

- ➤ No false positives (if "yes" is returned, this is correct).
- ► False negatives possible (if "no" is returned, this might be wrong).

edges $(u, v), (u', v') \in M, u \neq u'$ and $v \neq v'$ (is there a *perfect matching*)?

> This is related to computing determinants of a matrix: Given a graph G, construct an $n \times n$ matrix A_G where the element *i*, *j* is a variable x_{ij} iff $(u_i, v_j) \in E$ otherwise 0.

Randomized computation

$$\det A^G = \sum_{\pi} \sigma(\pi) \prod_{i=1}^n A^g_{i,\pi(i)}$$

where π ranges over permutations of *n* elements and each terms is

$$\sigma(\pi)a_{1,\pi(1)}\cdots a_{n,\pi(n)}$$

- \blacktriangleright Hence, G has a perfect matching iff det A^G is not identically 0.
- \blacktriangleright Testing whether det A^G is identically 0 can be done using a randomized algorithm.

```
© 2007 TKK, Laboratory for Theoretical Computer Science
```

Randomized computation

► No false positives

T-79.5103 / Autumn 2007

2m.

► Polynomial randomized algorithm

 \blacktriangleright The probability of false negatives no more than $\frac{1}{2}$.

reduced to ε^k (and running times remains polynomial).

Monte Carlo algorithm

The previous algorithm is a Monte Carlo algorithm for perfect

matching: it can be shown that the probability of false negatives is no

more than $\frac{1}{2}$ when the integers are randomly selected between 0 and

If the probability of false negatives is $\varepsilon > \frac{1}{2}$, we can perform k

independent experiments and the probability of false negatives is

6

Random Walks—cont'd

- For 2SAT a Monte Carlo algorithm is obtained by setting $r = 2n^2$.
- > Then the probability of false negatives is less than $\frac{1}{2}$
- ► The following lemma plays an important role:

Lemma. If x is a random variable taking non-negative integer values, then for any k > 0, $\operatorname{prob}[x \ge k \cdot \mathcal{E}(x)] \le \frac{1}{k}$

where $\mathcal{E}(x)$ is the expected value of x.

\bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Randomized computation

8

Random Walks

© 2007 TKK, Laboratory for Theoretical Computer Science

Randomized computation

- ► A randomized walk algorithm for SAT:
 - Take any truth assignment T and repeat r times:
 - If there is not unsatisfiable clauses, return "satisfiable" Otherwise take any unsatisfiable clause
 - Pick any of its literals at random and flip it in T.
 - After *r* repetition return "probably unsatisfiable"

► Is this a Monte Carlo algorithm?

No false positives but the probability of false negatives is high! (An exponential number of repetitions r is needed to achieve low probability for classes of 3SAT problems).

Monte Carlo algorithm for composite

- ➤ Fermat's Theorem: For a prime N, for all 0 < a < N, a^{N-1} = 1 mod N.
- ► Fermat test for COMPOSITE:

Pick random residue *a* modulo *N*. If $a^{N-1} \neq 1 \mod N$, then return "*N* is composite" Otherwise answer "*N* is probably prime"

- ► Monte Carlo algorithm?
 - By Fermat's Theorem no false positive.
 - But is it the case that for a composite, for at least half of its nonzero residues a, a^{N-1} ≠ 1 mod N?
 (No, Carmichael numbers are exceptions)

T-79.5103 / Autumn 2007

10

➤ A refined algorithm for testing compositeness of N Generate a random integer M between 2 and N-1; If (M,N) > 1 then return "N is a composite"

else

```
if (M|N) \neq M^{\frac{N-1}{2}} \mod N then return "N is a composite" else return "N is probably a prime".
```

where (M,N) is the greatest common divisor of M and N and (M|N) is the Jacobi symbol.

► This is a Monte Carlo algorithm:

(M,N) and (M|N) can be computed in polynomial time, no false positives and the probability of false negative at most $\frac{1}{2}$.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

Randomized computation

Randomized algorithms (such as Monte Carlo ones) can be analyzed using nondeterministic Turing machines but with a different interpretation of what it means for such a machine to accept its input.

