The Polynomial Hierarchy

- Optimization problems
- The class \(\text{DP} \)
- The classes \(\text{P}^{\text{NP}} \) and \(\text{FP}^{\text{NP}} \)
- The classes \(\text{FP}^{\text{NP}[\log n]} \) and \(\text{FP}^{\text{NP[\parallel]}} \)
- The polynomial hierarchy

(C. Papadimitriou: Computational Complexity, Chapter 17)

Optimization Problems—cont’d

- The four variants can be ordered in “increasing complexity” by reductions: \(\text{TSP(D)} ; \text{EXACT TSP} ; \text{TSP COST} ; \text{TSP} \)
- All the four variants of TSP are *polynomially equivalent*: there is a polynomial-time algorithm for one iff there is one for all four (because \(\text{TSP(D)} \) and \(\text{TSP} \) are).
- Reductions and completeness provide a more refined and interesting characterization of problems.
- For example, the other three versions of TSP are complete for some very natural extensions of \(\text{NP} \).

The Class \(\text{DP} \)

- \(\text{EXACT TSP in \text{NP}}? \) Most probably not but closely related to \(\text{NP} \) and \(\text{coNP} \).
- A language \(L \) is in the class \(\text{DP} \) iff there are two languages \(L_1 \in \text{NP} \) and \(L_2 \in \text{coNP} \) such that \(L = L_1 \cap L_2 \).
- \(\text{EXACT TSP in \text{DP}} \) because the length of the shortest tour equal to \(B \) iff
 - there is a tour of length at most \(B \) (a TSP(D) problem) and
 - there is a no tour of length at most \(B - 1 \) (a TSP(D) COMPLEMENT problem).
- Note \(\text{DP is not \text{NP} \cap \text{coNP}} \)!
 (Most likely \(\text{DP} \) is not contained even in \(\text{NP} \cup \text{coNP} \).)
The Class DP—cont’d

➤ SAT-UNSAT: given two Boolean expressions \(\phi, \phi' \) both in CNF with three literals per clause. Is it true that \(\phi \) is satisfiable and \(\phi' \) is not?

➤ SAT-UNSAT is DP-complete.

➤ EXACT TSP is DP-complete.

➤ “Exact cost” versions of NP-complete optimization problems (INDEPENDENT SET, KNAPSACK, MAX-CUT, MAX SAT, …) can be shown DP-complete.

The Classes \(P^{NP} \) and \(FP^{NP} \)

➤ DP: the class of languages decided by two queries to an NP (SAT) oracle.

➤ A generalization of this idea: allow a polynomial number of adaptive SAT oracle calls: class \(P^{SAT} \).

➤ Since SAT is NP-complete, \(P^{SAT} = P^{NP} (\Delta_2P) \).

➤ \(FP^{NP} \): the corresponding functional problem functions computable using a polynomial number of adaptive NP oracle queries.

The Class DP—cont’d

➤ Also other types of problems are in DP.

➤ CRITICAL SAT: Given a Boolean expression \(\phi \), is it true that \(\phi \) is unsatisfiable but deleting any clause makes it satisfiable?

➤ UNIQUE SAT: Given a Boolean expression \(\phi \), is it true that \(\phi \) has a unique satisfying truth assignment?

➤ CRITICAL HAMILTON PATH: Given a graph, is it true that it has no Hamilton path but addition of any edge creates a Hamilton path?

➤ CRITICAL 3-COLORABILITY: Given a graph, is it true that it has no 3-coloring but deletion of any node makes it 3-colorable?

☞ “Critical” versions are known to be DP-complete.

The Class FP

➤ There are several natural \(FP^{NP} \)-complete problems

➤ MAX-WEIGHT SAT: Given a set of clauses each with an integer weight, find a truth assignment that satisfies a set of clauses with the most total weight.

➤ MAX OUTPUT: Given a nondeterministic Turing machine \(N \) and its input \(1^n \) such that \(N \) halts on input \(1^n \) in \(O(n) \) steps with a binary string of length \(n \) on its output string, determine the largest output (considered as a binary integers) of any computation of \(N \) on \(1^n \).

