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APPROXIMABILITY

➤ Approximation Algorithms

➤ Approximation and complexity

➤ Nonapproximability results

(C. Papadimitriou: Computational complexity, Chapter 13, 299–322)
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1. Approximation Algorithms

➤ Once NP-completeness of a problem has been established,

techniques for solving the problem only approximatively are usually

explored.

➤ When dealing with optimization problems, often heuristic (search)

algorithms are used.

➤ Such algorithms are valuable in practice even if usually nothing

can be proved about their worst-case (or expected) performance.

➤ In some (fortunate) cases, the solutions returned by a

polynomial-time heurictic algorithm are guaranteed to be “not too

far from the optimum”
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Approximation Algorithms

Definition. In an optimization problem there is an infinite set of

instance such that for each instance, there is a set of feasible solutions

F(x) and for each such solution s ∈ F(x), we have a positive integer

cost c(s). The task is to find a feasible solution having the optimum

cost defined as OPT(x) = mins∈F(x) c(s) (or maxs∈F(x) c(s) if A is a

maximization problem).

Let M be an algorithm which given any instance x returns a feasible

solution M(x) ∈ F(x). We say that M is an ε-approximation algorithm,

where ε ≥ 0, iff for all inputs x,

|c(M(x))−OPT(x)|
max{OPT(x),c(M(x))}

≤ ε.
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Approximation Algorithms

➤ Note that ε-approximation means that the relative error is at most

ε

➤ For a minimization problem

|c(M(x))−OPT(x)|
max{OPT(x),c(M(x))}

=
c(M(x))−OPT(x)

c(M(x))
≤ ε

and hence, c(M(x)) ≤ 1
1−ε OPT(x).

➤ For a maximization problem

|c(M(x))−OPT(x)|
max{OPT(x),c(M(x))}

=
OPT(x)− c(M(x))

OPT(x)
≤ ε

and hence, c(M(x)) ≥ (1− ε)OPT(x).
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Approximation Thresholds

➤ For an optimization problem A we are interested in determining

the smallest ε for which there is a polynomial-time

ε-approximation algorithms for A.

➤ Sometimes no such smallest ε exists but there are approximization

algorithms that achieve arbitrarily small error ratios.

➤ The approximation threshold of A is the greatest lower bound

(glb) of all ε > 0 for which A has a polynomial-time

ε-approximation algorithm.

➤ This quantity ranges from 0 (arbitrarily closer approximation is

possible) to 1 (essentially no approximation is possible).

➤ If P = NP , then for all optimization problems in NP, the

approximation threshold is zero.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Approximability 6

Node Cover

➤ NODE COVER is a minimization problem where we seek the

smallest set of nodes C ⊆V in a graph G = (V,E) such that for

each edge in E at least one of its endpoints is in C.

➤ What is a plausible heurictic for obtaining a “good” node cover?

➤ A first try: If a node v has high degree, then it is probably a good

idea to add it to the cover.

➤ The resulting “greedy” algorithm:

Start with C = /0;

While there are still edges left in G

choose a node with the largest degree, delete it (and related

edges) from G and add it to C.

➤ This is not an ε-approximation algorithm for any ε < 1
(in the worst-case its error ratio grows as logn where n is the

number of nodes in the graph).
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Node Cover

➤ To get an approximation algorithm for NODE COVER a less

“greedy” approach needs to be taken such as:

Start with C = /0;

While there are still edges left in G

choose any edge [u,v], add both u and v to C and delete them

from G.

➤ How far off the optimum can C be?

• C contains 1
2 |C| edges of G (no two of which share a node).

• Also the optimum cover must contain at least one node from

each such edge.

• Hence, OPT(G) ≥ 1
2 |C| and thus |C|−OPT(G)

|C| ≤ 1
2 .

Theorem. The approximation threshold of NODE COVER is at most
1
2 .
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Maximum Satisfiability

➤ Consider first the k-MAXGSAT problem (maximum generalized

satisfiability): we are given a set of Boolean expressions

Φ = {φ1, . . . ,φm} in n variables where each expression is a general

Boolean expression involving at most k of the n variables (k > 0 is

fixed constant). The task is to find a truth assignment that

satisfies the most expressions

➤ A successful approximation algorithm is based on choosing for a

variable always the truth value that maximizes the expected

number of satisfied expressions.
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Maximum Satisfiability

The expected number of satisfied expressions:

➤ Suppose we pick one of the 2n truth assignments at random. How

many expressions in Φ should we expect to satisfy?

➤ Each expression φi ∈ Φ involves k Boolean variables.

➤ We can easily calculate the number ti of truth assignments (out of

2k truth assignments) that satisfy φi (as k is a constant).

