Approximation Algorithms

Definition. In an optimization problem there is an infinite set of instance such that for each instance, there is a set of feasible solutions \(F(x) \) and for each such solution \(s \in F(x) \), we have a positive integer cost \(c(s) \). The task is to find a feasible solution having the optimum cost defined as \(\text{OPT}(x) = \min_{s \in F(x)} c(s) \) (or \(\max_{s \in F(x)} c(s) \) if \(A \) is a maximization problem).

Let \(M \) be an algorithm which given any instance \(x \) returns a feasible solution \(M(x) \in F(x) \). We say that \(M \) is an \(\epsilon \)-approximation algorithm, where \(\epsilon \geq 0 \), iff for all inputs \(x \),

\[
\frac{|c(M(x)) - \text{OPT}(x)|}{\max\{\text{OPT}(x), c(M(x))\}} \leq \epsilon.
\]

Note that \(\epsilon \)-approximation means that the relative error is at most \(\epsilon \)

- For a minimization problem

\[
\frac{|c(M(x)) - \text{OPT}(x)|}{\max\{\text{OPT}(x), c(M(x))\}} = \frac{c(M(x)) - \text{OPT}(x)}{c(M(x))} \leq \epsilon
\]

and hence, \(c(M(x)) \leq \frac{1}{1-\epsilon} \text{OPT}(x) \).

- For a maximization problem

\[
\frac{|c(M(x)) - \text{OPT}(x)|}{\max\{\text{OPT}(x), c(M(x))\}} = \frac{\text{OPT}(x) - c(M(x))}{\text{OPT}(x)} \leq \epsilon
\]

and hence, \(c(M(x)) \geq (1-\epsilon)\text{OPT}(x) \).
Approximation Thresholds

➤ For an optimization problem \(A \) we are interested in determining the smallest \(\epsilon \) for which there is a polynomial-time \(\epsilon \)-approximation algorithms for \(A \).

➤ Sometimes no such smallest \(\epsilon \) exists but there are approximization algorithms that achieve arbitrarily small error ratios.

➤ The approximation threshold of \(A \) is the greatest lower bound (\(\text{glb} \)) of all \(\epsilon > 0 \) for which \(A \) has a polynomial-time \(\epsilon \)-approximation algorithm.

➤ This quantity ranges from 0 (arbitrarily closer approximation is possible) to 1 (essentially no approximation is possible).

➤ If \(P = NP \), then for all optimization problems in \(NP \), the approximation threshold is zero.

Node Cover

➤ To get an approximation algorithm for NODE COVER a less “greedy” approach needs to be taken such as:

Start with \(C = \emptyset \);
While there are still edges left in \(G \) choose any edge \([u, v]\), add both \(u \) and \(v \) to \(C \) and delete them from \(G \).

➤ How far off the optimum can \(C \) be?

• \(C \) contains \(\frac{1}{2} |C| \) edges of \(G \) (no two of which share a node).
• Also the optimum cover must contain at least one node from each such edge.
• Hence, \(\text{OPT}(G) \geq \frac{1}{2} |C| \) and thus \(|C| - \text{OPT}(G) \leq \frac{1}{2} |C| \).

Theorem. The approximation threshold of NODE COVER is at most \(\frac{1}{2} \).

Maximum Satisfiability

➤ Consider first the \(k \)-MAXGSAT problem (maximum generalized satisfiability): we are given a set of Boolean expressions \(\Phi = \{ \phi_1, \ldots, \phi_m \} \) in \(n \) variables where each expression is a general Boolean expression involving at most \(k \) of the \(n \) variables (\(k > 0 \) is fixed constant). The task is to find a truth assignment that satisfies the most expressions.

