
AB
T-79.5103 / Autumn 2007 Randomized computation 1

RANDOMIZED COMPUTATION

➤ Monte Carlo algorithms and random walks

➤ Randomized complexity classes: RP,ZPP,PP,BPP

➤ Perfect and slightly random sources

➤ Classes δ-RP,δ-BPP

➤ Circuit complexity

(C. Papadimitriou: Computational complexity, Chapter 11)

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 2

RANDOMIZED COMPUTATION

A randomized algorithm: flip unbiased coins

Example.

➤ Consider perfect matching:

INSTANCE: Bipartite graph B = (U,V,E), where U = {u1, . . . ,un},

V = {v1, . . . ,vn}, E ⊆U ×V .

QUESTION: Is there a set M ⊆ E of n edges such that for any two

edges (u,v),(u′,v′) ∈ M, u 6= u′ and v 6= v′

(is there a perfect matching)?

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 3

Perfect matching—cont’d

➤ This is related to computing determinants of a matrix:

Given a graph G, construct an n×n matrix AG where the element

i, j is a variable xi j iff (ui,v j) ∈ E otherwise 0.

detAG = ∑
π

σ(π)
n

∏
i=1

Ag
i,π(i)

where π ranges over permutations of n elements and each terms is

of the form

σ(π)a1,π(1) · · ·an,π(n)

➤ Hence, G has a perfect matching iff detAG is not identically 0.

➤ Testing whether detAG is identically 0 can be done using a

randomized algorithm.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 4

Randomized algorithm for perfect matching

Given a matrix AG(x1, . . . ,xm) with m variables:

Choose m random integers i1, . . . , im (between 0 and M = 2m)

Compute detAG(i1, . . . , im) (by Gaussian elimination).

If detAG(i1, . . . , im) 6= 0, then return “G has a perfect

matching”

If detAG(i1, . . . , im) = 0, then return “G probably has no

perfect matching”

Properties:

➤ No false positives (if “yes” is returned, this is correct).

➤ False negatives possible (if “no” is returned, this might be wrong).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 5

Monte Carlo algorithm

➤ Polynomial randomized algorithm

➤ No false positives

➤ The probability of false negatives no more than 1
2 .

☞ The previous algorithm is a Monte Carlo algorithm for perfect

matching: it can be shown that the probability of false negatives is no

more than 1
2 when the integers are randomly selected between 0 and

2m.

☞ If the probability of false negatives is ε >
1
2 , we can perform k

independent experiments and the probability of false negatives is

reduced to εk (and running times remains polynomial).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 6

Random Walks

➤ A randomized walk algorithm for SAT:

Take any truth assignment T and repeat r times:

If there is not unsatisfiable clauses, return “satisfiable”

Otherwise take any unsatisfiable clause

Pick any of its literals at random and flip it in T .

After r repetition return “probably unsatisfiable”

➤ Is this a Monte Carlo algorithm?

No false positives but the probability of false negatives is high!

(An exponential number of repetitions r is needed to achieve low

probability for classes of 3SAT problems).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 7

Random Walks—cont’d

➤ For 2SAT a Monte Carlo algorithm is obtained by setting r = 2n2.

➤ Then the probability of false negatives is less than 1
2

➤ The following lemma plays an important role:

Lemma. If x is a random variable taking non-negative integer values,

then for any k > 0, prob[x ≥ k ·E(x)] ≤ 1
k

where E(x) is the expected value of x.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 8

Monte Carlo algorithm for composite

➤ Fermat’s Theorem: For a prime N, for all 0 < a < N,

aN−1 = 1 mod N.

➤ Fermat test for COMPOSITE:

Pick random residue a modulo N.

If aN−1 6= 1 mod N, then return “N is composite”

Otherwise answer “N is probably prime”

➤ Monte Carlo algorithm?

• By Fermat’s Theorem no false positive.

• But is it the case that for a composite, for at least half of its

nonzero residues a, aN−1 6= 1 mod N?

(No, Carmichael numbers are exceptions)

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 9

Monte Carlo algorithm for composite—cont’d

➤ A refined algorithm for testing compositeness of N

Generate a random integer M between 2 and N −1;

If (M,N) > 1 then return “N is a composite”

else

if (M|N) 6= M
N−1

2 mod N then return “N is a composite”

else return “N is probably a prime”.

where (M,N) is the greatest common divisor of M and N

and (M|N) is the Jacobi symbol.