➤ Thus, a random truth assignment will satisfy φi with probability

p(φi) = ti
2k

➤ The expected number of satisfied expressions is then

p(Φ) = ∑m
i=1 p(φi)
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Maximum Satisfiability

➤ If we set x1 to true in all expressions of Φ, a set of expressions

Φ[x1 = true] involving variables x2, . . . ,xn results. We can calculate

again p(Φ[x1 = true]) (and for Φ[x1 = false] similarly). Now it

holds that

p(Φ) =
1
2
(p(Φ[x1 = true])+ p(Φ[x1 = false]))

➤ Hence, if we modify Φ by setting x1 equal to the truth value t that

yields the largest p(Φ[x1 = t]), we end up with an expression set

with expectation at least as large as the original.

➤ The approximation algorithm:

Set Φ′ = Φ and then for i = 1 to n

compute p(Φ′[xi = true]) and p(Φ′[xi = false]); choose the truth

value t that yields the largest p(Φ′[xi = t]); set Φ′ = Φ′[x1 = t].
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Maximum Satisfiability

➤ In the end, all variables have been given values and all expressions

are either true or false but we know that at least p(Φ) have been

satisfied.

➤ The optimum is at most the number of expressions that can be

individually satisfied (p(φi) > 0).

OPT(Φ)−c(M(Φ))
OPT(Φ) = 1− c(M(Φ))

OPT(Φ) ≤ 1− p(Φ)
OPT(Φ) ≤

1− l p(φi)
OPT(Φ) ≤ 1− l p(φi)

l = 1− p(φi)

where l is the number of expressions φ j with p(φ j) > 0 and p(φi)

is the smallest positive probability.

➤ For every satisfiable expression φi involving k variables p(φi) is at

least 2−k.

➤ Hence, the approximation threshold for k-MAXGSAT is at most

1−2−k.
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MAXSAT

➤ In MAXSAT the input is a set of clauses and the probability of

satisfaction is at least 1
2 and ε = 1

2 .

➤ If we restrict the clauses to have at least k distinct literals, the

probability that a random truth assignment satisfies a clause is

1−2−k and ε = 2−k.

Theorem. The approximation threshold for k-MAXGSAT is at most

1−2−k.

The approximation threshold for MAXSAT is at most 1
2

and when each clause has at least k distinct literals, the approximation

threshold is at most 2−k.
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Maximum Cut

➤ In MAX CUT we want to partition the nodes of a graph

G = (V,E) into two sets S and V −S such that there are as many

edges as possible between S and V −S.

➤ An approximation algorithm of MAX CUT based on local

improvement:

Start from any partition of the nodes of G and repeat the following

step: If the cut can be made larger by adding a single node to S or

by deleting a single node from S, then do so. If no such

improvement is possible, stop and return the cut thus obtained.

➤ Such local improvement algorithms can be developed for just

about any optimization problem.

➤ Sometimes such algorithms work well in practice but usually very

little can be proved about their performance.

➤ MAX CUT is an exception:

Theorem. The approximation threshold for MAX CUT is at most 1
2 .
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The Traveling Salesperson Problem

➤ TSP cannot be approximated!

Theorem. Unless P = NP, the approximation threshold for TSP is

one.

➤ If all distances are either 1 or 2, there is a polynomial-time
1
7 -approximation algorithm.

➤ If the distances satisfy triangle inequality di, j +d j,k ≥ di,k, there is

a polynomial-time 1
3 -approximation algorithm.
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Knapsack

➤ In KNAPSACK we have a set of n items with each item i having a

value vi and a weight wi (both positive integers) and integer W

and the task is to find a subset S of items such that Σi∈Swi ≤W

but Σi∈Svi is the largest possible.

➤ KNAPSACK has a pseudopolynomial algorithm.

➤ For KNAPSACK polynomial-time approximability has no limits.

Theorem. The approximation threshold for KNAPSACK is zero.
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KNAPSACK

➤ We show that for KNAPSACK there is a polynomial-time

ε-approximation algorithm for any ε > 0. This is based on the

following pseudopolynomial algorithm.

➤ Let V = max{v1, . . . ,vn}.

➤ For each i = 0,1, . . . ,n and 0 ≤ v ≤ nV , define the quantity W (i,v):

the minimum weight attainable by selecting among the first i

items so that their total value is exactly v.

➤ We start with W (0,0) = 0 and W (0,v) = ∞ for all v 6= 0.

➤ Each W (i,v) with i > 0 can be computed by

W (i+1,v) = min{W (i,v),W (i,v− vi+1)+wi+1}

➤ In the end, we pick the largest v such that W (n,v) ≤W .

