Counting Problems

- ► Examples of counting problems
- ► The class #P
- ► Reductions and completeness
- \blacktriangleright The class $\oplus \mathbf{P}$
- (C. Papadimitriou: Computational Complexity, Chapter 18)

© 2007 TKK, Laboratory for Theoretical Computer Science

Computation that Counts

T-79.5103 / Autumn 2007 **Counting Problems** > Previously we have considered two types of problems: *decision problems* (whether a solution exists) *function (search) problems* (find a solution) > Now we consider a new type of a *counting problem* asking *how* many solutions exist. ► #SAT: given a Boolean expression, compute the number of different truth assignments that satisfy it. ► #HAMILTON PATH: compute the number of different Hamilton paths in a given graph.

► These are counting versions of **NP**-complete decision problems.

1

2

Counting problems—cont'd

- ► Counting the number of solutions can be highly nontrivial even if the decision problem is polynomial.
- \blacktriangleright An example is the problem of counting the number of perfect matchings of a bipartite graph.
- > This corresponds to the problem of computing the *permanent* of a matrix

perm
$$A^G = \sum_{\pi} \prod_{i=1}^n A^G_{i,\pi(i)}$$

where A^G is the adjacency matrix of the graph.

➤ This is why the problem is often called PERMANENT.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Computation that Counts

Counting problems—cont'd

- ► A bipartite graph with *n* "boys" $\{u_1, \ldots, u_n\}$ and *n* "girls" $\{v_1, \ldots, v_n\}$ can equivalently seen as a directed graph with nodes $\{1, \ldots, n\}$ where (i, j) is an edge in G' iff $[u_i, v_j]$ is an edge in G.
- ► Now a perfect matching corresponds to a *cycle cover*: a set of node-disjoint cycles that together cover all the nodes.

Example.

[Papadimitriou, 1994]

For instance, a perfect matching $\{[u_1, v_3], [u_3, v_2], [u_2, v_1], [u_4, v_4]\}$ corresponds to a cycle cover $\{(1,3,2,1),(4,4)\}$.

Counting problems—cont'd

T-79.5103 / Autumn 2007

that contain a path from 1 to n.

► Counting solutions is relevant, e.g., to probabilistic calculations.

► GRAPH RELIABILITY: count the number of subgraphs of a graph

This number (divided by the number of subgraphs) gives the

reliability of the graph: the probability that two nodes remain

© 2007 TKK, Laboratory for Theoretical Computer Science

connected if all edges fail independently with probability $\frac{1}{2}$.

6

#P-Completeness

- > Counting problems can be ordered using *parsimonious reductions*.
- A parsimonious reduction from a counting problem A to a counting problem B is a function R which maps an instance x of A to an instance R(x) of B such that the number of solutions of R(x) is the same as that of x.
- Most reductions between NP-complete problems presented previously are parsimonious.
- ➤ A counting problem in #P is #P-complete if every problem in #P can be reduced to it with a parsimonious reduction.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Computation that Counts

8

7

The class #P

Computation that Counts

▶ Let Q be a polynomially balanced and polynomial-time decidable binary relation. The *counting problem* associated with Q is the following: Given x, how many y are there such that $(x, y) \in Q$ (the answer given as a binary integer).

The class $\#\mathbf{P}$ is the class of all counting problems associated with polynomially balanced and polynomial-time decidable binary relations.

- For #SAT relation Q: $(x, y) \in Q$ iff a truth assignment y satisfies a Boolean expression x.
- For #HAMILTON PATH relation Q: $(x, y) \in Q$ iff y is a Hamilton path of a graph x.

The class #P—cont'd

Theorem. #SAT is #P-complete

Proof. Given $A \in #\mathbf{P}$ with relation Q there is a poly-time TM M deciding Q. We can build a circuit C(x) with $|x|^k$ inputs s.t. with input y output of C(x) is true iff M accepts x; y (Cook's theorem).

This is a parsimonious reduction to #CIRCUIT SAT which reduces to #SAT parsimoniously. (Parsimonious reductions compose.) \Box

- ➤ This implies directly that many counting versions of NP-complete problems are #P-complete.
- ► #HAMILTON PATH is #P-complete.