➤ MAX OUTPUT is \(FP^{NP} \)-complete

➤ MAX-WEIGHT SAT is \(FP^{NP} \)-complete
TSP

INSTANCE: n cities $1, \ldots, n$ and a nonnegative integer distance d_{ij} between any two cities i and j (such that $d_{ij} = d_{ji}$).

QUESTION: What is the shortest tour of the cities?

Theorem. TSP is FP^{NP}-complete.

Proof.

- TSP \in FP^{NP}: use binary search and the NP oracle for TSP(D): is there a tour of length at most B?
- Completeness: reduction (R, S) from MAX-WEIGHT SAT to TSP: Given a set Σ of clauses with weights, $R(\Sigma)$ is a set of cities with distances such that if t is the shortest tour for $R(\Sigma)$, then $S(t)$ is the truth assignment satisfying clauses with the most total weight.

Corollary. TSP COST is FP^{NP}-complete.

- Other FP^{NP}-complete problems: KNAPSACK, WEIGHTED MAX CUT, WEIGHTED BISECTION WIDTH
- What about CLIQUE SIZE, UNARY TSP, MAX SAT, MAX CUT, BISECTION WIDTH?
- For these only $\log n$ oracle calls are needed: cost polynomially large (logarithmically many bits)
- **CLIQUE SIZE:** Given a graph, determine the size of its largest clique. Use binary search with oracle: is the largest clique larger than k? Only $\log n$ queries are needed where n is the number of nodes.
The polynomial hierarchy is a sequence of classes:

- $\Delta_0 \mathsf{P} = \Sigma_0 \mathsf{P} = \Pi_0 \mathsf{P} = \mathsf{P}$
- $i \geq 0$:
 - $\Delta_{i+1} \mathsf{P} = \Sigma_{i+1} \mathsf{P}$
 - $\Sigma_{i+1} \mathsf{P} = \mathsf{NP}^{\Sigma_i \mathsf{P}}$
 - $\Pi_{i+1} \mathsf{P} = \mathsf{coNP}^{\Sigma_i \mathsf{P}}$

- Cumulative polynomial hierarchy: $\mathsf{PH} = \bigcup_{i \geq 0} \Sigma_i \mathsf{P}$

In the literature also the following notation is used: Δ^p_i, Σ^p_i, Π^p_i
The polynomial hierarchy—cont’d

Properties:
- \(\Delta_1^P = \Sigma_0^P = P \)
- \(\Sigma_1^P = \text{NP}^\Sigma_0^P = \text{NP} \)
- \(\Pi_1^P = \text{coNP}^\Sigma_0^P = \text{coNP} \)
- \(\Delta_2^P = \Sigma_1^P = \text{P}^\Sigma_0^P = \text{NP} \)
- \(\Sigma_2^P = \text{NP}^\Sigma_1^P = \text{NP}^\text{NP} \)
- \(\Pi_2^P = \text{coNP}^\Sigma_1^P = \text{coNP}^\text{NP} \)

- \(\Delta_i^P \subseteq \Sigma_{i+1}^P \subseteq \Pi_{i+1}^P \subseteq \Delta_{i+2}^P \)

Certificates—cont’d

- A relation \(R \subseteq (\Sigma^*)_{i+1} \) is said to be polynomially balanced if whenever \((x, y_1, \ldots, y_i) \in R\), it holds that \(|y_1|, \ldots, |y_i| \leq |x|^k\) for some \(k\).

- Let \(L \) be a language and \(i \geq 1 \). Then \(L \in \Sigma_i^P \) iff there is a polynomially balanced, polynomial-time decidable \((i+1)\)-ary relation \(R \) such that

\[
L = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \cdots Qy_i \text{ such that } (x, y_1, \ldots, y_i) \in R \}
\]

where \(Q \) is \(\forall \) if \(i \) is even and \(\exists \) if \(i \) is odd.