➤ Each entry can be computed in constant number of steps and

there are (n+1)(nV +1) entries. Hence, the algorithm runs in

O(n2V ) time.
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KNAPSACK

➤ The algorithm allows trading off accuracy for speed .

➤ Given an instance of KNAPSACK x = (w1, . . . ,wn,W,v1, . . . ,vn) we

can define the approximate instance x′ = (w1, . . . ,wn,W,v′1, . . . ,v
′
n)

where the new values are v′i = 2b⌊ vi
2b ⌋ (the old values with their b

least significant bits replaced by zeros) where b is a parameter

depending on ε.

➤ The time required to solve x′ is O( n2V
2b ) because we can ignore the

trailing zeros in vis.

➤ The solution S′ of x′ obtained can be different from the optimal

solution S of x but it can be shown that for c(x′) = Σi∈S′v
′
i holds:

Σi∈Svi ≥ Σi∈S′v
′
i ≥ Σi∈Svi −n2b

.
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KNAPSACK

➤ Hence,

OPT(x)− c(x′)
OPT(x)

≤
Σi∈Svi − (Σi∈Svi −n2b)

OPT(x)
≤

n2b

V

where OPT(x) ≥V .

➤ So given any ε > 0, we truncate the last b = ⌊log εV
n ⌋ bits of the

values and arrive at an ε-approximation algorithm with running

time O( n2V
2b ) = O( n3

ε ).

➤ Thus, there is a polynomial-time ε-approximation algorithm for

any ε > 0 and the approximation threshold is zero.
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Approximation Schemes

Definition. A polynomial-time approximation scheme for an

optimization problem A is an algorithm which, for each ε > 0 and

instance x of A, returns a solution with a relative error of at most ε in

time pε(|x|) where pε is a polynomial depending on ε.

➤ In case of KNAPSACK, the time bound pε depends polynomially

on 1
ε and the respective scheme is then called fully polynomial .

➤ For BIN PACKING, there is an approximation scheme where the

time bound pε depends on 1
ε exponentially.
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Maximum Independent Set

➤ INDEPENDENT SET: the approximation threshold is either zero

or one.

➤ Lemma. G has an independent set of size k iff G2 has an

independent set of size k2

where G2 is a graph with nodes V ×V and edges

{[(u,u′),(v,v′)] | either u = v and [u′,v′] ∈ E or [u,v] ∈ E}

➤ From this it can be shown:

Theorem. If there is an ε0-approximation algorithm for

INDEPENDENT SET for any ε0 < 1, then there is a

polynomial-time approximation scheme for INDEPENDENT SET.
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k-DEGREE INDEPENDENT SET

➤ For graphs where each node has degree at most k the following

algorithm works:

Start with I = /0.

While there are nodes left in G, repeatedly delete from G any

node v and all of its adjacent nodes adding v to I.

➤ The resulting I is an independent set of G.

➤ Since each stage adds another node to I and deletes at most k +1

nodes, the resulting independent set has at least |V |
k+1 nodes. This

is at least 1
k+1 times the true maximum independent set.

➤ From this it follows:

Theorem. The approximation threshold of the k-DEGREE

INDEPENDENT SET problem is at most 1− 1
k+1 = k

k+1 .
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2. Approximation and Complexity

➤ A polynomial-time approximation scheme for an optimization

problem is the next best thing to a polynomial-time exact

algorithm for the problem.

➤ For NP-complete optimization problems an important question is

whether such a scheme exists.

➤ We use L-reductions to order optimization problems by difficulty.
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L-reductions

➤ An L-reduction from an optimization problem A to an optimization

problem B is a pair of functions (R,S) both computable in

logarithmic space satisfying the following two properties:

(i) If x is an instance of A with optimum cost OPT(x), then R(x) is

an instance of B with optimum cost that satisfies

OPT(R(x)) ≤ αOPT(x) where α is a positive constant.

(ii) If s is any feasible solution of R(x), then S(s) is a feasible

solution of x such that

|OPT(x)− c(S(s))| ≤ β|OPT(R(x))− c(s)|

where is β is another positive constant.
➤ Notice: (i) S returns a feasible solution of x which is not much

more suboptimal than the given by solution of R(x). (ii) If s is an

optimum solution of R(x), then S(s) must be the optimum

solution of x.
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L-reductions Compose

Proposition. If (R,S) is an L-reduction from problem A to problem B

and (R′,S′) is an L-reduction from problem B to problem C, then their

composition (R ·R′,S ·S′) is an L-reduction from A to C.

Proposition. If there is an L-reduction (R,S) from A to B with

constants α and β and there is a polynomial-time ε-approximation

algorithm for B, then there is a polynomial-time αβε
1−ε -approximation

algorithm for A.