➤ This is a Monte Carlo algorithm:

(M,N) and (M|N) can be computed in polynomial time, no false

positives and the probability of false negative at most 1
2 .

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 10

RANDOMIZED COMPLEXITY CLASSES

➤ Randomized algorithms (such as Monte Carlo ones) can be

analyzed using nondeterministic Turing machines but with a

different interpretation of what it means for such a machine to

accept its input.

➤ No coin-flipping is needed in the Turing machine!

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 11

The class RP

Definition. Let L be a language. A polynomial time Monte Carlo

Turing machine for L is a nondeterministic Turing machine N

(i) which is precise having exactly two nondet. choices at each step;

(ii) the number of steps in each computation for an input of length n

is p(n), a polynomial and

(iii) for each input x:

• If x ∈ L, then at least half of the 2p(|x|) computations of N on x

halt with “yes”.

• If x 6∈ L, then all the 2p(|x|) computations halt with “no”.

The class of all languages with polynomial time Monte Carlo Turing

machines is denoted by RP (randomized polynomial time).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 12

The class RP—cont’d

Monte Carlo algorithms are captured by RP:

➤ All nondeterministic steps are “coin flips”.

➤ There are no false positive answers.

➤ All computations equiprobable (with probability 2−p(|x|)).

➤ The probability of a false negative is at most 1
2 :

• Given a Monte Carlo Turing machine N for a language L: a

false negative answer is given if N halts with “no” on x ∈ L.

• This happens in less than half of the 2p(|x|) computations each

having a probability of 2−p(|x|).

• Hence, the probability of a false negative is at most
1
2 ·2

p(|x|) ·2−p(|x|) = 1
2

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 13

The class RP—cont’d

The power of RP would not be affected if the probability of

acceptance were not 1
2 but any number 0 < ε < 1:

➤ If ε <
1
2 , “repeat” the algorithm k times and accept iff at least one

of the k computations accepts otherwise reject.

➤ Now the probability of false negative is at most (1− ε)k.

➤ By taking k = ⌈− 1
log(1−ε)⌉, the probability of false negative is at

most 1
2 .

➤ The running time is k times the original.

➤ As − 1
log(1−ε) ≈

1
ε , ε could even be of the form 1

p(n) where p(n) is a

polynomial and the overall algorithm would remain polynomial.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 14

The class RP—cont’d

➤ P ⊆ RP ⊆ NP

➤ Given a Turing machine, it is not easy to determine whether it is a

Monte Carlo machine (for all inputs either rejects “unanimously”

or accept “by majority”).

☞ A semantic class (like NP∩ coNP and TFNP).

☞ No known complete problem

For example, P and NP are syntactic classes with complete problems.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 15

The class ZPP

➤ coRP: the languages having Monte Carlo machines with no false

negatives and a limited number of false positives.

➤ PRIMES in coRP

➤ ZPP = RP∩ coRP is the class of languages with

Las Vegas algorithms (polynomial randomized algorithms with

zero probability of error).

➤ A Las Vegas algorithm = two Monte Carlo algorithms:

one for the language and one for its complement.

➤ Running k independent experiments with both algorithms:

(i) sooner or later a definite answer will come: either a positive

answer from the algorithm with no false positives or a negative

one from the algorithm with no false negatives.

(ii) probability of a definite answer is at least 1−2−k.

➤ PRIMES in RP and thus in ZPP.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 16

The class PP

➤ Consider the problem MAJSAT:

Given a Boolean expression, is it true that the majority of the 2n

truth assignments to its n variables satisfy it.

➤ It is not clear that MAJSAT is in NP (and thus less likely in RP).

➤ PP is the class of languages L having a nondeterministic

polynomially bounded Turing machine N (precise and with two

choices each step) such that for all inputs x, x ∈ L iff more than

half of the computations of N on input x end up accepting.

Theorem. MAJSAT is PP-complete.

Theorem. NP ⊆ PP.

PP is closed under complement.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 17

The class PP–cont’d

➤ ZPP ⊆ RP ⊆ NP ⊆ PP

➤ ZPP,RP are plausible notions of efficient randomized

computations (but PP is not).

