

The Class DP-cont'd

► SAT-UNSAT is **DP**-complete.

► EXACT TSP is **DP**-complete.

can be shown **DP**-complete.

is not?

> SAT-UNSAT: given two Boolean expressions ϕ . ϕ' both in CNF

► "Exact cost" versions of NP-complete optimization problems

with three literals per clause. Is it true that ϕ is satisfiable and ϕ'

(INDEPENDENT SET, KNAPSACK, MAX-CUT, MAX SAT, ...)

© 2007 TKK, Laboratory for Theoretical Computer Science

The Polynomial Hierarchy

6

The Classes P^{NP} and FP^{NP}

- DP: the class of languages decided by two queries to an NP (SAT) oracle.
- A generalization of this idea: allow a polynomial number of adaptive SAT oracle calls: class P^{SAT}.
- ► Since SAT is **NP**-complete, $\mathbf{P}^{SAT} = \mathbf{P}^{\mathbf{NP}} (\Delta_2 \mathbf{P})$.
- ➤ FP^{NP}: the corresponding functional problem functions computable using a polynomial number of *adaptive* NP oracle queries.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

The Polynomial Hierarchy

8

The Class DP-cont'd

T-79.5103 / Autumn 2007

- ► Also other types of problems are in **DP**.
- CRITICAL SAT: Given a Boolean expression φ, is it true that φ is unsatisfiable but deleting any clause makes it satisfiable?
- UNIQUE SAT: Given a Boolean expression φ, is it true that φ has a unique satisfying truth assignment?
- CRITICAL HAMILTON PATH: Given a graph, is it true that it has no Hamilton path but addition of any edge creates a Hamilton path?
- CRITICAL 3-COLORABILITY: Given a graph, is it true that it has no 3-coloring but deletion of any node makes it 3-colorable?
 - ${\displaystyle\sub{\sc set}}$ "Critical" versions are known to be $DP\mbox{-}complete.$

The Class $\ensuremath{FP^{NP}}$

- \blacktriangleright There are several natural $FP^{NP}\text{-}complete problems$
- MAX-WEIGHT SAT: Given a set of clauses each with an integer weight, find a truth assignment that satisfies a set of clauses with the most total weight.
- MAX OUTPUT: Given a nondeterministic Turing machine N and its input 1ⁿ such that N halts on input 1ⁿ in O(n) steps with a binary string of length n on its output string, determine the largest output (considered as a binary integers) of any computation of N on 1ⁿ.
- ► MAX OUTPUT is **FP**^{NP}-complete
- ► MAX-WEIGHT SAT is **FP**^{NP}-complete

TSP

INSTANCE: *n* cities $1, \ldots, n$ and a nonnegative integer distance d_{ii} between any two cities *i* and *j* (such that $d_{ii} = d_{ii}$). QUESTION: What is the shortest tour of the cities?

Theorem. TSP is **FP**^{NP}-complete.

Proof.

- ► TSP \in **FP**^{NP}: use binary search and the **NP** oracle for TSP(D): is there a tour of length at most *B*?
- \blacktriangleright Completeness: reduction (*R*,*S*) from MAX-WEIGHT SAT to TSP: Given a set Σ of clauses with weights, $R(\Sigma)$ is a set of cities with distances such that if t is the shortest tour for $R(\Sigma)$, then S(t) is the truth assignment satisfying clauses with the most total weight.

© 2007 TKK, Laboratory for Theoretical Computer Science

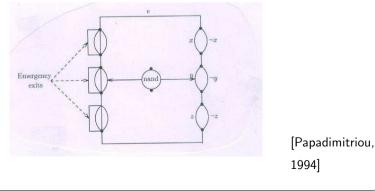
T-79.5103 / Autumn 2007

The Polynomial Hierarchy

10

TSP—cont'd

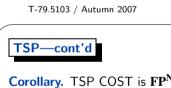
► From clauses with weights build a graph defining the distances: For nodes u, v, (i) if no edge between u and v, distance is W (sum of all weights); (ii) if there is an edge, then distance is 0 except for "emergency edges" which have the weights of the corresponding clauses.



TSP—cont'd

- \blacktriangleright A tour of the graph induces a corresponding truth assignment T.
- ► A tour uses an "emergency edge" if the corresponding clause is not true in the truth assignment induced by the tour.
- > The length of a tour is the sum of weights of clauses not satisfied by T, i.e., W- "tour length" is the total weight of T.
- ► Hence, minimum length tour corresponds to the maximum weight truth assignment.

© 2007 TKK, Laboratory for Theoretical Computer Science



The Polynomial Hierarchy

12

Corollary. TSP COST is **FP**^{NP}-complete.

