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CRYPTOGRAPHY

➤ Public-key cryptography

➤ Cryptography and complexity

➤ Randomized cryptography

➤ Signatures

➤ Mental poker

➤ Interactive proofs

➤ Zero knowledge

(C. Papadimitriou: Computational Complexity, Chapter 12)
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Cryptography

➤ Two parties Alice and Bob wish to communicate in the presence

of malevolent eavesdroppers.

➤ Alice and Bob agree on two algorithms E (encoding) and D

(decoding) which are assumed to be known to general public.

➤ Privacy is ensured by two strings e,d ∈ Σ∗ (here Σ = {0,1}), the

encoding and decoding key , respectively.

➤ If Alice wants to send a message x ∈ Σ∗ to Bob, she computes the

encrypted message y = E(e,x) and transmits this to Bob over the

unreliable channel.

➤ Bob receives y and computes D(d,y) = x.

(e and d have been carefully selected to make D an inverse of E).
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Cryptography

➤ E and D should be polynomial-time algorithms

➤ There should be no way for an eavesdropper to compute x from y
without knowing d.

➤ A simple solution: one-time pad

• Choose d and e be the same arbitrary string e of length |x|.

• Let both E(e,x) = e⊕ x and D(e,y) = e⊕ y (the exclusive or of

the corresponding strings)

• Now e⊕ (e⊕ x) = x and hence D(e,E(e,x)) = x

• Furthermore, if an eavesdropper could derive x from y, then

she or he knows e = x⊕ y.

➤ One-time pads have limited usability:

(i) How to protect communication agreeing on the keys?

(ii) Long keys are needed (as long as the messages).
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A public-key cryptosystem

➤ Bob generates a pair of keys (d,e) and announces e openly.

(d is private but e is well-known to Alice and the general public.)

➤ Alice can send a message x to Bob by transmitting E(e,x).

➤ Bob can decode the message by D(d,E(e,x)) = x.

➤ It should be computationally infeasible to deduce d from e and x

from y without knowing d.

➤ The difficulty of compromising a public-key cryptosystem rests

with the difficulty of guessing x from y.

➤ Once we have a correct guess x, it can be checked simply by

testing E(e,x) = y.

➤ Since x cannot be more than polynomially longer than y,

compromising a public-key cryptosystem (given y find x such that

E(e,x) = y) is a problem in FNP.

c© 2007 TKK, Laboratory for Theoretical Computer Science



AB
T-79.5103 / Autumn 2007 Cryptography 5

One-Way Functions

➤ Secure public-key cryptosystems can exist only if P 6= NP.

➤ Even if we assume P 6= NP, the existence of a secure public-key

cryptosystem is not immediate but what is needed is a one-way

function (for which the inverse is in FNP−FP).

Definition. Let f a function from strings to strings. We say that f is

a one-way function if the following holds:

(i) f is one-to-one and for all x ∈ Σ∗, |x|
1
k ≤ | f (x)| ≤ |x|k.

(ii) f is in FP.

(iii) The inverse f−1 of f is not in FP.

➤ Notice that f−1 is in FNP.

(x = f−1(y) if f (x) = y which can be checked in polynomial time).
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Candidates for One-Way Functions

➤ Integer multiplication fmult(p,C(p),q,C(q)) = pq

where p < q are prime numbers and C(p),C(q) are their primality

certificates.

(i) fmult is one-to-one, (ii) polynomial-time computable and

(iii) we know of no polynomial-time algorithm which inverts

fmult, i.e., factors products of large primes.

➤ Exponentiation modulo a prime

fexp(p,C(p),r,x) = (p,C(p),rx mod p)

where p is a prime number, C(p) is its primality certificate, r is a

primitive root modulo p (rp−1 = 1 mod p) and integer x < p.

No polynomial-time algorithm inverting fexp is known (the

discrete logarithm problem).
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The RSA function

➤ fmult and fexp are not directly usable as the basis of a

public-key cryptosystem but their combination is.

➤ The RSA function frsa(x,e, p,C(p),q,C(q)) = (xemod pq, pq,e)

where p < q are prime numbers, C(p),C(q) are their primality

certificates, e is a relative prime to φ(pq) = pq− p−q+1 (Euler

function) and integer x < pq.

➤ frsa is one-to-one.

➤ frsa is polynomial-time computable.

➤ No polynomial-time algorithm for inverting frsa has been

announced.
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The RSA public-key cryptosystem

➤ Bob knows p,q and announces the public encryption key (pq,e)

where e is a relative prime to φ(pq) = pq− p−q+1.

➤ Alice encrypts a message x by y = xe mod pq

➤ Bob knows an integer d which is another residue modulo pq such

that ed = 1+ kφ(pq) for some integer k (can be computed by

Euclid’s algorithm) and the private decryption key is (pq,d).

