
AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 1

PARALLEL COMPUTATION AND LOG SPACE

➤ Parallel algorithms

➤ Parallel models of computation

➤ The class NC

➤ The L ?
= NL problem

➤ Alternation

(C. Papadimitriou: Computational Complexity, Chapters 15 and 16)

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 2

1. Parallel Algorithms

➤ A synchronous architecture with shared memory is assumed.

➤ The goal of parallel algorithms is to be dramatically better than

sequential ones, preferably polylogarithmic, i.e. the length of

parallel computation is O(logk n) for some k.

(We use the notation: logk n = (logn)k)

➤ However, the executions of parallel algorithms should not require

inordinately large (superpolynomial) numbers of processors.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 3

Example: Matrix Multiplication

➤ The goal is to compute the product of two n×n matrices A and B.

➤ The product C = A ·B is defined by

Ci j =
n

∑
k=1

Aik ·Bk j

for indices i and j ranging from 1 to n.

➤ There is a sequential algorithm with O(n3) arithmetic operations.

➤ The same can be achieved in logn parallel steps by n3 processors.

➤ However, the number of processors required by the algorithm can

be brought down to n3

logn using Brent’s principle.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 4

Observations

➤ The amount of work done by a parallel algorithm can be no

smaller than the time complexity of the best sequential algorithm.

➤ Parallel computation is not the answer to NP-completeness:

work = parallel time × number of processors.

➤ If the amount of work is exponential, then either the number of

parallel steps or the number of processors (or both) is exponential.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 5

2. Parallel Models of Computation

➤ TMs and RAMs are sequential because of the von Neumann

property : at each instant only a bounded amount of

computational activity can occur.

➤ Boolean circuits are genuinely parallel.

➤ Uniform families of Boolean circuits are used as the basic model of

parallel algorithms and computation.

➤ The primary complexity measures for parallel computation are

parallel time and parallel work.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 6

Parallel time and work

➤ Let C = (C0,C1, . . .) be a uniform family of Boolean circuits and

let f (n) and g(n) be functions from integers to integers.

— The parallel time of C is at most f (n) iff for all n the depth of

Cn is at most f (n).

— The parallel work of C is at most g(n) iff for all n the size of Cn

is at most g(n).

➤ The class PT/WK(f (n),g(n)) consists of languages L ⊆ {0,1}∗
for which there is a uniform family of circuits C deciding L with

O(f (n)) parallel time and O(g(n)) parallel work.

Example. REACHABILITY ∈ PT/WK(log2 n,n3 logn).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 7

Parallel random access machines

➤ How realistic models of parallel computation are circuits?

They correspond to parallel random access machines (PRAMs)!

➤ A PRAM program is a set of RAM programs P = (Π1, . . . ,Πq),

one for each of the q RAMs.

➤ Each RAM Πi executes its own program, has its own program

counter and accumulator, i.e. the ith register, but shares all

registers (including accumulators and input).

➤ For concurrent writes the RAM with the smallest index prevails:

i.e. the PRIORITY CRCW PRAM is assumed (see note 15.5.7).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 8

Uniform PRAM families

➤ PRAMs (under PRIORITY CRCW scheme) form a very idealized

and powerful model which is also rather unrealistic due to

instantaneous communication and concurrent writing.

➤ The number q of RAMs is a function q(m,n) of the number m of

input integers in I = (i1, . . . , im) and their total length n = l(I).

➤ A family of PRAMs P = {Pm,n | m,n ≥ 0} is uniform iff there is a

TM which given 1m01n generates q(m,n) and the programs

Pm,n = (Πm,n,0,Πm,n,1, . . . ,Πm,n,q(m,n)) all in logarithmic space.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 9

Computing functions with PRAMs

➤ Let F be a function from finite sequences of integers to finite

sequences of integers; and f (n) and g(n) functions from positive

integers to positive integers.

➤ Let P = {Pm,n | m,n ≥ 0} be a uniform family of PRAMs.

Definition. The family P computes F in parallel time f with g

processors iff for each m,n ≥ 0, for Pm,n it holds that

(i) it has q(m,n) ≤ g(n) processors and

(ii) if Pm,n is executed on input I of m integers with total length n,

then all q(m,n) RAMs reach a HALT instruction after at most f (n)

steps and the k ≤ q(m,n) first registers contain the output F(I).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 10

Simulation results

➤ PRAMs can simulate circuits:

If L ⊆ {0,1}∗ is in PT/WK(f (n),g(n)), then there is a uniform

PRAM that computes the corresponding function FL in parallel

time O(f (n)) using O(g(n)
f (n)) processors.

➤ Circuits can simulate PRAMs:

Let F be computed by a uniform PRAM in parallel time f (n) using

g(n) processors (f (n),g(n) can be computed from 1n in log space).