- \blacktriangleright Other **FP**^{NP}-complete problems: KNAPSACK. WEIGHTED MAX CUT. WEIGHTED BISECTION WIDTH
- ➤ What about CLIQUE SIZE, UNARY TSP, MAX SAT, MAX CUT, **BISECTION WIDTH?**
- \blacktriangleright For these only $\log n$ oracle calls are needed: cost polynomially large (logarithmically many bits)
- ► CLIQUE SIZE:

Given a graph, determine the size of its largest clique. Use binary search with oracle: is the largest clique larger than k? Only $\log n$ queries are needed where n is the number of nodes.

14

The Classes $\mathbf{FP}^{\mathbf{NP}[\log n]}$ and $\mathbf{FP}_{\parallel}^{\mathbf{NP}}$

- ▶ **P**^{NP[log n]}: the class of languages decided by a polynomial time oracle machine which on input *x* asks a total of O(log |*x*|) SAT queries.
- ► **FP**^{**NP**[log *n*]}: the corresponding class of functions
- ► MAX OUTPUT[log *n*] is $\mathbf{FP}^{\mathbf{NP}[\log n]}$ -complete.
- ► MAX SAT SIZE is $\mathbf{FP}^{\mathbf{NP}[\log n]}$ -complete.
- ► CLIQUE SIZE is **FP**^{NP[log n]}-complete.
- ➤ UNARY TSP, MAX SAT, MAX CUT, BISECTION WIDTH are FP^{NP[log n]}-complete.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

The Classes FP ^{NP[log n}	L DDNP
The Classes PP-PP-P	and RPat — conf d
The Classes FP ⁻¹ (1981	and $\mathbf{FP}^{\mathbf{NP}}_{\parallel}$ — cont'd
 What if only non-ac 	daptive queries can be asked?
 What if only non-ac 	
 ➤ What if only non-ac ➤ P^{NP}: the class of la 	daptive queries can be asked?
 What if only non-ac P^{NP}: the class of la which on input x cc 	daptive queries can be asked? nguages <i>L</i> decided by an oracle machine <i>M</i>
 What if only non-ac P^{NP}: the class of la which on input <i>x</i> conumber of instances 	daptive queries can be asked? nguages <i>L</i> decided by an oracle machine <i>M</i> omputes in polynomial time a polynomial

The Classes $\mathbf{FP}^{\mathbf{NP}[\log n]}$ and $\mathbf{FP}_{\parallel}^{\mathbf{NP}}$ — cont'd

Theorem. $\mathbf{P}_{\parallel}^{\mathbf{NP}} = \mathbf{P}^{\mathbf{NP}[\log n]}$

Proof. (\supseteq) If a machine makes $k \log n$ adaptive queries, there are at most $2^{k \log n} = O(n^k)$ queries in the whole computation.

 (\subseteq) If a language is decidable by polynomially many non-adaptive SAT queries, it can be decided in logarithmically many adaptive NP queries:

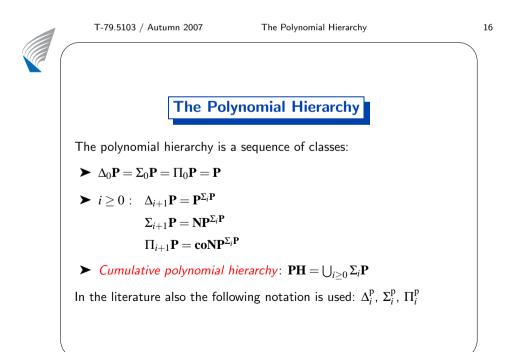
• In O(log *n*) queries determine the precise number *k* of "yes" answers to the non-adaptive queries.

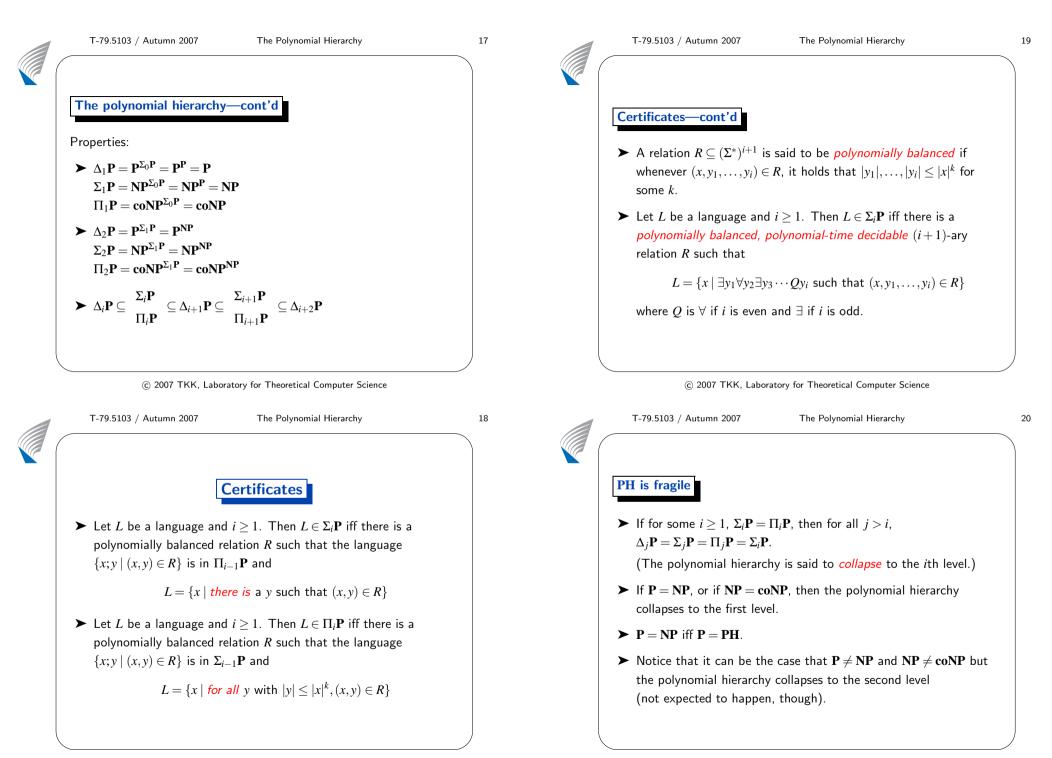
This can be done by binary search using the oracle:

Given a set of Boolean expressions, does it have satisfying truth assignments for at least l of them?

• Ask the **NP** query: Do there exist *k* satisfying truth assignments for *k* of the expressions such that if all other expressions were unsatisfiable, the oracle machine would end up accepting.

© 2007 TKK, Laboratory for Theoretical Computer Science





22

Complete problems

- ➤ QSAT_i (quantified satisfiability with *i* alternations of quantifiers): Given a Boolean expression \$\phi\$ with the Boolean variables partitioned into *i* sets X₁,...,X_i, is it true that there is a partial truth assignment for the variables X₁ such that for all partial truth assignments for X₂ there is a partial truth assignment for X₃
 - $\ldots \phi$ is satisfied by the overall truth assignment?
- > QSAT_i: Is the following quantified Boolean expression true

 $\exists X_1 \forall X_2 \exists X_3 \cdots Q X_i \ \phi$

where Q is \forall if i is even and \exists if i is odd.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

The Polynomial Hierarchy

Complete problems

T-79.5103 / Autumn 2007

Theorem. For all $i \ge 1$, QSAT_i is $\Sigma_i \mathbf{P}$ -complete.

Example. MINIMUM CIRCUIT: Given a Boolean circuit C, is it true that there is no circuit with fewer gates that computes the same Boolean function?

MINIMUM CIRCUIT $\in \Pi_2 \mathbf{P}$.

Example. MINIMAL MODEL SAT: Given a set of clauses S and an atom a, is it true that there is a (subset) minimal model of S with a true?

MINIMAL MODEL SAT is $\Sigma_2 \mathbf{P}$ -complete.

Complete problems—cont'd

Example. RULE INFERENCE: Given a set of rules of the form $a_1 \lor \cdots \lor a_n \leftarrow b_1 \land \cdots \land b_m$ and an atom a, is it true that there is a (subset) minimal set of atoms closed under the rules containing a? RULE INFERENCE is $\Sigma_2 \mathbf{P}$ -complete.

Theorem. If there is a **PH**-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof. Assume *L* is **PH**-complete. Then $L \in \Sigma_i \mathbf{P}$ for some *i*. But then any $L' \in \Sigma_{i+1} \mathbf{P}$ reduces to *L*. This means that $\Sigma_i \mathbf{P} = \Sigma_{i+1} \mathbf{P}$ (all levels are closed under reductions). \Box

© 2007 TKK, Laboratory for Theoretical Computer Science

24
Complete problems—cont'd
PH ⊆ PSPACE

L ∈ PH iff L ∈ Σ_iP iff L = {x | ∃y₁∀y₂...Qy_i s.t. (x, y₁,...,y_i) ∈ R}
It is open whether PH = PSPACE.
If PH = PSPACE, then the polynomial hierarchy collapses to some finite level. (There are PSPACE-complete problems.)
If PH does not collapse, problems are strictly harder in an upper level when compared to the lower level: if L is a Σ_{i+1}P-complete language and L ∈ Σ_iP, then PH collapses to the level i.

Example. Consider a Σ₂P-complete problem. It cannot be solved with a polynomial overhead on top of a procedure for a problem in NP (unless PH collapses to the level 1).

BPP and polynomial circuits

Theorem. BPP $\subseteq \Sigma_2 \mathbf{P}$

Corollary. BPP $\subseteq \Sigma_2 \mathbf{P} \cap \Pi_2 \mathbf{P}$

Proof. **BPP** is closed under complement. Hence, if $L \in \mathbf{BPP}$, $\overline{L} \in \mathbf{BPP} \subseteq \Sigma_2 \mathbf{P}$ implying $L \in \Pi_2 \mathbf{P}$. \Box

Theorem. If SAT has polynomial circuits, then the polynomial hierarchy collapses to the second level.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