➤ Bob decrypts a message y by

yd = xed = x1+kφ(pq) = x(xφ(pq))k = x mod pq

(where xφ(pq) = 1 mod pq)

➤ Notice that any algorithm that factors integers can be used to

invert frsa: if we know p and q, then we can compute

φ(pq) = pq− p−q+1 and from it and e we could recover d (by

Euclid’s algorithm).
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Cryptography and complexity

➤ Linking the existence of one-way functions and NP-completeness?

➤ UP is a class closer to one-way functions:

Definition. A nondeterministic Turing machine is called

unambiguous if for any input x there is at most one accepting

computation. UP is the class of languages accepted by

unambiguous polynomial-time nondeterministic Turing machines.

➤ P ⊆ UP ⊆ NP.

Theorem. UP = P iff there are no one-way functions.
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Cryptography and complexity

➤ We expect that P 6= UP and UP 6= NP.

➤ NP-completeness is not useful in identifying one-way functions.

➤ UP-completeness does not seem to be useful either:

UP is a semantical class with no known complete problems.

➤ Moreover, complexity theory does not seem to be the right tool

for analyzing the security of cryptosystems because it is based on

worst-case performance estimates:

Even if we could show that compromising a cryptosystem is a hard

computational problem in the worst case, this is not enough for

the security of a cryptosystem.
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Cryptography and complexity

➤ For the security it is unacceptable if an eavesdropper can easily

decode half of the possible messages easily (even if decoding is

very hard in the worst case).

➤ For the definition of a one-way function we need replace

requirement (iii) f−1 not in FP by a stronger requirement:

There is no polynomial-time algorithm for inverting f on a

polynomial fraction of the inputs of length n.

➤ Often even this is not strong enough because it assumes that a

deterministic algorithm is used but randomized algorithms should

be allowed and even non-uniform families of circuits.

➤ In practice, an attack on a cryptosystem could focus only on the

currently used key size and invest massive amounts of

computation for constructing a circuit that works for the key size.
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Trapdoor functions

➤ Moreover, not all one-functions are usable for cryptographic

purposes.

➤ In addition to properties (i–iii) in the definition of a one-way

function a couple of further requirements need to be satisfied:

(iv) We can sample the domain of the function f efficiently (find

efficiently arguments for which the function is “defined”).

(v) There is a polynomially computable function d of the input of

f that makes the inversion problem computationally easy.

➤ One-function satisfying the two additional requirements are called

trapdoor functions.

➤ frsa is a trapdoor function (with the necessary reservation about

property (iii)).
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Randomized cryptography

➤ Doubts on the security remain even if very strong one-way

functions are used.

➤ For example, if f can be inverted only on a few strings, this could

be a serious threat if the strings are important ones (“ATTACK

NOW”, “SELL NOKIA”).

➤ An important case is to be able to send a single confidential bit

b ∈ {0,1}.

➤ In RSA encoding a bit b is be = b and the encrypted message

would be the same as the original one!
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Randomized cryptography

➤ A remedy for this problem is a randomized public-key

cryptosystem:

➤ For sending a bit b, generate a random integer x ≤ pq
2 and then

transmit y = (2x+b)e mod pq.

➤ After receiving, decode the original message (2x+b) and b can be

read as the least significant bit of the decrypted integer.

➤ A longer message can be broken to a sequence of bits which could

be sent individually as above.
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Signatures

➤ Problem: Alice wants to send Bob a signed document x,

i.e., a signed message SAlice(x) that contains x and

identifies unmistakably the sender.

➤ A solution: use a public-key cryptosystem

Alice and Bob have public and private keys: eAlice,dAlice,eBob,dBob

(i) Alice sends: SAlice(x) = (x,D(dAlice,x))

(ii) Bob takes the second part and “decodes” it:

E(eAlice,D(dAlice,x)) = D(dAlice,E(eAlice,x)) = x

(This works for commutative systems like RSA)

(iii) If decoding equals to the first part (x), Bob accepts x.
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Mental Poker

➤ Problem: Alice and Bob have agreed upon three n-bit numbers

a < b < c (cards). They need to randomly choose one card each

such that:

(i) Their cards are different.

(ii) All six pairs of distinct cards are equiprobable as outcomes.

(iii) Alice’s card is known to Alice but not to Bob and similarly for

Bob.

(iv) The outcome should be indisputable.

➤ A solution: The players agree on a single large prime p.

Each player has two secret keys: eAlice,dAlice,eBob,dBob such that

eAlicedAlice = eBobdBob = 1 mod p−1.

Now, e.g., eAlicedAlice = k(p−1)+1 and hence,

xeAlicedAlice = x(xp−1)k = x mod p (by Fermat’s theorem)
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Mental Poker: the protocol

➤ Alice encrypts the three cards and sends to Bob the encrypted

messages aeAlice mod p,beAlice mod p,ceAlice mod p

in some random order.

