APPROXIMABILITY

- ► Approximation Algorithms
- ► Approximation and complexity
- ► Nonapproximability results

T-79.5103 / Autumn 2007

(C. Papadimitriou: Computational complexity, Chapter 13, 299-322)

Approximability

1. Approximation Algorithms

- Once NP-completeness of a problem has been established, techniques for solving the problem only approximatively are usually explored.
- When dealing with optimization problems, often heuristic (search) algorithms are used.
- Such algorithms are valuable in practice even if usually nothing can be proved about their worst-case (or expected) performance.
- In some (fortunate) cases, the solutions returned by a polynomial-time heurictic algorithm are guaranteed to be "not too far from the optimum"

Approximation Algorithms

Definition. In an optimization problem there is an infinite set of instance such that for each instance, there is a set of *feasible solutions* F(x) and for each such solution $s \in F(x)$, we have a positive integer cost c(s). The task is to find a feasible solution having the optimum cost defined as $OPT(x) = \min_{s \in F(x)} c(s)$ (or $\max_{s \in F(x)} c(s)$ if A is a maximization problem).

Let M be an algorithm which given any instance x returns a feasible solution $M(x) \in F(x)$. We say that M is an ε -approximation algorithm, where $\varepsilon \geq 0$, iff for all inputs x,

$$\frac{|c(M(x)) - \operatorname{OPT}(x)|}{\max\{\operatorname{OPT}(x), c(M(x))\}} \le \varepsilon$$

```
© 2007 TKK, Laboratory for Theoretical Computer Science
```

Approximability
Approximability
Approximability
Approximation Algorithms
Approximation Algorithms
**Note that
$$\varepsilon$$
-approximation means that the relative error is at most**
 ε
For a minimization problem
 $\frac{|c(M(x)) - OPT(x)|}{\max{OPT(x), c(M(x))}} = \frac{c(M(x)) - OPT(x)}{c(M(x))} \le \varepsilon$
and hence, $c(M(x)) \le \frac{1}{1-\varepsilon}OPT(x)$.
For a maximization problem
 $\frac{|c(M(x)) - OPT(x)|}{\max{OPT(x), c(M(x))}} = \frac{OPT(x) - c(M(x))}{OPT(x)} \le \varepsilon$
and hence, $c(M(x)) \ge (1 - \varepsilon)OPT(x)$.

Approximation Thresholds

 \blacktriangleright For an optimization problem A we are interested in determining

 \blacktriangleright Sometimes no such smallest ε exists but there are approximization

➤ The approximation threshold of A is the greatest lower bound

 \blacktriangleright This quantity ranges from 0 (arbitrarily closer approximation is

possible) to 1 (essentially no approximation is possible).

 \blacktriangleright If **P** = **NP**, then for all optimization problems in **NP**, the

the smallest ε for which there is a polynomial-time

algorithms that achieve arbitrarily small error ratios.

(**glb**) of all $\varepsilon > 0$ for which A has a polynomial-time

 ϵ -approximation algorithms for A.

ε-approximation algorithm.

approximation threshold is zero.

6

Node Cover

To get an approximation algorithm for NODE COVER a less "greedy" approach needs to be taken such as:

Start with $C = \emptyset$;

While there are still edges left in G

choose any edge [u, v], add both u and v to C and delete them from G.

- ► How far off the optimum can C be?
 - C contains $\frac{1}{2}|C|$ edges of G (no two of which share a node).
 - Also the optimum cover must contain at least one node from each such edge.
 - Hence, $OPT(G) \ge \frac{1}{2}|C|$ and thus $\frac{|C|-OPT(G)}{|C|} \le \frac{1}{2}$.

Theorem. The approximation threshold of NODE COVER is at most

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

 $\frac{1}{2}$.

