

Δ

10

Oracles—cont'd

- > An oracle Turing machine $M^{?}$:
 - New elements: query string, query state q?, answer states q_{YES}, q_{NO}
 - From the query state q? the machine moves to q_{YES} or to q_{NO} depending on whether y ∈ A holds or not where y is the content of the query string and A the oracle set.
 - Note that *a query* is performed *in one step*!
 - Computation of M? with oracle A on input x: $M^A(x)$.
- ➤ For any time complexity class C and oracle A there is a corresponding complexity class C^A.

Theorem. There is an oracle A for which $\mathbf{P}^A = \mathbf{N}\mathbf{P}^A$.

Proof: Let *A* be **PSPACE**-complete. Then

 $\textbf{PSPACE} \subseteq \textbf{P}^{A} \subseteq \textbf{NP}^{A} \subseteq \textbf{NPSPACE} \subseteq \textbf{PSPACE}$

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

	T-79.5103 / Autumn 2007	On P vs NP	
	Oracles—cont'd		
	Theorem. There is an oracle <i>B</i> for which $\mathbf{P}^B \neq \mathbf{NP}^B$. Proof. <i>B</i> is constructed by "diagonalization".		
	Lessons to be learned w.r.t. $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$		
	\blacktriangleright By the above $P \neq NP$ is possible; non-trivial conjection		ecture.
	 "Ordinary proof techniqu P = NP. 	es" are not sufficient for	establishing
	They are not affected by	oracles.	

 Conjecture B. NP-complete problems have no polynomial circuits, uniform or not.

 \bigcirc This implies $\mathbf{P} \neq \mathbf{NP}$ by Theorem 11.5 (A language *L* has uniformly polynomial circuits iff $L \in \mathbf{P}$).

- Lower bounds on the size of circuits for families of functions are hard to establish.
- Consider a weaker circuit model: monotone circuits (ones without NOT gates).
- Monotone circuits can only compute monotone functions: output cannot changed from true to false by changing input from false to true.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

On P vs NP

Monotone Circuits—cont'd

- ► Some NP-complete problems are monotonic, e.g., HAMILTON PATH and CLIQUE.
- ► How small can the monotone circuits coding these problems be?
- ► Let $CLIQUE_{n,k}$ be the Boolean function deciding whether a graph G = (V, E) with *n* nodes has a clique of size *k*.

Theorem. (Razborov's Theorem): There is a constant c such that for large enough n all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $2^{cn^{1/8}}$.

- ► To show $P \neq NP$ it would be sufficient to establish that all monotone languages in P have polynomial monotone circuits.
- ► However, this does not hold (e.g., for MATCHING).

Learning Objectives

- > The concepts of polynomial isomorphism and density of a language
- ➤ The concept of an oracle Turing machine
- > The role of monotonic circuits in studying the $\mathbf{P} \stackrel{?}{=} \mathbf{N} \mathbf{P}$ question.

© 2007 TKK, Laboratory for Theoretical Computer Science