➤ Bob picks one, say aeAlice mod p, and sends it to Alice who

decrypts it with dAlice and keeps as her card).

➤ Bob encrypts the two remaining cards

beAliceeBob mod p,ceAliceeBob mod p and sends them to Alice in some

random order.

➤ Alice picks one, say beAliceeBob mod p, decodes it with dAlice and

sends beAliceeBobdAlice mod p to Bob.

➤ Bob decrypts this with dBob and takes as his card.

☞ Conditions (i–iv) satisfied.
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Interactive Proofs

➤ A nondeterministic algorithm can be seen as a simple protocol:

Alice has exponential computing power (to find a good certificate)

and Bob has polynomial (to check the certificate).

➤ What languages can be accepted if Bob can use randomization?

Definition. An interactive proof system (A,B) is a protocol between

Alice and Bob. Alice runs an exponential time algorithm A while Bob

has a polynomial-time randomized algorithm B.

The input x is known to both algorithms.

The two exchange a sequence of messages m1,m2, . . . ,m2|x|k where

Alice sends the odd-numbered ones and Bob even-numbered and

|mi| ≤ |x|k for all i.
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The protocol

➤ m1 = A(x).

➤ For all i ≤ 2|x|k, m2i = B(x;m1; . . . ;m2i−1,ri) and

m2i+1 = A(x;m1; . . . ;m2i) where ri is the polynomially long random

string used by Bob at the ith stage (ri is not known to A).

➤ For the last message m2|x|k ∈ {“yes”,“no”} signaling accept/reject.

➤ (A,B) decides a language L iff for all strings x,

(i) if x ∈ L, then the probability that x is accepted by (A,B) is at

least 1− 1
2|x|

.

(ii) if x 6∈ L, then the probability that x is accepted by (A′,B) is at

most 1
2|x|

for any exponential algorithm A′ replacing A.

IP is the class of languages decided by interactive proof systems.
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Interactive Proofs
➤ NP ⊆ IP

➤ BPP ⊆ IP

➤ GRAPH NONISOMORPHISM∈ IP (not known to be in NP/BPP)

➤ GRAPH ISOMORPHISM ∈ NP (not known to be NP-complete or

in P)

➤ An interactive proof system deciding

GRAPH NONISOMORPHISM:

Bob: on input x = (G,G′) repeats for i = 1, . . . , |x| rounds:

Chooses random bit bi and if bi = 1 then Gi = G else Gi = G′;

generates a random permutation πi and sends m2i−1 = (G,π(Gi))

Alice: checks whether the two graphs received are isomorphic. If

they are m2i = 1 else m2i = 0
After |x| rounds Bob accepts if random bits b1, . . . ,b|x| and Alice’s

replies m2, . . . ,m2|x| are identical.
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Interactive Proofs

➤ If G and G′ are not isomorphic, then x is accepted since bi = 1 iff

m2i−1 contains two isomorphic graphs iff m2i = 1.

➤ If G and G′ are isomorphic, then Alice always sees a graph and its

permuted copy and from that she needs to guess a random bit |x|

times:

perfect success with probability 1
2|x|
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Zero knowledge

➤ Problem: Find an interactive protocol (zero-knowledge proof)

such that given a graph (V,E), in the end Bob is convinced that

with very high probability Alice has a legal 3-coloring of the graph

but Bob has no clue about the actual 3-coloring.

➤ Protocol: Suppose Alice’s coloring is χ : V 7→ {00,11,01}

For each round:

Alice: generates a random permutation π of the colors;

generates a RSA public-private keys (pi,qi,ei,di) for each node i;

for each node i, computes (yi,y′i), a RSA coding of π(χ(i));

reveals (ei, piqi,yi,y′i) for each node i ∈V to Bob.

Bob picks at random an edge (i, j) ∈ E and Alice reveals di,d j

Bob: decodes yi,y′i and y j,y′j to obtain colors π(χ(i)) and π(χ( j))

and checks that they are different.
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Zero knowledge

➤ If Alice has no legal coloring, Bob has at least 1
|E| probability of

finding an edge (i, j) ∈ E such that χ(i) = χ( j).

➤ If this is repeated k|E| times, the probability for Bob to find out

that Alice has no legal coloring is at least 1− e−k.

➤ Note: Bob has learned nothing about the coloring.

Bob sees random public keys, encryptions of colors, and colors

π(χ(i)) and π(χ( j)) but these are randomly chosen pairs of

different colors (π changes after each round).

➤ Zero knowledge: the interactions in the protocol form a random

string drawn from a distribution that was available in the

beginning.

➤ All problems in NP have zero-knowledge proofs.
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Learning Objectives

➤ The concepts of a public-key cryptosystem and a one-way function

and their relationship

➤ The role of complexity theory in analyzing the security of

cryptosystems

➤ Examples of cryptographic protocols: signatures, mental poker,

interactive proofs, zero knowledge
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