RANDOMIZED COMPLEXITY CLASSES

► No coin-flipping is needed in the Turing machine!

The class **RP**

Definition. Let *L* be a language. A polynomial time *Monte Carlo Turing machine* for *L* is a nondeterministic Turing machine *N* (i) which is precise having exactly two nondet. choices at each step; (ii) the number of steps in each computation for an input of length *n* is p(n), a polynomial and

(iii) for each input *x*:

- If x ∈ L, then at least half of the 2^{p(|x|)} computations of N on x halt with "yes".
- If $x \notin L$, then all the $2^{p(|x|)}$ computations halt with "no".

The class of all languages with polynomial time Monte Carlo Turing machines is denoted by **RP** (randomized polynomial time).

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Randomized computation	12
The class RP—cont'd	
Monte Carlo algorithms are captured by RP :	
► All nondeterministic steps are "coin flips".	
➤ There are no false positive answers.	
> All computations equiprobable (with probability $2^{-p(x)}$).	
> The probability of a false negative is at most $\frac{1}{2}$:	
• Given a Monte Carlo Turing machine N for a language L: a	
false negative answer is given if N halts with "no" on $x \in L$.	
 This happens in less than half of the 2^{p(x)} computations each having a probability of 2^{-p(x)}. 	
- Hence, the probability of a false negative is at most $\frac{1}{2}\cdot 2^{p(x)}\cdot 2^{-p(x)} = \frac{1}{2}$	

© 2007 TKK, Laboratory for Theoretical Computer Science

The class RP—cont'd

The power of **RP** would not be affected if the probability of acceptance were not $\frac{1}{2}$ but any number $0 < \epsilon < 1$:

- ► If ε < ¹/₂, "repeat" the algorithm k times and accept iff at least one of the k computations accepts otherwise reject.
- ► Now the probability of false negative is at most $(1-\varepsilon)^k$.
- ► By taking $k = \left\lceil -\frac{1}{\log(1-\epsilon)} \right\rceil$, the probability of false negative is at most $\frac{1}{2}$.
- \blacktriangleright The running time is k times the original.
- ► As $-\frac{1}{\log(1-\varepsilon)} \approx \frac{1}{\varepsilon}$, ε could even be of the form $\frac{1}{p(n)}$ where p(n) is a polynomial and the overall algorithm would remain polynomial.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

_	T-79.5103 / Autumn 2007	Randomized computation	
(
	ne class RP—cont d		
>	• $\mathbf{P} \subseteq \mathbf{RP} \subseteq \mathbf{NP}$		
	Given a Turing machine	it is not easy to determine whether	it is a
	Monte Carlo machine (fo	r all inputs either rejects "unanimo	uslv"
	or accept "by majority").	· ····································	
	∠ A semantic class (li	ke NP∩coNP and TFNP).	
	I No known complete	e problem	
Fc	or example, P and NP are s	yntactic classes with complete prob	lems.

The class ZPP

- ➤ coRP: the languages having Monte Carlo machines with no false negatives and a limited number of false positives.
- ► PRIMES in coRP
- ZPP = RP ∩ coRP is the class of languages with Las Vegas algorithms (polynomial randomized algorithms with zero probability of error).
- ➤ A Las Vegas algorithm = two Monte Carlo algorithms: one for the language and one for its complement.
- Running k independent experiments with both algorithms:
 (i) sooner or later a definite answer will come: either a positive answer from the algorithm with no false positives or a negative one from the algorithm with no false negatives.
 (ii) probability of a definite answer is at least 1-2^{-k}.
- ► PRIMES in **RP** and thus in **ZPP**.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

16

18

The class PP-cont'd

- $\blacktriangleright \ \mathbf{ZPP} \subseteq \mathbf{RP} \subseteq \mathbf{NP} \subseteq \mathbf{PP}$
- ZPP, RP are plausible notions of efficient randomized computations (but PP is not).
- ➤ PP cannot be used algorithmically because acceptance by majority is too fragile: the acceptance probability can be ¹/₂ + 2^{-p(|x|)} and there is no plausible efficient experimentation that can detect such accepting behaviour (see below).

