP = ATIME(n^k)$ is a class of languages decided in polynomial time by *alternating* Turing machines.
- ► QSAT is **AP**-complete.
 - Hence. AP = PSPACE
- ► Many other **PSPACE**-complete problems: games, decision making, interactive proofs, verification, periodic optimization, ...

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Polynomial Space	4
Games	
► QSAT is an example of a <i>two-person game</i> :	
- two players: \exists and \forall	
• players move alternatingly (\exists first)	
• a move: determining the truth value of a variable	
• \exists tries to make the formula ϕ true and \forall false.	
• after <i>n</i> moves either \exists or \forall wins.	

Verification

- ➤ General questions about Turing machines are undecidable.
- Restrictions lead to decidable but often computationally challenging problems (PSPACE-hard).
- ➤ IN-PLACE ACCEPTANCE: given a deterministic TM M and an input x, does M accept x without ever leaving the |x| + 1 first symbols of its string?
- ► IN-PLACE ACCEPTANCE is **PSPACE**-complete.
- ➤ IN-PLACE DIVERGENCE: given the description M of a deterministic TM, does M have a divergent computation that uses at most |M| symbols?
- ► IN-PLACE DIVERGENCE is **PSPACE**-complete.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

Games—cont'd

- ► A game
 - two players move alternatingly on a "board".
 - the number of moves is bounded by a polynomial in the size of the board
 - In the end some positions are considered a win of one player and the rest of the other.
- ► Solution: a winning strategy (typically an exponential object).
- ► Examples: chess, checkers, Go, nim, tic-tac-toe

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Polynomial Space

Games—cont'd

- ► How to separate computationally hard games from easy ones?
- Complexity theory cannot be used directly because games are played typically on a *fixed size* board.
- ► A possible solution: generalize the game to an arbitrary size board.
- ► GEOGRAPHY game:
 - Two players: I and II and board G (graph).
 - Move: select an unvisited neighbor of the current node.
 - The first player that cannot continue loses.
- ► GEOGRAPHY: Given a graph G and a starting node 1, is it a win for I?
- ► GEOGRAPHY is **PSPACE**-complete.
- ► GO is **PSPACE**-complete

T-79.5103 / Autumn 2007

Polynomial Space

9

Example. Consider a distributed system $((V_r, E_r), (V_s, E_s), (V_u, E_u), P)$

© 2007 TKK, Laboratory for Theoretical Computer Science

Polynomial Space

T-79.5103 / Autumn 2007

10

Verification of Distributed Systems

- > Checking whether a design satisfies given specifications is often computationally challenging (PSPACE-hard).
- \blacktriangleright Deadlock: a system state *s* with no successors (no *s'* such that $(s,s') \in T$).

Example. In the previous example the system state (r_2, s_3, u) is a deadlock.

- > Determining whether a system has a deadlock system state is NP-complete.
- > Given a system and an initial state, determining whether the system has a deadlock system state *reachable* (in T) from the initial state is **PSPACE**-complete.

Example. In the previous example the deadlock (r_2, s_3, u) is reachable from the system state (r_1, s_1, u) .

© 2007 TKK, Laboratory for Theoretical Computer Science

11