THE CLASS ⊕P

- What about deciding the *last bit* of the number of accepting computations?
- ► ⊕SAT: Given a set of clauses, is the number of satisfying truth assignments odd?
- ► $L \in \bigoplus \mathbf{P}$ if there is a nondeterministic Turing machine N such that for all strings $x, x \in L$ iff the number of accepting computations of N on x is odd (or equivalently)
- L ∈ ⊕P if there is a polynomially balanced and polynomially decidable relation R such that x ∈ L iff the number of ys such that (x, y) ∈ R is odd.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Computation that Counts

12

The class #P—cont'd

- Note: a polynomial algorithm for a search problem *does not* imply that the corresponding counting problem is solvable in polynomial time.
- ► A classical example is PERMANENT
- The corresponding search problem (finding a perfect matching of a bipartite graph) is solvable in polynomial time.
- ► However, PERMANENT is #P-complete.
- Notice that this implies that, for example, #SAT can be reduced to PERMANENT with a parsimonious reduction.

(Hence, the reduction has to be complicated and indirect!)

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007	Computation that Counts
The class #P-cont'd	
► Notice that #P problem	s can be solved in polynomial space.
► How do PH and # P rela	ite?
(Remember: $\mathbf{PH} \subseteq \mathbf{PSP}$	ACE).
► Counting is stronger that	an the polynomial hierarchy!
► Toda's theorem: PH ⊆	P ^{PP}
where PP effectively tel	ls only whether the <i>first bit</i> of the numbe

⊕P—cont'd

Theorem. \oplus SAT and \oplus HAMILTON PATH are \oplus **P**-complete.

Theorem. \oplus **P** is closed under complement.

Proof. The complement of \oplus SAT (deciding whether the number of satisfying assignments is even) is $co \oplus P$ -complete. We show that this problem reduces to \oplus SAT making \oplus SAT $co \oplus P$ -complete. As \oplus SAT is also $\oplus P$ -complete, $\oplus P = co \oplus P$ (the classes are closed under reductions).

Reducing the complement of \oplus SAT to \oplus SAT: Given a set of clauses on variables x_1, \ldots, x_n , (i) add the new variable z to each clause and (ii) add n clause $\neg z \lor x_i, i = 1, \ldots, n$. Now the number of satisfying truth assignment has increased by one, in which each variable true. \Box

⊕P—cont'd

- $\blacktriangleright \oplus P$ seems weaker than **PP**: \oplus MATCHING is in **P**.
- ► But not powerless:

Theorem. NP \subset RP $^{\oplus P}$

Proof sketch.

- \blacktriangleright The idea is to show how an NP-complete problem (SAT) can be solved using a Monte Carlo algorithm which uses \oplus SAT as its oracle
- ► For the algorithm we define for a set of Boolean variables $S \subseteq \{x_1, \ldots, x_n\}$ a Boolean expression η_S stating that an even number among the variables in S are true as follows:

Let y_0, \ldots, y_n be new variables. Now η_s is the conjunction of the expressions $(y_0), (y_n)$, and for all i = 1, ..., n, $(y_i \leftrightarrow (y_{i-i} \oplus x_i))$, if $x_i \in S$ and $(y_i \leftrightarrow y_{i-i})$, if $x_i \notin S$.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Computation that Counts

14

Proof—cont'd

- ➤ The basic idea is that if we continue to add the requirement that an even number of variables are true in a random subset of the variables for n subsets, then with a reasonable probability one of the resulting expressions has a single satisfying truth assignment (which can be detected by the \oplus SAT oracle.
- ► Now an Monte Carlo algorithm for SAT using ⊕SAT as its oracle works as follows:

Let ϕ_0 be the given expression ϕ .

For
$$i = 1, ..., n + 1$$
, repeat the following:

Generate a random subset S_i of the variables and set

 $\phi_i = \phi_{i-1} \wedge \eta_{S_i}$.

If $\phi_i \in \oplus$ SAT, then answer " ϕ is satisfiable".

If after $n+1$ steps none of	the $\phi_i s$	is in	$\oplus SAT,$	then	answer	"¢ is
probably unsatisfiable".						

Proof-cont'd

- ► Clearly, the algorithm does not have any false positives
- ▶ It can be shown that the probability of a false negative is no larger than 7/8.
- ► Hence, by repeating the algorithm six times the probability of a false negative is less than half. \Box

© 2007 TKK, Laboratory for Theoretical Computer Science