Corollary. If there is an L-reduction (R,S) from A to B and there is a

polynomial-time approximation scheme for B, then there is a

polynomial-time approximation scheme for A.
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MAXSNP

➤ Fagin’s theorem characterizes NP in terms of existential second

order logic (expressions ∃Pφ where φ is first-order).

➤ The strict fragment of NP, denoted SNP, consists of all

graph-theoretic properties expressible as

∃S∀x1 . . .∀xn φ(S,G,x1, . . . ,xn).

➤ MAXSNP0 is the class of optimization problems A defined by

max
S⊆V r

|{(x1, . . . ,xk) ∈V k | φ(G1, . . . ,Gm,S,x1, . . . ,xn)}|

where relations G1, . . . ,Gm over finite V form the input.

Example. MAX CUT ∈ MAXSNP0 as it can be stated as

max
S⊆V

|{(x,y) ∈V ×V : (E(x,y)∨E(y,x))∧S(x)∧¬S(y)}|

where the input is V (the set of nodes) and E (the edge relation of a

graph).
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MAXSNP-Completeness

Theorem. Let A be a problem in MAXSNP0. Suppose that A is of

the form maxS |{(x1, . . . ,xn) | φ}|. Then A has a

(1−2−kφ)-approximation algorithm where kφ denotes the number of

atomic expressions in φ that involve S.

Definition. MAXSNP is the class of all optimization problems that

are L-reducible to a problem in MAXSNP0.

A problem A in MAXSNP is MAXSNP-complete iff all problems in

MAXSNP L-reduce to A.

Proposition. If a MAXSNP-complete problem has a polynomial-time

approximation scheme, then all problems in MAXSNP have a

polynomial-time approximation scheme.

Theorem. MAX3SAT is MAXSNP-complete.

It can be shown (by a non-trivial proof) that also 3-OCCURRENCE

MAX3SAT is MAXSNP-complete.
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Further MAXSNP-complete problems

Theorem. The following problems are MAXSNP-complete:

(a) 4-DEGREE INDEPENDENT SET

(b) 4-DEGREE NODE COVER

(c) 5-OCCURRENCE MAX2SAT

(d) MAX NAESAT

(e) MAX-CUT
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3. Nonapproximability

Motivation

➤ Do MAXSNP-complete problems have polynomial-time

approximation schemes?

Answer: No, if P 6= NP.

➤ This (non-trivial) result is based on an alternative characterization

of NP using weak verifiers.
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Verifiers

➤ A relation R is polynomially balanced if (x,y) ∈ R implies

|y| ≤ |x|k for some k ≥ 1.

➤ Machine M is a verifier for L if L can be written as

L = {x | (x,y) ∈ R for some y}

where R is a polynomially balanced relation decided by M.

Theorem. [The weak verifier version of Cook’s theorem.]

A language L ∈ NP iff it has a deterministic log-space verifier.
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(logn,1)-restricted verifiers

➤ A (logn,1)-restricted verifier is a randomized machine that uses

(i) only O(log |x|) random bits and

(ii) a constant number (k) of bits of y when verifying (x,y) ∈ R.

➤ Given a random bit string r (c log |x| bits), the verifier

1. computes Q(x,r), a set of k indices,

2. chooses k symbols y1, . . . ,yk from y according to indices in

Q(x,r),

3. and performs a polynomial-time computation using input x, r,

and y1, . . . ,yk, and answers “yes” or “no”.
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A new characterization of NP

Definition. A (logn,1)-restricted verifier decides a relation R iff for

each input x and alleged certificate y,

1. (x,y) ∈ R implies for all random strings the verifier says “yes” and

2. (x,y) 6∈ R implies at least half of random strings make the verifier

say “no”.

By a very non-trivial proof it can be shown:

Theorem. A language L ∈ NP iff it has a (logn,1)-restricted verifier.
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Nonapproximability Results

As a consequence of the previous theorem it can be shown:

Theorem. If there is a polynomial-time approximation scheme for

MAX3SAT, then P = NP.

Some corollaries:

➤ If P 6= NP, then no MAXSNP-complete problem has a

polynomial-time approximation scheme.

➤ Unless P = NP, the approximation threshold of INDEPENDENT

SET and CLIQUE is one.
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Learning Objectives

➤ The concept of a polynomial-time ε-approximation algorithm and

approximation threshold.

➤ Examples of polynomial-time ε-approximation algorithms.

➤ The concept of an approximation scheme.

➤ The concepts of L-reductions and MAXSNP-completeness

➤ The concept of weak verifiers and the related nonapproximability

results.
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