Approximability

8

Approximability

Node Cover

© 2007 TKK, Laboratory for Theoretical Computer Science

- NODE COVER is a minimization problem where we seek the smallest set of nodes C ⊆ V in a graph G = (V,E) such that for each edge in E at least one of its endpoints is in C.
- ➤ What is a plausible heurictic for obtaining a "good" node cover?
- A first try: If a node v has high degree, then it is probably a good idea to add it to the cover.
- ➤ The resulting "greedy" algorithm:

Start with $C = \emptyset$:

T-79.5103 / Autumn 2007

While there are still edges left in G

choose a node with the largest degree, delete it (and related edges) from G and add it to C.

This is not an ε-approximation algorithm for any ε < 1 (in the worst-case its error ratio grows as log n where n is the number of nodes in the graph).

Maximum Satisfiability

- ➤ Consider first the k-MAXGSAT problem (maximum generalized satisfiability): we are given a set of Boolean expressions
 Φ = {φ₁,...,φ_m} in n variables where each expression is a general Boolean expression involving at most k of the n variables (k > 0 is fixed constant). The task is to find a truth assignment that satisfies the most expressions
- A successful approximation algorithm is based on choosing for a variable always the truth value that maximizes the expected number of satisfied expressions.

Maximum Satisfiability

- > In the end, all variables have been given values and all expressions are either **true** or **false** but we know that at least $p(\Phi)$ have been satisfied.
- ➤ The optimum is at most the number of expressions that can be individually satisfied (p(φ_i) > 0).

 $\begin{array}{l} \frac{\mathrm{OPT}(\Phi) - c(M(\Phi))}{\mathrm{OPT}(\Phi)} = 1 - \frac{c(M(\Phi))}{\mathrm{OPT}(\Phi)} \leq 1 - \frac{p(\Phi)}{\mathrm{OPT}(\Phi)} \leq \\ 1 - \frac{lp(\phi_i)}{\mathrm{OPT}(\Phi)} \leq 1 - \frac{lp(\phi_i)}{l} = 1 - p(\phi_i) \end{array}$

where *l* is the number of expressions ϕ_j with $p(\phi_j) > 0$ and $p(\phi_i)$ is the smallest positive probability.

- ➤ For every satisfiable expression \$\ophi_i\$ involving k variables \$p(\ophi_i)\$ is at least 2^{-k}.
- ► Hence, the approximation threshold for *k*-MAXGSAT is at most $1-2^{-k}$.

C 2007 TKK, Laboratory for Theoretical Computer Science

The expected number of satisfied expressions:

- Suppose we pick one of the 2ⁿ truth assignments at random. How many expressions in Φ should we expect to satisfy?
- ► Each expression $\phi_i \in \Phi$ involves *k* Boolean variables.
- We can easily calculate the number t_i of truth assignments (out of 2^k truth assignments) that satisfy φ_i (as k is a constant).
- ► Thus, a random truth assignment will satisfy ϕ_i with probability $p(\phi_i) = \frac{t_i}{2^k}$
- ▶ The expected number of satisfied expressions is then $p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Approximability

10

Maximum Satisfiability

▶ If we set x_1 to **true** in all expressions of Φ , a set of expressions $\Phi[x_1 = \mathbf{true}]$ involving variables x_2, \ldots, x_n results. We can calculate again $p(\Phi[x_1 = \mathbf{true}])$ (and for $\Phi[x_1 = \mathbf{false}]$ similarly). Now it holds that

$$p(\Phi) = \frac{1}{2}(p(\Phi[x_1 = \mathbf{true}]) + p(\Phi[x_1 = \mathbf{false}]))$$

- ► Hence, if we modify Φ by setting x_1 equal to the truth value *t* that yields the largest $p(\Phi[x_1 = t])$, we end up with an expression set with expectation at least as large as the original.
- ► The approximation algorithm:

Set $\Phi' = \Phi$ and then for i = 1 to ncompute $p(\Phi'[x_i = \mathbf{true}])$ and $p(\Phi'[x_i = \mathbf{false}])$; choose the truth value t that yields the largest $p(\Phi'[x_i = t])$; set $\Phi' = \Phi'[x_1 = t]$.