T-79.5103 / Autumn 2007

Randomized computation

Detecting the more likely side of a bias coin

 To understand this consider the following problem: You have a biased coin with one side having probability ¹/₂ + ε and the other ¹/₂ - ε. How to detect which side is more likely? Solution: Flip the coin many times and pick the side that appeared the most times. But how many times?

> The Chernoff bound:

Suppose that x_1, \ldots, x_n are independent random variables taking the values 1 and 0 with probabilities p and p-1, respectively, and consider their sum $X = \sum_{i=1}^{n} x_i$. Then for all $0 \le \theta \le 1$, **prob** $[X \ge (1+\theta)pn] \le e^{-\frac{\theta^2}{3}pn}$.

➤ The probability that X deviates from its expected value (pn) decreases exponentially with the deviations.

Detecting the more likely side of a bias coin

► Corollary:

If $p = \frac{1}{2} + \varepsilon$ for some $\varepsilon > 0$, then $\operatorname{prob}[\sum_{i=1}^{n} x_i \ge \frac{n}{2}] \le e^{-\frac{\varepsilon^2}{6}n}$.

- ► A bias of ε can be detected with reasonable confidence by taking a majority of about $\frac{1}{\varepsilon^2}$ experiments $\left(e^{-\frac{\varepsilon^2}{6\varepsilon^2}} = 0.85\right)$.
- For a PP problem the bias ε can be as small as 2^{-p(|x|)}: an exponential number of repetitions of the algorithm is required to determine the correct answer with reasonable confidence.
- ➤ Is there some plausible notion of realistic computation between RP and PP?

BPP

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

Randomized computation

20

The class BPP

➤ BPP is the class of languages L having a nondeterministic polynomially bounded Turing machine N (precise and with two choices each step) such that for all inputs x,

if $x \in L$, then at least $\frac{3}{4}$ of the computations of N on x accept; if $x \notin L$, then at least $\frac{3}{4}$ of the computations of N on x reject; (bounded probability of error)

- ► $\mathbf{RP} \subseteq \mathbf{BPP} \subseteq \mathbf{PP}$.
- ▶ Open: **BPP** \subseteq **NP**.
- ► **BPP** is closed under complement.
- ► Semantic class
- ► No known complete problem

RANDOM SOURCES

- ➤ In order to implement randomized algorithms (e.g., those for RP and BPP), we need a source of random bits.
- ➤ A perfect random source is a random variable with values that are infinite sequences (x₁,x₂,...) of bits such that for all n > 0 and for all (y₁,y₂,...,y_n) ∈ {0,1}ⁿ

prob $[x_i = y_i, i = 1, ..., n] = 2^{-n}$

➤ A Monte Carlo algorithm could be implemented using a random source by generating a sequence (x₁, x₂,...) of bits and choosing the transition at each step *i* according to the bit x_i.

Random sources—cont'd

- ➤ Now if the probability of 1 is p, the probability of 10 is p(1 − p) which equals to that of 01.
- ➤ To get a perfect random sequence of length n we need a sequence of expected length ²ⁿ/_{1-c} where is c = p² + (1 p)² is the coincidence probability of the source.
- The real problem of physically implementing perfect random sources is that any physical process tends to be affected by its previous outcomes (and circumstances leading to it).
- Randomness in mathematical or computational process: pseudorandom number generators

Typical congruential approach $(x_{i+1} = ax_i + b \mod c)$ is terrible (easy to predict bits and even deduce "secret" parameters).

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Randomized computation

Slightly random sources

- ▶ Perfect random sources seem to be hard to implement physically.
- > A weaker concept: δ -random source

Let δ be a number $0 < \delta \leq \frac{1}{2}$ and p any function $\{0,1\}^* \mapsto [\delta, 1-\delta]$ (a highly complex function unknown to us). The δ -random source S_p is a random variable with infinite bit sequences as values where the probability that the first n bits have the values y_1, y_2, \ldots, y_n is

$$\prod_{i=1}^{n} (y_i p(y_1 \dots y_{i-1}) + (1 - y_i)(1 - p(y_1 \dots y_{i-1}))))$$

(Notice: the probability that the *i*th bit is 1 is $p(y_1...y_{i-1})$, a number between δ and $1-\delta$ that depends in an arbitrary way on all previous outcomes $y_1...y_{i-1}$).