➤ PP cannot be used algorithmically because acceptance by majority

is too fragile: the acceptance probability can be 1
2 +2−p(|x|) and

there is no plausible efficient experimentation that can detect such

accepting behaviour (see below).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 18

Detecting the more likely side of a bias coin

➤ To understand this consider the following problem:

You have a biased coin with one side having probability 1
2 + ε and

the other 1
2 − ε. How to detect which side is more likely?

Solution: Flip the coin many times and pick the side that

appeared the most times. But how many times?

➤ The Chernoff bound:

Suppose that x1, . . . ,xn are independent random variables taking

the values 1 and 0 with probabilities p and p−1, respectively, and

consider their sum X = ∑n
i=1 xi. Then for all 0 ≤ θ ≤ 1,

prob[X ≥ (1+θ)pn] ≤ e−
θ2
3 pn.

➤ The probability that X deviates from its expected value (pn)

decreases exponentially with the deviations.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 19

Detecting the more likely side of a bias coin

➤ Corollary:

If p = 1
2 + ε for some ε > 0, then prob[∑n

i=1 xi ≥
n
2] ≤ e−

ε2
6 n.

➤ A bias of ε can be detected with reasonable confidence by taking a

majority of about 1
ε2 experiments (e

− ε2

6ε2 = 0.85).

➤ For a PP problem the bias ε can be as small as 2−p(|x|): an

exponential number of repetitions of the algorithm is required to

determine the correct answer with reasonable confidence.

➤ Is there some plausible notion of realistic computation between

RP and PP?

☞ BPP

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 20

The class BPP

➤ BPP is the class of languages L having a nondeterministic

polynomially bounded Turing machine N (precise and with two

choices each step) such that for all inputs x,

if x ∈ L, then at least 3
4 of the computations of N on x accept;

if x 6∈ L, then at least 3
4 of the computations of N on x reject;

(bounded probability of error)

➤ RP ⊆ BPP ⊆ PP.

➤ Open: BPP ⊆ NP.

➤ BPP is closed under complement.

➤ Semantic class

➤ No known complete problem

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 21

RANDOM SOURCES

➤ In order to implement randomized algorithms (e.g., those for RP
and BPP), we need a source of random bits.

➤ A perfect random source is a random variable with values that are

infinite sequences (x1,x2, . . .) of bits such that for all n > 0 and for

all (y1,y2, . . . ,yn) ∈ {0,1}n

prob[xi = yi, i = 1, . . . ,n] = 2−n

➤ A Monte Carlo algorithm could be implemented using a random

source by generating a sequence (x1,x2, . . .) of bits and choosing

the transition at each step i according to the bit xi.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 22

Random sources—cont’d

➤ A problem: where to find a perfect random source?

➤ A perfect random source should be

• independent: the probability that xi = 1 does not depend on

the previous or future outcomes

• fair : the probability that xi = 1 should be exactly 1
2 .

➤ The important requirement is independence:

Any independent but unfair random sequence of bits can be

turned into a fair one as follows:

(i) Break the sequence in pairs and

(ii) interpret: 01 ; 0, 10 ; 1 (ignoring 00 and 11).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 23

Random sources—cont’d

➤ Now if the probability of 1 is p, the probability of 10 is p(1− p)

which equals to that of 01.

➤ To get a perfect random sequence of length n we need a sequence

of expected length 2n
1−c where is c = p2 +(1− p)2 is the

coincidence probability of the source.

➤ The real problem of physically implementing perfect random

sources is that any physical process tends to be affected by its

previous outcomes (and circumstances leading to it).

➤ Randomness in mathematical or computational process:

pseudorandom number generators

Typical congruential approach (xi+1 = axi +b mod c) is terrible

(easy to predict bits and even deduce “secret” parameters).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 24

Slightly random sources

➤ Perfect random sources seem to be hard to implement physically.

➤ A weaker concept: δ-random source

Let δ be a number 0 < δ ≤ 1
2 and p any function

{0,1}∗ 7→ [δ,1−δ] (a highly complex function unknown to us).

The δ-random source Sp is a random variable with infinite bit

sequences as values where the probability that the first n bits have

the values y1,y2, . . . ,yn is

n

∏
i=1

(yi p(y1 . . .yi−1)+(1− yi)(1− p(y1 . . .yi−1)))

(Notice: the probability that the ith bit is 1 is p(y1 . . .yi−1), a

number between δ and 1−δ that depends in an arbitrary way on

all previous outcomes y1 . . .yi−1).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 25

Slightly random sources—cont’d

➤ Now δ ≤ p(y1 . . .yi−1) ≤ 1−δ

➤ A 1
2 -random source is a perfect random source.