➤ A successful approximation algorithm is based on choosing for a variable always the truth value that maximizes the expected number of satisfied expressions.
Maximum Satisfiability

The expected number of satisfied expressions:

- Suppose we pick one of the 2^n truth assignments at random. How many expressions in Φ should we expect to satisfy?
- Each expression $\phi_i \in \Phi$ involves k Boolean variables.
- We can easily calculate the number t_i of truth assignments (out of 2^n truth assignments) that satisfy ϕ_i (as k is a constant).
- Thus, a random truth assignment will satisfy ϕ_i with probability $p(\phi_i) = \frac{t_i}{2^n}$
- The expected number of satisfied expressions is then $p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$

If we set x_1 to true in all expressions of Φ, a set of expressions $\Phi[x_1 = \text{true}]$ involving variables x_2, \ldots, x_n results. We can calculate again $p(\Phi[x_1 = \text{true}])$ (and for $\Phi[x_1 = \text{false}]$ similarly). Now it holds that

$$p(\Phi) = \frac{1}{2} (p(\Phi[x_1 = \text{true}]) + p(\Phi[x_1 = \text{false}]))$$

Hence, if we modify Φ by setting x_1 equal to the truth value t that yields the largest $p(\Phi[x_1 = t])$, we end up with an expression set with expectation at least as large as the original.

The approximation algorithm:
Set $\Phi' = \Phi$ and then for $i = 1$ to n compute $p(\Phi'[x_i = \text{true}])$ and $p(\Phi'[x_i = \text{false}])$; choose the truth value t that yields the largest $p(\Phi'[x_i = t])$; set $\Phi' = \Phi'[x_i = t]$.

Maximum Satisfiability

In the end, all variables have been given values and all expressions are either true or false but we know that at least $p(\Phi)$ have been satisfied.

The optimum is at most the number of expressions that can be individually satisfied ($p(\phi_i) > 0$).

$$\frac{\text{OPT}(\Phi) - c(M(\Phi))}{\text{OPT}(\Phi)} = 1 - \frac{c(M(\Phi))}{\text{OPT}(\Phi)} \leq 1 - \frac{p(\phi_i)}{\text{OPT}(\Phi)} \leq 1 - \frac{p(\phi_i)}{\text{OPT}(\Phi)}$$

where l is the number of expressions ϕ_j with $p(\phi_j) > 0$ and $p(\phi_i)$ is the smallest positive probability.

For every satisfiable expression ϕ_i involving k variables $p(\phi_i)$ is at least 2^{-k}.

Hence, the approximation threshold for k-MAXGSAT is at most $1 - 2^{-k}$.

MAXSAT

In MAXSAT the input is a set of clauses and the probability of satisfaction is at least $\frac{1}{2}$ and $\epsilon = \frac{1}{2}$.

If we restrict the clauses to have at least k distinct literals, the probability that a random truth assignment satisfies a clause is $1 - 2^{-k}$ and $\epsilon = 2^{-k}$.

Theorem. The approximation threshold for k-MAXGSAT is at most $1 - 2^{-k}$.

The approximation threshold for MAXSAT is at most $\frac{1}{2}$ and when each clause has at least k distinct literals, the approximation threshold is at most 2^{-k}.
In MAX CUT we want to partition the nodes of a graph \(G = (V, E) \) into two sets \(S \) and \(V - S \) such that there are as many edges as possible between \(S \) and \(V - S \).

An approximation algorithm of MAX CUT based on local improvement:

Start from any partition of the nodes of \(G \) and repeat the following step: If the cut can be made larger by adding a single node to \(S \) or by deleting a single node from \(S \), then do so. If no such improvement is possible, stop and return the cut thus obtained.

Such local improvement algorithms can be developed for just about any optimization problem.

The TSP cannot be approximated!

Theorem. Unless \(P = NP \), the approximation threshold for TSP is one.

If all distances are either 1 or 2, there is a polynomial-time \(\frac{1}{2} \)-approximation algorithm.

If the distances satisfy triangle inequality \(d_{i,j} + d_{j,k} \geq d_{i,k} \), there is a polynomial-time \(\frac{1}{2} \)-approximation algorithm.

In KNAPSACK we have a set of \(n \) items with each item \(i \) having a value \(v_i \) and a weight \(w_i \) (both positive integers) and integer \(W \) and the task is to find a subset \(S \) of items such that \(\sum_{i \in S} w_i \leq W \) but \(\sum_{i \in S} v_i \) is the largest possible.

