Counting Problems

➤ Examples of counting problems
➤ The class #P
➤ Reductions and completeness
➤ The class ⊕P

(C. Papadimitriou: Computational Complexity, Chapter 18)

Counting Problems—cont’d

➤ Counting the number of solutions can be highly nontrivial even if the decision problem is polynomial.
➤ An example is the problem of counting the number of perfect matchings of a bipartite graph.
➤ This corresponds to the problem of computing the permanent of a matrix

\[\text{perm} A^G = \sum_{\pi} \prod_{i=1}^{n} A^G_{\pi(i)} \]

where \(A^G \) is the adjacency matrix of the graph.
➤ This is why the problem is often called PERMANENT.

Counting problems—cont’d

➤ Previously we have considered two types of problems: decision problems (whether a solution exists) and function (search) problems (find a solution).
➤ Now we consider a new type of a counting problem asking how many solutions exist.
➤ #SAT: given a Boolean expression, compute the number of different truth assignments that satisfy it.
➤ #HAMILTON PATH: compute the number of different Hamilton paths in a given graph.
➤ These are counting versions of NP-complete decision problems.

A bipartite graph with \(n \) “boys” \(\{u_1, \ldots, u_n\} \) and \(n \) “girls” \(\{v_1, \ldots, v_n\} \) can equivalently be seen as a directed graph with nodes \(\{1, \ldots, n\} \) where \((i, j) \) is an edge in \(G' \) iff \([u_i, v_j] \) is an edge in \(G \).

➤ Now a perfect matching corresponds to a cycle cover: a set of node-disjoint cycles that together cover all the nodes.

Example. [Papadimitriou, 1994]

For instance, a perfect matching \(\{[u_1, v_3], [u_3, v_2], [u_2, v_1], [u_4, v_4]\} \) corresponds to a cycle cover \(\{(1,3,2,1),(4,4)\} \).
Counting problems—cont’d

➤ Counting solutions is relevant, e.g., to probabilistic calculations.
➤ GRAPH RELIABILITY: count the number of subgraphs of a graph that contain a path from 1 to \(n \).

This number (divided by the number of subgraphs) gives the reliability of the graph: the probability that two nodes remain connected if all edges fail independently with probability \(\frac{1}{2} \).

The class \#P

➤ Let \(Q \) be a polynomially balanced and polynomial-time decidable binary relation. The counting problem associated with \(Q \) is the following: Given \(x \), how many \(y \) are there such that \((x, y) \in Q\) (the answer given as a binary integer).

The class \#P is the class of all counting problems associated with polynomially balanced and polynomial-time decidable binary relations.

➤ For \#SAT relation \(Q: (x, y) \in Q \) iff a truth assignment \(y \) satisfies a Boolean expression \(x \).
➤ For \#HAMILTON PATH relation \(Q: (x, y) \in Q \) iff \(y \) is a Hamilton path of a graph \(x \).

#P-Completeness

➤ Counting problems can be ordered using parsimonious reductions.
➤ A parsimonious reduction from a counting problem \(A \) to a counting problem \(B \) is a function \(R \) which maps an instance \(x \) of \(A \) to an instance \(R(x) \) of \(B \) such that the number of solutions of \(R(x) \) is the same as that of \(x \).
➤ Most reductions between \textbf{NP}-complete problems presented previously are parsimonious.
➤ A counting problem in \#P is \#P-complete if every problem in \#P can be reduced to it with a parsimonious reduction.

The class \#P—cont’d

Theorem. \#SAT is \#P-complete

Proof. Given \(A \in \#P \) with relation \(Q \) there is a poly-time TM \(M \) deciding \(Q \). We can build a circuit \(C(x) \) with \(|x|^k \) inputs s.t. with input \(y \) output of \(C(x) \) is true iff \(M \) accepts \(x; y \) (Cook’s theorem).