The classes δ -RP and δ -BPP

T-79.5103 / Autumn 2007

- Let N be a precise, polynomially bounded nondeterministic Turing Machine with exactly two choices per step.
- ➤ On input x the computation N(x) is in effect a full binary tree of depth n = p(|x|) (having 2ⁿ⁺¹ 1 nodes of which 2ⁿ are leaves and 2ⁿ 1 internal).
- Let δ be a number 0 < δ < ½. A δ-assignment F is a mapping from the set of edges of N(x) to the interval [δ, 1 − δ] such that the two edges leaving each internal node are assigned numbers adding up to one (p is precisely F on 1-choices).

© 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007 Randomized computation 22
The classes δ -RP and δ -BPP—cont'd
► Given a δ -assignment F for each leaf l , $\operatorname{prob}[l] = \prod_{a \in P(l)} F(a)$ where $P(l)$ is the path from the root to leaf l .
▶ prob[N(x) = "yes" F] is the sum of prob[l] for all "yes" leaves l of N(x).
 We say that a language L is in δ-RP if there is a nondeterministic machine N, standardized as above, such that if x ∈ L, then prob[N(x) = "yes" F] ≥ 1/2 and if x ∉ L, then prob[M(x) = "yes" F] = 0 for all δ-assignments F.
► A language <i>L</i> is in δ - BPP if there is a nondeterministic machine <i>N</i> such that if $x \in L$, then $\operatorname{prob}[N(x) = "\operatorname{yes"} F] \ge \frac{3}{4}$ and if $x \notin L$, then $\operatorname{prob}[N(x) = "\operatorname{no"} F] \ge \frac{3}{4}$ for all δ -assignments <i>F</i> .

Slightly random sources—cont'd

- ► Now $\delta \le p(y_1 \dots y_{i-1}) \le 1 \delta$
- > A $\frac{1}{2}$ -random source is a perfect random source.
- **>** A δ-random source with $\delta < \frac{1}{2}$ is a *slightly random source*.
- ► Slightly random sources: Geiger counters, Zehner diodes, coins

\odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007	Randomized computation	
Slightly random sources—	-cont'd	
 In the worst case slightly running randomized algo 	random sources appear to be useless rithms.	for
 Suppose a Monte Carlo generated by a δ-random 	algorithm is driven by a random bits a source with δ is much smaller that $rac{1}{2}$. .
In the worst case the alg lead to a false negative of the second seco	orithm can make choices which very c outcome:	often
consider an <i>adversary</i> where where a secutions including the on the basis of this.	no knows the algorithm and monitors random choices and sets the values o	its f <i>p</i>

Simulating a randomized algorithm

- \blacktriangleright Assume that $L \in \mathbf{BPP}$, i.e., L is decided by a NTM N by clear majority.
- \blacktriangleright Construct a machine N' deciding L by clear majority when driven by any slightly random source.
- ➤ The basic idea: confuse the "adversary" by shattering the slightly random bits using inner products.
- ► Inner product of two sequences of bits $\kappa = (\kappa_1, \dots, \kappa_k)$ and $\lambda = (\lambda_1, \dots, \lambda_k)$ is the bit obtained by $\kappa \cdot \lambda = \sum_{i=1}^k \kappa_i \lambda_i \mod 2$.
 - © 2007 TKK, Laboratory for Theoretical Computer Science

 \blacktriangleright and for the right most leaf R **prob**[R] = $\prod_{a \in P(R)} F(a) = 0.4 \cdot 0.5 \cdot 0.6 = 0.120$

© 2007 TKK, Laboratory for Theoretical Computer Science

Proof. δ-**BPP** \subset **BPP** clear; **BPP** \subset δ-**BPP** tricky (see below).