Maximum Cut

- ► In MAX CUT we want to partition the nodes of a graph G = (V, E) into two sets S and V - S such that there are as many edges as possible between S and V - S.
- ► An approximation algorithm of MAX CUT based on *local improvement*:

Start from any partition of the nodes of G and repeat the following step: If the cut can be made larger by adding a single node to S or by deleting a single node from S, then do so. If no such improvement is possible, stop and return the cut thus obtained.

- > Such local improvement algorithms can be developed for just about any optimization problem.
- > Sometimes such algorithms work well in practice but usually very little can be proved about their performance.
- ► MAX CUT is an exception:
- **Theorem.** The approximation threshold for MAX CUT is at most $\frac{1}{2}$.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007	Approximability	
	-	
The Traveling	Salesperson Problem	
► TSP cannot be approximation	ated!	
Theorem. Unless $\mathbf{P} = \mathbf{N}\mathbf{I}$ one.	P, the approximation threshold for TS	SP is
➤ If all distances are either ¹ / ₇ -approximation algorithm	1 or 2, there is a polynomial-time n.	
➤ If the distances satisfy trianal a polynomial-time ¹ / ₃ -appr	angle inequality $d_{i,j} + d_{j,k} \ge d_{i,k}$, then oximation algorithm.	re is

- \blacktriangleright In KNAPSACK we have a set of *n* items with each item *i* having a value v_i and a weight w_i (both positive integers) and integer W and the task is to find a subset S of items such that $\sum_{i \in S} w_i \leq W$ but $\sum_{i \in S} v_i$ is the largest possible.
- ► KNAPSACK has a pseudopolynomial algorithm.
- ► For KNAPSACK polynomial-time approximability has no limits.

Theorem. The approximation threshold for KNAPSACK is zero.

© 2007 TKK, Laboratory for Theoretical Computer Science

Approximability

T-79.5103 / Autumn 2007 KNAPSACK

- ➤ We show that for KNAPSACK there is a polynomial-time ϵ -approximation algorithm for any $\epsilon > 0$. This is based on the following pseudopolynomial algorithm.
- \blacktriangleright Let $V = \max\{v_1, \ldots, v_n\}$.
- For each i = 0, 1, ..., n and $0 \le v \le nV$, define the quantity W(i, v): the minimum weight attainable by selecting among the first iitems so that their total value is exactly v.
- ▶ We start with W(0,0) = 0 and $W(0,v) = \infty$ for all $v \neq 0$.
- Each W(i, v) with i > 0 can be computed by

 $W(i+1,v) = \min\{W(i,v), W(i,v-v_{i+1}) + w_{i+1}\}\$

- ▶ In the end, we pick the largest v such that W(n,v) < W.
- ► Each entry can be computed in constant number of steps and there are (n+1)(nV+1) entries. Hence, the algorithm runs in $O(n^2V)$ time.

16

KNAPSACK

► The algorithm *allows trading off accuracy for speed*.

- ► Given an instance of KNAPSACK $x = (w_1, ..., w_n, W, v_1, ..., v_n)$ we can define the approximate instance $x' = (w_1, ..., w_n, W, v'_1, ..., v'_n)$ where the new values are $v'_i = 2^b \lfloor \frac{v_i}{2^b} \rfloor$ (the old values with their *b* least significant bits replaced by zeros) where *b* is a parameter depending on ε .
- ► The time required to solve x' is $O(\frac{n^2V}{2^b})$ because we can ignore the trailing zeros in v_i s.
- ➤ The solution S' of x' obtained can be different from the optimal solution S of x but it can be shown that for c(x') = Σ_{i∈S'}ν'_i holds:

 $\Sigma_{i\in S}v_i\geq \Sigma_{i\in S'}v'_i\geq \Sigma_{i\in S}v_i-n2^b.$

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Approximability	18		
KNAPSACK			
► Hence,			
$\frac{\operatorname{OPT}(x) - c(x')}{\operatorname{OPT}(x)} \le \frac{\sum_{i \in S} v_i - (\sum_{i \in S} v_i - n2^b)}{\operatorname{OPT}(x)} \le \frac{n2^b}{V}$			
where $OPT(x) \ge V$.			
So given any $\varepsilon > 0$, we truncate the last $b = \lfloor \log \frac{\varepsilon V}{n} \rfloor$ bits of the values and arrive at an ε -approximation algorithm with running time $O(\frac{n^2 V}{2^b}) = O(\frac{n^3}{\varepsilon})$.			
Thus, there is a polynomial-time ε-approximation algorithm for any ε > 0 and the approximation threshold is zero.			