Then there is a uniform family of circuits of

depth O(f (n)(f (n)+ logn)) and size O(g(n) f (n)(nk f (n)+g(n)))

which computes the binary representation of F .

(Here nk is the time bound of the log space TM computing the

nth PRAM in the family given 1n as its input.)

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 11

3. The Class NC

➤ What would be the class of problems that is satisfactorily solved

by parallel computers? A candidate definition (Nick’s class):

NC = PT/WK(logk n,nk).

➤ NC is the class of languages decided by PRAMs in polylogarithmic

parallel time and with polynomially many processors.

➤ However, the difference between polylog and polynomial is seen

sometimes only for big n. For example, consider log3 n and
√

n:

log3 108 > 18000 and
√

108 = 10000.

➤ One possiblity is to consider subclasses of NC for j = 1,2, . . . :

NC j = PT/WK(log j n,nk) — a potential hierarchy of classes.

➤ The class NC2 provides an alternative (more conservative) notion

of “efficient parallel computation”.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 12

NC vs P

➤ Clearly NC ⊆ P but is NC = P?

➤ There seem to be problems in P that are inherently sequential.

☞ Conjecture: NC 6= P.

➤ Since NC (and NC2) is closed under log space reductions,

P-complete problems are the least likely to be in NC.

Example. ODD MAX FLOW:

Given a network N = (V,E,s, t,c), is the maximum flow value odd?

Theorem. ODD MAX FLOW is P-complete.

(So are MAX FLOW(D), HORNSAT, and CIRCUIT VALUE.)

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 13

4. The L ?
= NL problem

We may relate logarithmic space classes and parallel complexity classes:

Theorem. NC1 ⊆ L ⊆ NL ⊆ NC2.

Proof.

1. The last inclusion follows by reachablity method, since

REACHABILITY belongs to NC2.

2. The inclusion in the middle is trivial.

3. For the first inclusion, we have to compose three algorithms that

operate in logarithmic space (recall Proposition 8.2).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 14

Proof of NC1 ⊆ L — continued

The following logspace algorithms are needed:

1. The first generates a circuit C from the given uniform family.

2. The second transforms C into an equivalent circuit/expression E

whose gates have all outdegree one (no shared subexpressions).

– Each path in C identifies a gate in E.

3. The third evaluates the output gate of the tree-like circuit E.

– During the recursive evaluation, it is sufficient to remember the

label of the gate being evaluated and its truth value.

☞ The composition operates in logarithmic space. 2

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 15

Parallel computation thesis

➤ Space and parallel time are polynomially related!

➤ This can be generalized beyond logarithmic space:

PT/WK(f (n),k f (n)) ⊆ SPACE(f (n))

⊆ NSPACE(f (n))

⊆ PT/WK(f (n)2,k f (n)2
).

Theorem. REACHABILITY is NL-complete.

Theorem. 2SAT is NL-complete.

Actually, all languages in L are L-complete!

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 16

5. Alternation

➤ Alternation is an important generalization of nondeterminism.

➤ In a nondeterministic computation each configuration is an

implicit OR of its successor configurations: i.e.

it “leads to acceptance” if at least one of its successors does.

➤ The idea is to allow both OR and AND configurations in a tree of

configurations generated by a NTM N computing on input x.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 17

Alternating Turing machines

Definition. An alternating Turing machine N is a nondeterministic

Turing machine where the set of states K is partitioned into two sets

K = KAND ∪KOR.

Given the tree of configurations of N on input x, the eventually

accepting configurations of N are defined recursively:

1. Any leaf configuration with state “yes” is eventually accepting.

2. A configuration with state in KAND is eventually accepting iff all

its successors are.

3. A configuration with state in KOR is eventually accepting iff at

least one of its successors is.

☞ N accepts x iff its initial configuration is eventually accepting.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 18

Alternation-based complexity classes

Definition. An alternating Turing machine N decides a language L iff

N accepts all strings x ∈ L and rejects all strings x 6∈ L.

➤ It is straightforward to define ATIME(f (n)) and ASPACE(f (n));

and using them, AP = ATIME(nk) and AL = ASPACE(logn).

➤ Roughly speaking, alternating space classes correspond to

deterministic time but one exponential higher.

Theorem. MONOTONIC CIRCUIT VALUE is AL-complete.

Corollary. AL = P.

Corollary. ASPACE(f (n)) = TIME(k f (n)).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Parallel Computation and Log Space 19

Learning Objectives

➤ Parallel models of computation: uniform circuits and PRAMs

➤ The classes NC, NC1, NC2 and their relationship to L,NL,P.

➤ Alternating Turing machines

c© 2007 TKK, Laboratory for Theoretical Computer Science

