PARALLEL COMPUTATION AND LOG SPACE

- ► Parallel algorithms
- ► Parallel models of computation
- ► The class NC
- > The $\mathbf{L} \stackrel{?}{=} \mathbf{NL}$ problem
- ► Alternation
- (C. Papadimitriou: Computational Complexity, Chapters 15 and 16)

Example: Matrix Multiplication

- > The goal is to compute the product of two $n \times n$ matrices A and B.
- ▶ The product $C = A \cdot B$ is defined by

$$C_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj}$$

for indices i and j ranging from 1 to n.

- > There is a sequential algorithm with $O(n^3)$ arithmetic operations.
- > The same can be achieved in $\log n$ parallel steps by n^3 processors.
- ► However, the number of processors required by the algorithm can be brought down to $\frac{n^3}{\log n}$ using *Brent's principle*.

 $[\]bigodot$ 2007 TKK, Laboratory for Theoretical Computer Science

6

2. Parallel Models of Computation

- TMs and RAMs are sequential because of the von Neumann property: at each instant only a bounded amount of computational activity can occur.
- ► Boolean circuits are genuinely parallel.
- Uniform families of Boolean circuits are used as the basic model of parallel algorithms and computation.
- The primary complexity measures for parallel computation are parallel time and parallel work.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Parallel Computation and Log Space

Parallel time and work

➤ Let C = (C₀, C₁,...) be a uniform family of Boolean circuits and let f(n) and g(n) be functions from integers to integers.

— The *parallel time* of C is at most f(n) iff for all n the *depth* of C_n is at most f(n).

- The *parallel work* of C is at most g(n) iff for all n the *size* of C_n is at most g(n).
- ➤ The class PT/WK(f(n),g(n)) consists of languages L ⊆ {0,1}* for which there is a uniform family of circuits C deciding L with O(f(n)) parallel time and O(g(n)) parallel work.

Example. REACHABILITY \in **PT**/**WK**(log² n, n^3 log n).

Parallel random access machines

- How realistic models of parallel computation are circuits?
 They correspond to parallel random access machines (PRAMs)!
- A PRAM program is a set of RAM programs P = (Π₁,...,Π_q), one for each of the q RAMs.
- Each RAM Π_i executes its own program, has its own program counter and accumulator, i.e. the *i*th register, but shares all registers (including accumulators and input).
- ➤ For concurrent writes the RAM with the smallest index prevails: i.e. the *PRIORITY CRCW PRAM* is assumed (see note 15.5.7).

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

Parallel Computation and Log Space

Uniform PRAM families

- PRAMs (under PRIORITY CRCW scheme) form a very idealized and powerful model which is also rather unrealistic due to instantaneous communication and concurrent writing.
- The number q of RAMs is a function q(m,n) of the number m of input integers in $I = (i_1, ..., i_m)$ and their total length n = l(I).
- ➤ A family of PRAMs $\mathcal{P} = \{P_{m,n} \mid m, n \ge 0\}$ is *uniform* iff there is a TM which given $1^m 01^n$ generates q(m,n) and the programs $P_{m,n} = (\Pi_{m,n,0}, \Pi_{m,n,1}, \dots, \Pi_{m,n,q(m,n)})$ all in logarithmic space.

3. The Class NC

➤ What would be the class of problems that is satisfactorily solved by parallel computers? A candidate definition (Nick's class):

 $\mathbf{NC} = \mathbf{PT} / \mathbf{WK} (\log^k n, n^k).$

- NC is the class of languages decided by PRAMs in polylogarithmic parallel time and with polynomially many processors.
- ► However, the difference between polylog and polynomial is seen sometimes only for big *n*. For example, consider $\log^3 n$ and \sqrt{n} : $\log^3 10^8 > 18000$ and $\sqrt{10^8} = 10000$.
- ➤ One possiblity is to consider subclasses of NC for j = 1,2,...: NC_j = PT/WK(log^j n,n^k) — a potential *hierarchy* of classes.
- ➤ The class NC₂ provides an alternative (more conservative) notion of "efficient parallel computation".

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

Computing functions with PRAMs

- ➤ Let F be a function from finite sequences of integers to finite sequences of integers; and f(n) and g(n) functions from positive integers to positive integers.
- ▶ Let $\mathcal{P} = \{P_{m,n} \mid m, n \ge 0\}$ be a uniform family of PRAMs.

Definition. The family \mathcal{P} computes F in parallel time f with g processors iff for each $m, n \geq 0$, for $P_{m,n}$ it holds that

- (i) it has $q(m,n) \leq g(n)$ processors and
- (ii) if $P_{m,n}$ is executed on input I of m integers with total length n, then all q(m,n) RAMs reach a HALT instruction after at most f(n)steps and the $k \le q(m,n)$ first registers contain the output F(I).