This is a parsimonious reduction to \#CIRCUIT SAT which reduces to \#SAT parsimoniously. (Parsimonious reductions compose.) \(\square \)

➤ This implies directly that many counting versions of \textbf{NP}-complete problems are \#P-complete.
➤ \#HAMILTON PATH is \#P-complete.
The class \#P—cont’d

➤ Note: a polynomial algorithm for a search problem does not imply that the corresponding counting problem is solvable in polynomial time.
➤ A classical example is PERMANENT
➤ The corresponding search problem (finding a perfect matching of a bipartite graph) is solvable in polynomial time.
➤ However, PERMANENT is \#P-complete.
➤ Notice that this implies that, for example, \#SAT can be reduced to PERMANENT with a parsimonious reduction. (Hence, the reduction has to be complicated and indirect!)

The class \#P—cont’d

➤ Notice that \#P problems can be solved in polynomial space.
➤ How do PH and \#P relate? (Remember: PH ⊆ PSPACE).
➤ Counting is stronger than the polynomial hierarchy!
➤ Toda’s theorem: PH ⊆ PP

where PP effectively tells only whether the first bit of the number of accepting computations is zero or one.

The class \⊕P

➤ What about deciding the last bit of the number of accepting computations?
➤ ⊕SAT: Given a set of clauses, is the number of satisfying truth assignments odd?
➤ \(L \in \oplus P\) if there is a nondeterministic Turing machine \(N\) such that for all strings \(x, x \in L\) iff the number of accepting computations of \(N\) on \(x\) is odd (or equivalently)
➤ \(L \in \oplus P\) if there is a polynomially balanced and polynomially decidable relation \(R\) such that \(x \in L\) iff the number of \(y\)s such that \((x, y) \in R\) is odd.

Theorem. \⊕P-cont’d

\(\oplus SAT\) and \(\oplus HAMILTON PATH\) are \(\oplus P\)-complete.

Theorem. \(\oplus P\) is closed under complement.

Proof. The complement of \(\oplus SAT\) (deciding whether the number of satisfying assignments is even) is \(co\oplus P\)-complete. We show that this problem reduces to \(\oplus SAT\) making \(\oplus SAT\) \(co\oplus P\)-complete. As \(\oplus SAT\) is also \(\oplus P\)-complete, \(\oplus P = co\oplus P\) (the classes are closed under reductions).

Reducing the complement of \(\oplus SAT\) to \(\oplus SAT\): Given a set of clauses on variables \(x_1, \ldots, x_n\), (i) add the new variable \(z\) to each clause and (ii) add \(n\) clause \(\neg z \lor x_i, i = 1, \ldots, n\). Now the number of satisfying truth assignment has increased by one, in which each variable true. □
⊕P—cont’d

➤ ⊕P seems weaker than PP: ⊕MATCHING is in P.
➤ But not powerless:

Theorem. NP ⊆ RP⊕P

Proof sketch.

➤ The idea is to show how an NP-complete problem (SAT) can be solved using a Monte Carlo algorithm which uses ⊕SAT as its oracle.

➤ For the algorithm we define for a set of Boolean variables \(S \subseteq \{x_1, \ldots, x_n\} \) a Boolean expression \(\eta_S \) stating that an even number among the variables in \(S \) are true as follows: Let \(y_0, \ldots, y_n \) be new variables. Now \(\eta_S \) is the conjunction of the expressions \((y_0), (y_n) \), and for all \(i = 1, \ldots, n \), \((y_i \leftrightarrow (y_{i-1} \oplus x_i)), \) if \(x_i \in S \) and \((y_i \leftrightarrow y_{i-1}), \) if \(x_i \notin S \).

Proof—cont’d

➤ Clearly, the algorithm does not have any false positives
➤ It can be shown that the probability of a false negative is no larger than 7/8.
➤ Hence, by repeating the algorithm six times the probability of a false negative is less than half. ☐

Learning Objectives

➤ The concept of counting problems.
➤ Classes #P and ⊕P.
➤ Parsimonious reductions and completeness
➤ Typical complete problems for #P and ⊕P.
➤ The relationship of #P and ⊕P to other complexity classes.