KNAPSACK

Knapsack has a pseudopolynomial algorithm.

For KNAPSACK polynomial-time approximability has no limits.

Theorem. The approximation threshold for KNAPSACK is zero.

We show that for KNAPSACK there is a polynomial-time \(\varepsilon \)-approximation algorithm for any \(\varepsilon > 0 \). This is based on the following pseudopolynomial algorithm.

Let \(V = \max \{v_1, \ldots, v_n\} \).

For each \(i = 0, 1, \ldots, n \) and \(0 \leq v \leq nV \), define the quantity \(W(i,v) \): the minimum weight attainable by selecting among the first \(i \) items so that their total value is exactly \(v \).

We start with \(W(0,0) = 0 \) and \(W(0,v) = \infty \) for all \(v \neq 0 \).

Each \(W(i,v) \) with \(i > 0 \) can be computed by

\[
W(i+1,v) = \min \{ W(i,v), W(i,v-w_{i+1}) + w_{i+1} \} \]

In the end, we pick the largest \(v \) such that \(W(n,v) \leq W \).

Each entry can be computed in constant number of steps and there are \((n+1)(nV+1) \) entries. Hence, the algorithm runs in \(O(n^2V) \) time.
The algorithm allows trading off accuracy for speed.

Given an instance of KNAPSACK \(x = (w_1, \ldots, w_n, W, v_1, \ldots, v_n) \) we can define the approximate instance \(x' = (w_1, \ldots, w_n, W, v'_1, \ldots, v'_n) \) where the new values are \(v'_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor \) (the old values with their \(b \) least significant bits replaced by zeros) where \(b \) is a parameter depending on \(\varepsilon \).

The time required to solve \(x' \) is \(O(n^2V^{2b}) \) because we can ignore the trailing zeros in \(v_i \)s.

The solution \(S' \) of \(x' \) obtained can be different from the optimal solution \(S \) of \(x \) but it can be shown that for \(c(x') = \sum_{i \in S'} v'_i \) holds:

\[
\sum_{i \in S} v_i \geq \sum_{i \in S'} v'_i \geq \sum_{i \in S} v_i - n2^b.
\]

Hence,

\[
\frac{OPT(x) - c(x')}{OPT(x)} \leq \frac{\sum_{i \in S} v_i - (\sum_{i \in S} v_i - n2^b)}{OPT(x)} \leq \frac{n2^b}{V}
\]

where \(OPT(x) \geq V \).

So given any \(\varepsilon > 0 \), we truncate the last \(b = \lfloor \log \frac{V}{\varepsilon} \rfloor \) bits of the values and arrive at an \(\varepsilon \)-approximation algorithm with running time \(O(\frac{V^2}{\varepsilon^2}) = O\left(\frac{n^2}{\varepsilon^2}\right)\).

Thus, there is a polynomial-time \(\varepsilon \)-approximation algorithm for any \(\varepsilon > 0 \) and the approximation threshold is zero.

Definition. A polynomial-time approximation scheme for an optimization problem \(A \) is an algorithm which, for each \(\varepsilon > 0 \) and instance \(x \) of \(A \), returns a solution with a relative error of at most \(\varepsilon \) in time \(p_{\varepsilon}(|x|) \) where \(p_{\varepsilon} \) is a polynomial depending on \(\varepsilon \).

In case of KNAPSACK, the time bound \(p_{\varepsilon} \) depends polynomially on \(\frac{1}{\varepsilon} \) and the respective scheme is then called fully polynomial.

For BIN PACKING, there is an approximation scheme where the time bound \(p_{\varepsilon} \) depends on \(\frac{1}{\varepsilon} \) exponentially.

Theorem. If there is an \(\varepsilon_0 \)-approximation algorithm for INDEPENDENT SET for any \(\varepsilon_0 < 1 \), then there is a polynomial-time approximation scheme for INDEPENDENT SET.