Approximation Schemes

Definition. A *polynomial-time approximation scheme* for an optimization problem *A* is an algorithm which, for each $\varepsilon > 0$ and instance *x* of *A*, returns a solution with a relative error of at most ε in time $p_{\varepsilon}(|x|)$ where p_{ε} is a polynomial depending on ε .

- ► In case of KNAPSACK, the time bound p_{ε} depends polynomially on $\frac{1}{\varepsilon}$ and the respective scheme is then called *fully polynomial*.
- For BIN PACKING, there is an approximation scheme where the time bound p_{ε} depends on $\frac{1}{\varepsilon}$ exponentially.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

	Maximum Independent Set
>	INDEPENDENT SET: the approximation threshold is either zero or one.
>	Lemma. <i>G</i> has an independent set of size <i>k</i> iff G^2 has an independent set of size k^2 where G^2 is a graph with nodes $V \times V$ and edges $\{[(u,u'),(v,v')] \mid \text{either } u = v \text{ and } [u',v'] \in E \text{ or } [u,v] \in E\}$
>	From this it can be shown: Theorem. If there is an ε_0 -approximation algorithm for INDEPENDENT SET for any $\varepsilon_0 < 1$, then there is a polynomial-time approximation scheme for INDEPENDENT SET

➤ For graphs where each node has degree at most k the following algorithm works:

Start with $I = \emptyset$.

While there are nodes left in G, repeatedly delete from G any node v and all of its adjacent nodes adding v to I.

- > The resulting I is an independent set of G.
- ➤ Since each stage adds another node to I and deletes at most k+1 nodes, the resulting independent set has at least ^{|V|}/_{k+1} nodes. This is at least ¹/_{k+1} times the true maximum independent set.
- ► From this it follows:

Theorem. The approximation threshold of the *k*-DEGREE INDEPENDENT SET problem is at most $1 - \frac{1}{k+1} = \frac{k}{k+1}$.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Approximability

2. Approximation and Complexity

- A polynomial-time approximation scheme for an optimization problem is the next best thing to a polynomial-time exact algorithm for the problem.
- For NP-complete optimization problems an important question is whether such a scheme exists.
- \blacktriangleright We use L-reductions to order optimization problems by difficulty.

An L-reduction from an optimization problem A to an optimization problem B is a pair of functions (R,S) both computable in logarithmic space satisfying the following two properties: (i) If x is an instance of A with optimum cost OPT(x), then R(x) is

an instance of \boldsymbol{B} with optimum cost that satisfies

 $OPT(R(x)) \le \alpha OPT(x)$

where α is a positive constant.

(ii) If s is any feasible solution of R(x), then S(s) is a feasible solution of x such that

$$|OPT(x) - c(S(s))| \le \beta |OPT(R(x)) - c(s)|$$

where is β is another positive constant.

➤ Notice: (i) S returns a feasible solution of x which is not much more suboptimal than the given by solution of R(x). (ii) If s is an optimum solution of R(x), then S(s) must be the optimum solution of x.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

```
Approximability
```

24

L-reductions Compose

Proposition. If (R,S) is an L-reduction from problem A to problem B and (R',S') is an L-reduction from problem B to problem C, then their composition $(R \cdot R', S \cdot S')$ is an L-reduction from A to C.

Proposition. If there is an L-reduction (R,S) from A to B with constants α and β and there is a polynomial-time ε -approximation algorithm for B, then there is a polynomial-time $\frac{\alpha\beta\varepsilon}{1-\varepsilon}$ -approximation algorithm for A.

Corollary. If there is an L-reduction (R,S) from A to B and there is a polynomial-time approximation scheme for B, then there is a polynomial-time approximation scheme for A.

