
AB
T-79.5103 / Autumn 2007 Computation that Counts 1

Counting Problems

➤ Examples of counting problems

➤ The class #P

➤ Reductions and completeness

➤ The class ⊕P

(C. Papadimitriou: Computational Complexity, Chapter 18)

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 2

Counting Problems

➤ Previously we have considered two types of problems:

decision problems (whether a solution exists)

function (search) problems (find a solution)

➤ Now we consider a new type of a counting problem asking how

many solutions exist.

➤ #SAT: given a Boolean expression, compute the number of

different truth assignments that satisfy it.

➤ #HAMILTON PATH: compute the number of different Hamilton

paths in a given graph.

➤ These are counting versions of NP-complete decision problems.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 3

Counting problems—cont’d

➤ Counting the number of solutions can be highly nontrivial even if

the decision problem is polynomial.

➤ An example is the problem of counting the number of perfect

matchings of a bipartite graph.

➤ This corresponds to the problem of computing the permanent of a

matrix

perm AG = ∑
π

n

∏
i=1

AG
i,π(i)

where AG is the adjacency matrix of the graph.

➤ This is why the problem is often called PERMANENT.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 4

Counting problems—cont’d

➤ A bipartite graph with n “boys” {u1, . . . ,un} and n “girls”

{v1, . . . ,vn} can equivalently seen as a directed graph with nodes

{1, . . . ,n} where (i, j) is an edge in G′ iff [ui,v j] is an edge in G.

➤ Now a perfect matching corresponds to a cycle cover : a set of

node-disjoint cycles that together cover all the nodes.

Example. [Papadimitriou, 1994]

For instance, a perfect matching {[u1,v3], [u3,v2], [u2,v1], [u4,v4]}

corresponds to a cycle cover {(1,3,2,1),(4,4)}.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 5

Counting problems—cont’d

➤ Counting solutions is relevant, e.g., to probabilistic calculations.

➤ GRAPH RELIABILITY: count the number of subgraphs of a graph

that contain a path from 1 to n.

This number (divided by the number of subgraphs) gives the

reliability of the graph: the probability that two nodes remain

connected if all edges fail independently with probability 1
2 .

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 6

The class #P

➤ Let Q be a polynomially balanced and polynomial-time decidable

binary relation. The counting problem associated with Q is the

following: Given x, how many y are there such that (x,y) ∈ Q (the

answer given as a binary integer).

The class #P is the class of all counting problems associated with

polynomially balanced and polynomial-time decidable binary

relations.

➤ For #SAT relation Q: (x,y) ∈ Q iff a truth assignment y satisfies a

Boolean expression x.

➤ For #HAMILTON PATH relation Q: (x,y) ∈ Q iff y is a Hamilton

path of a graph x.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 7

#P-Completeness

➤ Counting problems can be ordered using parsimonious reductions.

➤ A parsimonious reduction from a counting problem A to a

counting problem B is a function R which maps an instance x of A

to an instance R(x) of B such that the number of solutions of R(x)

is the same as that of x.

➤ Most reductions between NP-complete problems presented

previously are parsimonious.

➤ A counting problem in #P is #P-complete if every problem in #P
can be reduced to it with a parsimonious reduction.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 8

The class #P—cont’d

Theorem. #SAT is #P-complete

Proof. Given A ∈ #P with relation Q there is a poly-time TM M

deciding Q. We can build a circuit C(x) with |x|k inputs s.t. with input

y output of C(x) is true iff M accepts x;y (Cook’s theorem).

This is a parsimonious reduction to #CIRCUIT SAT which reduces to

#SAT parsimoniously. (Parsimonious reductions compose.) 2

➤ This implies directly that many counting versions of NP-complete

problems are #P-complete.

➤ #HAMILTON PATH is #P-complete.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 9

The class #P—cont’d

➤ Note: a polynomial algorithm for a search problem does not imply

that the corresponding counting problem is solvable in polynomial

time.

➤ A classical example is PERMANENT

➤ The corresponding search problem (finding a perfect matching of

a bipartite graph) is solvable in polynomial time.