➤ A δ-random source with δ <
1
2 is a slightly random source.

➤ Slightly random sources: Geiger counters, Zehner diodes, coins

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 26

Slightly random sources—cont’d

➤ In the worst case slightly random sources appear to be useless for

running randomized algorithms.

➤ Suppose a Monte Carlo algorithm is driven by a random bits

generated by a δ-random source with δ is much smaller that 1
2 .

➤ In the worst case the algorithm can make choices which very often

lead to a false negative outcome:

consider an adversary who knows the algorithm and monitors its

executions including the random choices and sets the values of p

on the basis of this.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 27

The classes δ-RP and δ-BPP

➤ Let N be a precise, polynomially bounded nondeterministic Turing

Machine with exactly two choices per step.

➤ On input x the computation N(x) is in effect a full binary tree of

depth n = p(|x|) (having 2n+1 −1 nodes of which 2n are leaves and

2n −1 internal).

➤ Let δ be a number 0 < δ <
1
2 . A δ-assignment F is a mapping

from the set of edges of N(x) to the interval [δ,1−δ] such that

the two edges leaving each internal node are assigned numbers

adding up to one (p is precisely F on 1-choices).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 28

The classes δ-RP and δ-BPP—cont’d

➤ Given a δ-assignment F for each leaf l, prob[l] = ∏a∈P(l) F(a)

where P(l) is the path from the root to leaf l.

➤ prob[N(x) = “yes”|F] is the sum of prob[l] for all “yes” leaves l of

N(x).

➤ We say that a language L is in δ-RP if there is a nondeterministic

machine N, standardized as above, such that if x ∈ L, then

prob[N(x) = “yes”|F] ≥ 1
2 and if x 6∈ L, then

prob[M(x) = “yes”|F] = 0 for all δ-assignments F.

➤ A language L is in δ-BPP if there is a nondeterministic machine N

such that if x ∈ L, then prob[N(x) = “yes”|F] ≥ 3
4 and if x 6∈ L,

then prob[N(x) = “no”|F] ≥ 3
4 for all δ-assignments F.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 29

Example. Consider the computation tree and 0.1-assignment

[Papadimitriou, 1994]

➤ For the left most leaf L

prob[L] = ∏a∈P(L) F(a) = 0.6 ·0.9 ·0.8 = 0.432

➤ and for the right most leaf R

prob[R] = ∏a∈P(R) F(a) = 0.4 ·0.5 ·0.6 = 0.120

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 30

The classes δ-RP and δ-BPP—cont’d

➤ 0-RP = 0-BPP = P

➤ 1
2 -RP = RP, 1

2 -BPP = BPP

➤ What about intermediate values of δ?

➤ A slightly random source can be used to simulate any randomized

algorithm with polynomial loss of efficiency.

➤ This holds even if we assume that a hypothetical “adversary” can

bias the slightly random source in arbitrary ways to lead the

random algorithm to false answers.

Theorem. For any δ > 0, δ-BPP = BPP.

Proof. δ-BPP ⊆ BPP clear; BPP ⊆ δ-BPP tricky (see below).

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 31

Simulating a randomized algorithm

➤ Assume that L ∈ BPP, i.e., L is decided by a NTM N by clear

majority.

➤ Construct a machine N ′ deciding L by clear majority when driven

by any slightly random source.

➤ The basic idea: confuse the “adversary” by shattering the slightly

random bits using inner products.

➤ Inner product of two sequences of bits κ = (κ1, . . . ,κk) and

λ = (λ1, . . . ,λk) is the bit obtained by κ ·λ = ∑k
i=1 κiλi mod 2.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 32

Simulating machine N ′

➤ On input x, let n = p(|x|) be the length of N’s computation on x

and let k be an integer (a parameter depending on n and δ).

➤ Generate n sequences of bits (blocks) β1, . . . ,βn using a δ-random

source where each βi contains k bits.