 \bigcirc 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Parallel Computation and Log Space

10

Simulation results

► PRAMs can simulate circuits:

If $L \subseteq \{0,1\}^*$ is in **PT/WK**(f(n),g(n)), then there is a uniform PRAM that computes the corresponding function F_L in parallel time O(f(n)) using $O(\frac{g(n)}{f(n)})$ processors.

► Circuits can simulate PRAMs:

Let F be computed by a uniform PRAM in parallel time f(n) using g(n) processors (f(n), g(n) can be computed from 1^n in log space). Then there is a uniform family of circuits of

depth $O(f(n)(f(n) + \log n))$ and size $O(g(n)f(n)(n^k f(n) + g(n)))$ which computes the binary representation of F.

(Here n^k is the time bound of the log space TM computing the *n*th PRAM in the family given 1^n as its input.)

12

14

4. The $\mathbf{L} \stackrel{?}{=} \mathbf{N} \mathbf{L}$ problem

We may relate logarithmic space classes and parallel complexity classes:

Theorem. $NC_1 \subseteq L \subseteq NL \subseteq NC_2$.

Proof.

- 1. The last inclusion follows by reachablity method, since REACHABILITY belongs to NC₂.
- 2. The inclusion in the middle is trivial.
- 3. For the first inclusion, we have to compose three algorithms that operate in logarithmic space (recall Proposition 8.2).

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Parallel Computation and Log Space

Proof of NC $_1 \subseteq \mathbf{L}$ — continued

The following logspace algorithms are needed:

- 1. The first generates a circuit C from the given uniform family.
- 2. The second transforms C into an equivalent circuit/expression Ewhose gates have all outdegree one (no shared subexpressions).
 - Each path in C identifies a gate in E.
- 3. The third evaluates the output gate of the tree-like circuit E.
 - During the recursive evaluation, it is sufficient to remember the label of the gate being evaluated and its truth value.

 \bigcirc The composition operates in logarithmic space. \Box

	I-79.5103 / Autumn 2007 Parallel Computation and Log Space	15
	Parallel computation thesis	
	Space and parallel time are polynomially related!	
	This can be generalized beyond logarithmic space:	
	$\mathbf{PT}/\mathbf{WK}(f(n),k^{f(n)}) \subseteq \mathbf{SPACE}(f(n))$	
	\subseteq NSPACE $(f(n))$	
	\subseteq PT / WK $(f(n)^2, k^{f(n)^2}).$	
	Theorem. REACHABILITY is NL-complete.	
	Theorem. 2SAT is NL-complete.	
	Actually, all languages in ${f L}$ are ${f L}$ -complete!	
\		,
	© 2007 TKK, Laboratory for Theoretical Computer Science	
	T-79.5103 / Autumn 2007 Parallel Computation and Log Space	16
)
	5. Alternation	
	 Alternation is an important generalization of nondeterminism. 	
	➤ In a nondeterministic computation each configuration is an	
	implicit OR of its successor configurations: i.e.	
	it "leads to acceptance" if at least one of its successors does.	
	The idea is to allow both OR and AND configurations in a tree of configurations generated by a NTM N computing on input x.	
(/

Alternating Turing machines

Definition. An *alternating* Turing machine *N* is a nondeterministic Turing machine where the set of states *K* is partitioned into two sets $K = K_{AND} \cup K_{OR}$.

Given the tree of configurations of N on input x, the *eventually accepting configurations* of N are defined recursively:

- 1. Any leaf configuration with state "yes" is eventually accepting.
- 2. A configuration with state in K_{AND} is eventually accepting iff all its successors are.
- 3. A configuration with state in K_{OR} is eventually accepting iff at least one of its successors is.
- racepts x iff its initial configuration is eventually accepting.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

Parallel Computation and Log Space

T-79.5103 / Autumn 2007

18

Alternation-based complexity classes

Definition. An alternating Turing machine *N* decides a language *L* iff *N* accepts all strings $x \in L$ and rejects all strings $x \notin L$.

- ► It is straightforward to define $\mathbf{ATIME}(f(n))$ and $\mathbf{ASPACE}(f(n))$; and using them, $\mathbf{AP} = \mathbf{ATIME}(n^k)$ and $\mathbf{AL} = \mathbf{ASPACE}(\log n)$.
- Roughly speaking, alternating space classes correspond to deterministic time but one exponential higher.

Theorem. MONOTONIC CIRCUIT VALUE is AL-complete.

Corollary. AL = P.

```
Corollary. ASPACE(f(n)) = TIME(k^{f(n)}).
```


19

Learning Objectives

- ► Parallel models of computation: uniform circuits and PRAMs
- \blacktriangleright The classes NC, NC₁, NC₂ and their relationship to L,NL,P.
- ► Alternating Turing machines

\bigodot 2007 TKK, Laboratory for Theoretical Computer Science