Certificates

- Let \(L \) be a language and \(i \geq 1 \). Then \(L \in \Sigma_i^P \) iff there is a polynomially balanced relation \(R \) such that the language \(\{x, y \mid (x, y) \in R\} \) is in \(\Pi_{i-1}^P \) and

\[
L = \{ x \mid \text{there is a } y \text{ such that } (x, y) \in R \}
\]

- Let \(L \) be a language and \(i \geq 1 \). Then \(L \in \Pi_i^P \) iff there is a polynomially balanced relation \(R \) such that the language \(\{x, y \mid (x, y) \in R\} \) is in \(\Sigma_{i-1}^P \) and

\[
L = \{ x \mid \text{for all } y \text{ with } |y| \leq |x|^k, (x, y) \in R \}
\]

PH is fragile

- If for some \(i \geq 1 \), \(\Sigma_i^P = \Pi_i^P \), then for all \(j > i \),

\[
\Delta_j^P = \Sigma_j^P = \Pi_j^P = \Sigma_i^P.
\]

(The polynomial hierarchy is said to collapse to the \(i\)th level.)

- If \(P = \text{NP} \), or if \(\text{NP} = \text{coNP} \), then the polynomial hierarchy collapses to the first level.

- \(P = \text{NP} \) iff \(P = \text{PH} \).

- Notice that it can be the case that \(P \neq \text{NP} \) and \(\text{NP} \neq \text{coNP} \) but the polynomial hierarchy collapses to the second level (not expected to happen, though).
Complete problems

- **QSAT\(_i\)** (quantified satisfiability with \(i\) alternations of quantifiers):
 - Given a Boolean expression \(\phi\) with the Boolean variables partitioned into \(i\) sets \(X_1, \ldots, X_i\), is it true that there is a partial truth assignment for the variables \(X_1\) such that for all partial truth assignments for \(X_2\) there is a partial truth assignment for \(X_3\) \(
\ldots \phi\) is satisfied by the overall truth assignment?

- **QSAT\(_i\)**: Is the following quantified Boolean expression true
 \[\exists X_1 \forall X_2 \exists X_3 \cdots QX_i \phi \]
 where \(Q\) is \(\forall\) if \(i\) is even and \(\exists\) if \(i\) is odd.

Theorem. For all \(i \geq 1\), **QSAT\(_i\)** is \(\Sigma_i P\)-complete.

Example. **MINIMUM CIRCUIT**: Given a Boolean circuit \(C\), is it true that there is no circuit with fewer gates that computes the same Boolean function?

MINIMUM CIRCUIT \(\in \Pi_2 P\).

Example. **MINIMAL MODEL SAT**: Given a set of clauses \(S\) and an atom \(a\), is it true that there is a (subset) minimal model of \(S\) with \(a\) true?

MINIMAL MODEL SAT is \(\Sigma_2 P\)-complete.

Complete problems—cont’d

- **PH** \(\subseteq\) **PSPACE**
 - \(L \in \text{PH}\) if \(L \in \Sigma_i P\) if \(L = \{x \mid \exists y_1 \forall y_2 \cdots Qy_i \text{ s.t. } (x, y_1, \ldots, y_i) \in R\}\)
 - It is open whether **PH** = **PSPACE**.
 - If **PH** = **PSPACE**, then the polynomial hierarchy collapses to some finite level. (There are **PSPACE**-complete problems.)
 - If **PH** does not collapse, problems are strictly harder in an upper level when compared to the lower level: if \(L\) is a \(\Sigma_{i+1} P\)-complete language and \(L \in \Sigma_i P\), then **PH** collapses to the level \(i\).

Example. Consider a \(\Sigma_3 P\)-complete problem. It cannot be solved with a polynomial overhead on top of a procedure for a problem in **NP** (unless **PH** collapses to the level 1).
BPP and polynomial circuits

Theorem. $\text{BPP} \subseteq \Sigma_2^P$

Corollary. $\text{BPP} \subseteq \Sigma_2^P \cap \Pi_2^P$

Proof. BPP is closed under complement. Hence, if $L \in \text{BPP}$, $\overline{L} \in \text{BPP} \subseteq \Sigma_2^P$ implying $L \in \Pi_2^P$.

Theorem. If SAT has polynomial circuits, then the polynomial hierarchy collapses to the second level.

Learning Objectives

- The classes DP, P^{NP}, FP^{NP}, $\text{FP}^{\text{NP}[\log n]}$ and FP^{NP}
- Classification of optimization problems into these classes
- The concept of the polynomial hierarchy