MAXSNP

- Fagin's theorem characterizes NP in terms of existential second order logic (expressions ∃Pφ where φ is first-order).
- ➤ The strict fragment of NP, denoted SNP, consists of all graph-theoretic properties expressible as

 $\exists S \forall x_1 \ldots \forall x_n \, \phi(S, G, x_1, \ldots, x_n).$

► **MAXSNP**₀ is the class of optimization problems A defined by $\max_{x \in V^{K}} |\{(x_{1}, \dots, x_{k}) \in V^{k} | \phi(G_{1}, \dots, G_{m}, S, x_{1}, \dots, x_{n})\}|$

where relations G_1, \ldots, G_m over finite V form the input.

Example. MAX $CUT \in MAXSNP_0$ as it can be stated as

 $\max_{S \subseteq V} |\{(x, y) \in V \times V : (E(x, y) \lor E(y, x)) \land S(x) \land \neg S(y)\}|$

where the input is V (the set of nodes) and E (the edge relation of a graph).

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Approximability

MAXSNP-Completeness

Theorem. Let *A* be a problem in **MAXSNP**₀. Suppose that A is of the form $\max_{S} |\{(x_1, \ldots, x_n) | \phi\}|$. Then *A* has a

 $(1-2^{-k_{\phi}})$ -approximation algorithm where k_{ϕ} denotes the number of atomic expressions in ϕ that involve S.

Definition. MAXSNP is the class of all optimization problems that are L-reducible to a problem in $MAXSNP_0$.

A problem *A* in **MAXSNP** is **MAXSNP**-complete iff all problems in **MAXSNP** L-reduce to *A*.

Proposition. If a **MAXSNP**-complete problem has a polynomial-time approximation scheme, then all problems in **MAXSNP** have a polynomial-time approximation scheme.

Theorem. MAX3SAT is MAXSNP-complete.

It can be shown (by a non-trivial proof) that also 3-OCCURRENCE MAX3SAT is **MAXSNP**-complete.

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Approximability	2
3. Nonapproximability	
Motivation	
Do MAXSNP-complete problems have polynomial-time approximation schemes? Answer: No, if P \ne NP.	
This (non-trivial) result is based on an alternative characterization of NP using weak verifiers.	

Verifiers

- ➤ A relation *R* is *polynomially balanced* if $(x, y) \in R$ implies $|y| \le |x|^k$ for some $k \ge 1$.
- ► Machine *M* is a *verifier* for *L* if *L* can be written as $L = \{x \mid (x, y) \in R \text{ for some } y\}$
 - where R is a polynomially balanced relation decided by M.

Theorem. [The weak verifier version of Cook's theorem.]

A language $L \in \mathbf{NP}$ iff it has a deterministic log-space verifier.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

A new characterization of $\ensuremath{N\!P}$

Definition. A $(\log n, 1)$ -restricted verifier *decides* a relation *R* iff for each input *x* and alleged certificate *y*,

- 1. $(x,y) \in \mathbf{R}$ implies for all random strings the verifier says "yes" and
- 2. $(x,y) \notin R$ implies at least half of random strings make the verifier say "no".
- By a very non-trivial proof it can be shown:

Theorem. A language $L \in \mathbf{NP}$ iff it has a $(\log n, 1)$ -restricted verifier.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

```
Approximability
```

32

Nonapproximability Results

As a consequence of the previous theorem it can be shown:

Theorem. If there is a polynomial-time approximation scheme for MAX3SAT, then $\mathbf{P} = \mathbf{NP}$.

Some corollaries:

- ➤ If P ≠ NP, then no MAXSNP-complete problem has a polynomial-time approximation scheme.
- Unless P = NP, the approximation threshold of INDEPENDENT SET and CLIQUE is one.

Learning Objectives

- The concept of a polynomial-time ε-approximation algorithm and approximation threshold.
- \blacktriangleright Examples of polynomial-time ε -approximation algorithms.
- ► The concept of an approximation scheme.
- ➤ The concepts of L-reductions and MAXSNP-completeness
- The concept of weak verifiers and the related nonapproximability results.

© 2007 TKK, Laboratory for Theoretical Computer Science