➤ However, PERMANENT is #P-complete.

➤ Notice that this implies that, for example, #SAT can be reduced

to PERMANENT with a parsimonious reduction.

(Hence, the reduction has to be complicated and indirect!)

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 10

The class #P—cont’d

➤ Notice that #P problems can be solved in polynomial space.

➤ How do PH and #P relate?

(Remember: PH ⊆ PSPACE).

➤ Counting is stronger than the polynomial hierarchy!

➤ Toda’s theorem: PH ⊆ PPP

where PP effectively tells only whether the first bit of the number

of accepting computations is zero or one.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 11

THE CLASS ⊕P

➤ What about deciding the last bit of the number of accepting

computations?

➤ ⊕SAT: Given a set of clauses, is the number of satisfying truth

assignments odd?

➤ L ∈ ⊕P if there is a nondeterministic Turing machine N such that

for all strings x, x ∈ L iff the number of accepting computations of

N on x is odd (or equivalently)

➤ L ∈ ⊕P if there is a polynomially balanced and polynomially

decidable relation R such that x ∈ L iff the number of ys such that

(x,y) ∈ R is odd.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 12

⊕P—cont’d

Theorem. ⊕SAT and ⊕HAMILTON PATH are ⊕P-complete.

Theorem. ⊕P is closed under complement.

Proof. The complement of ⊕SAT (deciding whether the number of

satisfying assignments is even) is co⊕P-complete. We show that this

problem reduces to ⊕SAT making ⊕SAT co⊕P-complete. As ⊕SAT is

also ⊕P-complete, ⊕P = co⊕P (the classes are closed under

reductions).

Reducing the complement of ⊕SAT to ⊕SAT: Given a set of clauses

on variables x1, . . . ,xn, (i) add the new variable z to each clause and

(ii) add n clause ¬z∨ xi, i = 1, . . . ,n. Now the number of satisfying

truth assignment has increased by one, in which each variable true. 2

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 13

⊕P—cont’d

➤ ⊕P seems weaker than PP: ⊕MATCHING is in P.

➤ But not powerless:

Theorem. NP ⊆ RP⊕P

Proof sketch.

➤ The idea is to show how an NP-complete problem (SAT) can be

solved using a Monte Carlo algorithm which uses ⊕SAT as its

oracle.

➤ For the algorithm we define for a set of Boolean variables

S ⊆ {x1, . . . ,xn} a Boolean expression ηS stating that an even

number among the variables in S are true as follows:

Let y0, . . . ,yn be new variables. Now ηS is the conjunction of the

expressions (y0),(yn), and for all i = 1, . . . ,n,

(yi ↔ (yi−i ⊕ xi)), if xi ∈ S and (yi ↔ yi−i), if xi 6∈ S.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 14

Proof—cont’d

➤ The basic idea is that if we continue to add the requirement that

an even number of variables are true in a random subset of the

variables for n subsets, then with a reasonable probability one of

the resulting expressions has a single satisfying truth assignment

(which can be detected by the ⊕SAT oracle.

➤ Now an Monte Carlo algorithm for SAT using ⊕SAT as its oracle

works as follows:

Let φ0 be the given expression φ.

For i = 1, . . . ,n+1, repeat the following:

Generate a random subset Si of the variables and set

φi = φi−1 ∧ηSi .

If φi ∈ ⊕SAT, then answer “φ is satisfiable”.

If after n+1 steps none of the φis is in ⊕SAT, then answer “φ is

probably unsatisfiable”.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 15

Proof—cont’d

➤ Clearly, the algorithm does not have any false positives

➤ It can be shown that the probability of a false negative is no larger

than 7/8.

➤ Hence, by repeating the algorithm six times the probability of a

false negative is less than half. 2

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Computation that Counts 16

Learning Objectives

➤ The concept of counting problems.

➤ Classes #P and ⊕P.

➤ Parsimonious reductions and completeness

➤ Typical complete problems for #P and ⊕P.

➤ The relationship of #P and ⊕P to other complexity classes.

c© 2007 TKK, Laboratory for Theoretical Computer Science

