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On P vs NP

➤ The map of NP

➤ Isomorphism

➤ Density

➤ Oracle Turing machines

➤ Monotonic circuits

(C. Papadimitriou: Computational Complexity, Chapter 14)
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The Map of NP

➤ NP-completeness provides a powerful tool for classifying

challenging computational problems.

➤ However, there are problems not known to be in P or

NP-complete, such as GRAPH ISOMORPHISM.

➤ Are there problems in NP that are neither in P nor NP-complete,

i.e., which is the case:

NP

NP-complete

P

NP

NP-complete

P

NP

NP = P

➤ The middle alternative is not possible.

Theorem. If P 6= NP, then there is a language in NP which is neither

in P nor NP-complete.
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Isomorphism

➤ All known NP-complete languages are polynomially isomorphic.

➤ Languages K,L are polynomially isomorphic if

there is a function h : Σ∗ 7→ Σ∗ such that

(i) h is bijection;

(ii) for each x ∈ Σ∗, x ∈ K iff h(x) ∈ L ;

(iii) h and h−1 are polynomial-time computable.

➤ There is a polynomial-time mapping from any NP-complete

problem to any other NP-complete problem (a logarithmic space

reduction).

➤ However, a reduction is not necessarily a polynomial isomorphism

(not a bijection) but with a padding function an isomorphism is

obtained.
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Isomorphism—cont’d

➤ A function pad : (Σ∗)2 7→ Σ∗ is a padding function for L if

(i) pad is computable in logarithmic space;

(ii) for each x,y ∈ Σ∗, pad(x,y) ∈ L iff x ∈ L ;

(iii) for each x,y ∈ Σ∗, |pad(x,y)| > |x|+ |y| ;

(iv) there is a logarithmic-space algorithm which given pad(x,y)

recovers y.

Example. A padding function for SAT:

Given x (a conjunction of m clauses with n variables) and a binary

string y, pad(x,y) is all clauses of x together with m+ |y| new clauses

and |y|+1 more variables where the m new clauses are copies of the

clause un+1 and where the m+ ith new clause is either ¬un+i+1 or

un+i+1 depending on whether the ith symbol in y is 0 or 1.
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Isomorphism—cont’d

➤ If R is a reduction from K to L and pad is a padding function for

L, pad(R(x),x) is a length-increasing one-to-one reduction.

Furthermore, there is a logarithmic-space algorithm for the inverse

of pad(R(x),x).

➤ If there is a reduction from K to L and a reduction from L to K

and the reductions are length-increasing, one-to-one and

logarithmic-space invertible, then K, L are polynomially

isomorphic.

➤ Corollary: The following NP-languages are polynomial isomorphic:

SAT, HAMILTON PATH, CLIQUE, MAX CUT, TRIPARTITE

MATCHING, KNAPSACK, . . .
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Density

Density of a language L:

densL(n) = |{x ∈ L : |x| ≤ n}|

Proposition. If K,L ⊆ Σ∗ are polynomially isomorphic, then densK and

densL are polynomially related (densL(n) ≤ densK(p(n)).

➤ A sparse language: polynomially bounded density function

➤ A dense language: superpolynomial density function
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Density—cont’d

➤ Examples:

Any unary language (⊆ {0}∗) is sparse (densL(n) ≤ n).

All NP-complete language seen this far are dense.

Theorem. If a unary language U ⊆ {0}∗ is NP-complete, then

P = NP.

Theorem. If a sparse language is NP-complete, then P = NP.
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Oracle Turing Machines

➤ The idea: study complexity in a setting where a part of the

computation comes “for free”.

➤ Can be used for exploring conjectures (like P ?
= NP) in an

alternative setting.

➤ Can isolate orthogonal (independent) sources of complexity.
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Oracles—cont’d

➤ An oracle Turing machine M?:

• New elements:

query string, query state q?, answer states qYES, qNO

• From the query state q? the machine moves to qYES or to qNO

depending on whether y ∈ A holds or not where y is the

content of the query string and A the oracle set.

• Note that a query is performed in one step!

• Computation of M? with oracle A on input x: MA(x).

➤ For any time complexity class C and oracle A there is a

corresponding complexity class C A.

Theorem. There is an oracle A for which PA = NPA.

Proof: Let A be PSPACE-complete. Then

PSPACE ⊆ PA ⊆ NPA ⊆ NPSPACE ⊆ PSPACE
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Oracles—cont’d

Theorem. There is an oracle B for which PB 6= NPB.

Proof. B is constructed by “diagonalization”.

Lessons to be learned w.r.t. P ?
= NP

➤ By the above P 6= NP is possible; non-trivial conjecture.

➤ “Ordinary proof techniques” are not sufficient for establishing

P ?
= NP.

They are not affected by oracles.
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Monotone Circuits

➤ Conjecture B. NP-complete problems have no polynomial

circuits, uniform or not.

☞ This implies P 6= NP by Theorem 11.5 (A language L has

uniformly polynomial circuits iff L ∈ P).

➤ Lower bounds on the size of circuits for families of functions are

hard to establish.

➤ Consider a weaker circuit model: monotone circuits (ones without

NOT gates).

➤ Monotone circuits can only compute monotone functions: output

cannot changed from true to false by changing input from false to

true.
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Monotone Circuits—cont’d

➤ Some NP-complete problems are monotonic, e.g.,

HAMILTON PATH and CLIQUE.

➤ How small can the monotone circuits coding these problems be?

➤ Let CLIQUEn,k be the Boolean function deciding whether a graph

G = (V,E) with n nodes has a clique of size k.

Theorem. (Razborov’s Theorem): There is a constant c such that for

large enough n all monotone circuits for CLIQUEn,k with k = n1/4 have

size at least 2cn1/8
.

➤ To show P 6= NP it would be sufficient to establish that all

monotone languages in P have polynomial monotone circuits.

➤ However, this does not hold (e.g., for MATCHING).
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Learning Objectives

➤ The concepts of polynomial isomorphism and density of a language

➤ The concept of an oracle Turing machine

➤ The role of monotonic circuits in studying the P ?
= NP question.
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