Definition. A polynomial-time approximation scheme for an optimization problem \(A \) is an algorithm which, for each \(\varepsilon > 0 \) and instance \(x \) of \(A \), returns a solution with a relative error of at most \(\varepsilon \) in time \(p_{\varepsilon}(|x|) \) where \(p_{\varepsilon} \) is a polynomial depending on \(\varepsilon \).

In case of KNAPSACK, the time bound \(p_{\varepsilon} \) depends polynomially on \(\frac{1}{\varepsilon} \) and the respective scheme is then called fully polynomial.

For BIN PACKING, there is an approximation scheme where the time bound \(p_{\varepsilon} \) depends on \(\frac{1}{\varepsilon} \) exponentially.

Theorem. If there is an \(\varepsilon_0 \)-approximation algorithm for INDEPENDENT SET for any \(\varepsilon_0 < 1 \), then there is a polynomial-time approximation scheme for INDEPENDENT SET.
k-DEGREE INDEPENDENT SET

- For graphs where each node has degree at most \(k \) the following algorithm works:

 Start with \(I = \emptyset \).

 While there are nodes left in \(G \), repeatedly delete from \(G \) any node \(v \) and all of its adjacent nodes adding \(v \) to \(I \).

- The resulting \(I \) is an independent set of \(G \).

- Since each stage adds another node to \(I \) and deletes at most \(k + 1 \) nodes, the resulting independent set has at least \(\frac{|V|}{k+1} \) nodes. This is at least \(\frac{1}{k+1} \) times the true maximum independent set.

- From this it follows:

Theorem. The approximation threshold of the \(k \)-DEGREE INDEPENDENT SET problem is at most \(1 - \frac{1}{k+1} = \frac{k}{k+1} \).

2. Approximation and Complexity

- A polynomial-time approximation scheme for an optimization problem is the next best thing to a polynomial-time exact algorithm for the problem.

- For \textbf{NP}-complete optimization problems an important question is whether such a scheme exists.

- We use \textbf{L-reductions} to order optimization problems by difficulty.

L-reductions

- An \textbf{L-reduction} from an optimization problem \(A \) to an optimization problem \(B \) is a pair of functions \((R, S)\) both computable in logarithmic space satisfying the following two properties:

 (i) If \(x \) is an instance of \(A \) with optimum cost \(\text{OPT}(x) \), then \(R(x) \) is an instance of \(B \) with optimum cost that satisfies:

 \[
 \text{OPT}(R(x)) \leq \alpha \text{OPT}(x)
 \]

 where \(\alpha \) is a positive constant.

 (ii) If \(s \) is any feasible solution of \(R(x) \), then \(S(s) \) is a feasible solution of \(x \) such that:

 \[
 \left| \text{OPT}(x) - c(S(s)) \right| \leq \beta \left| \text{OPT}(R(x)) - c(s) \right|
 \]

 where \(\beta \) is another positive constant.

- Notice: (i) \(S \) returns a feasible solution of \(x \) which is not much more suboptimal than the given by solution of \(R(x) \). (ii) If \(s \) is an optimum solution of \(R(x) \), then \(S(s) \) must be the optimum solution of \(x \).

Proposition. If \((R, S)\) is an \textbf{L-reduction} from problem \(A \) to problem \(B \) and \((R', S')\) is an \textbf{L-reduction} from problem \(B \) to problem \(C \), then their composition \((R \cdot R', S \cdot S')\) is an \textbf{L-reduction} from \(A \) to \(C \).

Proposition. If there is an \textbf{L-reduction} \((R, S)\) from \(A \) to \(B \) with constants \(\alpha \) and \(\beta \) and there is a polynomial-time \(\varepsilon \)-approximation algorithm for \(B \), then there is a polynomial-time \(\frac{\alpha \varepsilon}{1-\varepsilon} \)-approximation algorithm for \(A \).

Corollary. If there is an \textbf{L-reduction} \((R, S)\) from \(A \) to \(B \) and there is a polynomial-time approximation scheme for \(B \), then there is a polynomial-time approximation scheme for \(A \).
Fagin’s theorem characterizes \(\text{NP} \) in terms of existential second order logic (expressions \(\exists \forall \phi \) where \(\phi \) is first-order).