➤ Do 2k parallel simulations of N with the sequences of choices

T = {(β1 ·κ, . . . ,βn ·κ) : κ = 0,1, . . . ,2k −1}

= {(β1 ·0, . . . ,βn ·0), . . . ,(β1 · (2
k −1), . . . ,βn · (2

k −1))}

➤ Of the 2k answers, adopt the majoritanian one as the answer of N ′.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 33

Simulating machine N ′ — cont’d

To reduce the probability of a false answer by N ′ to at most 1/4:

➤ Assume that probability of wrong answer by N is 1/32 (instead of

1/4).

➤ Set k = ⌈ logn+5
2δ−2δ2 ⌉

➤ Now N ′ works within time

O(n2k) = O(nn
1

2δ−2δ2) = O(p(|x|)
1+ 1

2δ−2δ2), i.e. in polynomial time.

Corollary. For any δ > 0, δ-RP = RP.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 34

CIRCUIT COMPLEXITY

➤ A Boolean circuit with n inputs accepts a string x = x1 . . .xn of

length n in {0,1}∗ iff the output of the circuit is true given x as

its input (i.e., input i is true if xi is 1 and false otherwise).

➤ To relate circuits to strings of arbitrary length families of circuits

are introduced.

➤ The size of a circuit is the number of gates in it.

➤ A family of circuits is an infinite sequence C = (C0,C1, . . .) of

Boolean circuits where Cn has n input variables.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 35

Languages with polynomial circuits

➤ A language L ⊆ {0,1}∗ has polynomial circuits if there is a family

C = (C0,C1, . . .) such that

(i) the size of Cn is at most p(n) for some fixed polynomial p;

(ii) for all x ∈ {0,1}∗, x ∈ L iff the output of C|x| is true when x is

given as input to C|x|.

Proposition. All languages in P have polynomial circuits.

Proof. By the P-completeness proof of CIRCUIT VALUE:

Given a Turing machine M, its input x, and running time p(|x|), a

variable-free polynomial size circuit C(M,x, p) is constructed such that

the output of C(M,x, p) is true iff M accepts x.

It is easy to modify input gates of C(M,x, p) to variable gates

reflecting the symbols in x.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 36

Languages with polynomial circuits

Proposition. There are undecidable languages that have polynomial

circuits.

Proof.

➤ Let L ⊆ {0,1}∗ be an undecidable language and let U ⊆ {1}∗ be

U = {1n : the binary expansion of n is in L}.

➤ U is undecidable.

➤ U has polynomial circuits (C0,C1, . . .) where Cn consists of n input

gates and

• n-1 AND-gates (conjunction of all inputs) if 1n ∈U and

• false output gate if 1n 6∈U .

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 37

Uniformly polynomial circuits

➤ A family C = (C0,C1, . . .) of circuits is said to be uniform if there is

a logn-space bounded Turing machine which on input 1n outputs

Cn.

➤ A language L ⊆ {0,1}∗ has uniformly polynomial circuits if there

is a uniform family of polynomial circuits C = (C0,C1, . . .) that

decides L.

Theorem. A language L has uniformly polynomial circuits iff L ∈ P.

Proof. (⇒) x ∈ L can be decided in polynomial time by constructing

C|x| in log |x| space (and hence in polynomial time) and evaluating it

for input x (in polynomial time).

(⇐) By the P-completeness proof of CIRCUIT VALUE:

Given a Turing machine M, its input x, and running time p(|x|), the

circuit C(M,x, p) can be constructed in log |x| space.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 38

Polynomial circuits and P vs NP

➤ P 6= NP equivalent to

Conjecture A: NP-complete problems have no uniformly

polynomial circuits.

➤ Conjecture B: NP-complete problems have no polynomial

circuits, uniform or not.

➤ Most Boolean functions do not have small circuits.

➤ An approach to establish P 6= NP: show Conjecture B for some

NP-complete problem.

➤ Cannot be used for establishing P 6= BPP

Theorem. All languages in BPP have polynomial circuits.

c© 2007 TKK, Laboratory for Theoretical Computer Science

AB
T-79.5103 / Autumn 2007 Randomized computation 39

Learning Objectives

➤ The concepts of Monte Carlo and Las Vegas algorithms

➤ The key randomized complexity classes: RP,ZPP,PP,BPP

➤ The concepts of perfect and slightly random sources

➤ Basic concepts of circuit complexity: languages with polynomial

circuits and uniformly polynomial circuits.

c© 2007 TKK, Laboratory for Theoretical Computer Science