34

Simulating machine N' — cont'd

To reduce the probability of a false answer by N' to at most 1/4:

- Assume that probability of wrong answer by N is 1/32 (instead of 1/4).
- ► Set $k = \lceil \frac{\log n + 5}{2\delta 2\delta^2} \rceil$

T-79.5103 / Autumn 2007

Now N' works within time $O(n2^k) = O(nn^{\frac{1}{2\delta-2\delta^2}}) = O(p(|x|)^{1+\frac{1}{2\delta-2\delta^2}}), \text{ i.e. in polynomial time.}$

Corollary. For any $\delta > 0$, δ -**RP** = **RP**.

Randomized computation

CIRCUIT COMPLEXITY

- ➤ A Boolean circuit with n inputs accepts a string x = x1...xn of length n in {0,1}* iff the output of the circuit is true given x as its input (i.e., input i is true if xi is 1 and false otherwise).
- To relate circuits to strings of arbitrary length families of circuits are introduced.
- ➤ The size of a circuit is the number of gates in it.
- ➤ A family of circuits is an infinite sequence C = (C₀, C₁,...) of Boolean circuits where C_n has n input variables.

Languages with polynomial circuits

- ▶ A language $L \subseteq \{0,1\}^*$ has *polynomial circuits* if there is a family $C = (C_0, C_1, ...)$ such that
 - (i) the size of C_n is at most p(n) for some fixed polynomial p; (ii) for all $x \in \{0,1\}^*$, $x \in L$ iff the output of $C_{|x|}$ is **true** when x is given as input to $C_{|x|}$.

Proposition. All languages in **P** have polynomial circuits.

Proof. By the **P**-completeness proof of CIRCUIT VALUE: Given a Turing machine M, its input x, and running time p(|x|), a variable-free polynomial size circuit C(M, x, p) is constructed such that the output of C(M, x, p) is **true** iff M accepts x.

It is easy to modify input gates of C(M, x, p) to variable gates reflecting the symbols in x.

 \bigodot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Randomized computation

36

Languages with polynomial circuits

Proposition. There are undecidable languages that have polynomial circuits.

Proof.

- ► Let $L \subseteq \{0,1\}^*$ be an undecidable language and let $U \subseteq \{1\}^*$ be $U = \{1^n :$ the binary expansion of n is in $L\}$.
- \blacktriangleright U is undecidable.
- ► U has polynomial circuits $(C_0, C_1, ...)$ where C_n consists of n input gates and
 - n-1 AND-gates (conjunction of all inputs) if $1^n \in U$ and
 - false output gate if $1^n \notin U$.

38

Uniformly polynomial circuits

- ➤ A family $C = (C_0, C_1, ...)$ of circuits is said to be *uniform* if there is a log *n*-space bounded Turing machine which on input 1^n outputs C_n .
- ➤ A language L ⊆ {0,1}* has uniformly polynomial circuits if there is a uniform family of polynomial circuits C = (C₀, C₁,...) that decides L.

Theorem. A language *L* has uniformly polynomial circuits iff $L \in \mathbf{P}$.

Proof. $(\Rightarrow) x \in L$ can be decided in polynomial time by constructing $C_{|x|}$ in $\log |x|$ space (and hence in polynomial time) and evaluating it for input x (in polynomial time).

 (\Leftarrow) By the **P**-completeness proof of CIRCUIT VALUE:

Given a Turing machine M, its input x, and running time p(|x|), the circuit C(M,x,p) can be constructed in $\log |x|$ space.

 \odot 2007 TKK, Laboratory for Theoretical Computer Science

T-79.5103 / Autumn 2007

Learning Objectives

- ► The concepts of Monte Carlo and Las Vegas algorithms
- ➤ The key randomized complexity classes: **RP**, **ZPP**, **PP**, **BPP**
- ► The concepts of perfect and slightly random sources
- Basic concepts of circuit complexity: languages with polynomial circuits and uniformly polynomial circuits.

 \bigcirc 2007 TKK, Laboratory for Theoretical Computer Science