The strict fragment of \(\text{NP} \), denoted \(\text{SNP} \), consists of all graph-theoretic properties expressible as

\[
\exists S \forall x_1 \ldots x_n \phi(S, G, x_1, \ldots, x_n).
\]

\(\text{MAXSNP} \) is the class of optimization problems \(A \) defined by

\[
\max_{S \subseteq V} |\{(x_1, \ldots, x_k) \in V^k | \phi(G_1, \ldots, G_m, S, x_1, \ldots, x_n)\}|
\]

where relations \(G_1, \ldots, G_m \) over finite \(V \) form the input.

Example. \(\text{MAX CUT} \in \text{MAXSNP} \) as it can be stated as

\[
\max_{S \subseteq V} |\{(x, y) \in V \times V : (E(x, y) \lor E(y, x)) \land S(x) \land \neg S(y)\}|
\]

where the input is \(V \) (the set of nodes) and \(E \) (the edge relation of a graph).

Further \(\text{MAXSNP} \)-complete problems

Theorem. The following problems are \(\text{MAXSNP} \)-complete:

(a) 4-DEGREE INDEPENDENT SET
(b) 4-DEGREE NODE COVER
(c) 5-OCCURRENCE MAX2SAT
(d) MAX NAESA T
(e) MAX-CUT

Motivation

Do \(\text{MAXSNP} \)-complete problems have polynomial-time approximation schemes?

Answer: No, if \(\text{P} \neq \text{NP} \).

This (non-trivial) result is based on an alternative characterization of \(\text{NP} \) using weak verifiers.
Verifiers

- A relation R is \textit{polynomially balanced} if $(x, y) \in R$ implies $|y| \leq |x|^k$ for some $k \geq 1$.
- Machine M is a \textit{verifier} for L if L can be written as

$$L = \{x \mid (x, y) \in R \text{ for some } y\}$$

where R is a polynomially balanced relation decided by M.

Theorem. [The weak verifier version of Cook's theorem.]
A language $L \in \text{NP}$ iff it has a deterministic log-space verifier.

A new characterization of \textit{NP}

Definition. A $(\log n, 1)$-restricted verifier \textit{decides} a relation R iff for each input x and alleged certificate y,
1. $(x, y) \in R$ implies for all random strings the verifier says “yes” and
2. $(x, y) \not\in R$ implies at least half of random strings make the verifier say “no”.

By a very non-trivial proof it can be shown:

Theorem. A language $L \in \text{NP}$ iff it has a $(\log n, 1)$-restricted verifier.

$log(n, 1)$-restricted verifiers

- A $(\log n, 1)$-restricted verifier is a randomized machine that uses
 (i) only $O(\log|x|)$ random bits and
 (ii) a constant number (k) of bits of y when verifying $(x, y) \in R$.
- Given a random bit string r ($c \log|x|$ bits), the verifier
 1. computes $Q(x, r)$, a set of k indices,
 2. chooses k symbols y_1, \ldots, y_k from y according to indices in $Q(x, r)$,
 3. and performs a polynomial-time computation using input x, r, and y_1, \ldots, y_k, and answers “yes” or “no”.

Nonapproximability Results

As a consequence of the previous theorem it can be shown:

Theorem. If there is a polynomial-time approximation scheme for MAX3SAT, then $P = \text{NP}$.

Some corollaries:
- If $P \neq \text{NP}$, then no MAXSNP-complete problem has a polynomial-time approximation scheme.
- Unless $P = \text{NP}$, the approximation threshold of INDEPENDENT SET and CLIQUE is one.
Learning Objectives

➤ The concept of a polynomial-time ϵ-approximation algorithm and approximation threshold.
➤ Examples of polynomial-time ϵ-approximation algorithms.
➤ The concept of an approximation scheme.
➤ The concepts of L-reductions and MAXSNP-completeness
➤ The concept of weak verifiers and the related nonapproximability results.