RANDOMIZED COMPUTATION

- Monte Carlo algorithms and random walks
- Randomized complexity classes: RP, ZPP, PP, BPP
- Perfect and slightly random sources
- Classes δ-RP, δ-BPP
- Circuit complexity

(C. Papadimitriou: Computational complexity, Chapter 11)

Perfect matching—cont’d

- This is related to computing determinants of a matrix:
 Given a graph G, construct an $n \times n$ matrix A_G where the element i, j is a variable x_{ij} iff $(u_i, v_j) \in E$ otherwise 0.

$$\det A_G = \sum_\pi \sigma(\pi) \prod_{i=1}^n A_{i, \pi(i)}$$

where π ranges over permutations of n elements and each term is of the form

$$\sigma(\pi) a_{i_1, \pi(1)} \cdots a_{i_n, \pi(n)}$$

- Hence, G has a perfect matching iff $\det A_G$ is not identically 0.
- Testing whether $\det A_G$ is identically 0 can be done using a randomized algorithm.

Randomized algorithm for perfect matching

Given a matrix $A^G(x_1, \ldots, x_m)$ with m variables:

Choose m random integers i_1, \ldots, i_m (between 0 and $M = 2m$)
Compute $\det A^G(i_1, \ldots, i_m)$ (by Gaussian elimination).
If $\det A^G(i_1, \ldots, i_m) \neq 0$, then return “$G$ has a perfect matching”
If $\det A^G(i_1, \ldots, i_m) = 0$, then return “$G$ probably has no perfect matching”

Properties:
- No false positives (if “yes” is returned, this is correct).
- False negatives possible (if “no” is returned, this might be wrong).
Monte Carlo algorithm

➤ Polynomial randomized algorithm
➤ No false positives
➤ The probability of false negatives no more than $\frac{1}{2}$.
☞ The previous algorithm is a Monte Carlo algorithm for perfect matching: it can be shown that the probability of false negatives is no more than $\frac{1}{2}$ when the integers are randomly selected between 0 and $2m$.
☞ If the probability of false negatives is $\varepsilon > \frac{1}{2}$, we can perform k independent experiments and the probability of false negatives is reduced to ε^k (and running time remains polynomial).

Random Walks—cont’d

➤ A randomized walk algorithm for SAT:
 Take any truth assignment T and repeat r times:
 If there is not unsatisfiable clauses, return “satisfiable”
 Otherwise take any unsatisfiable clause
 Pick any of its literals at random and flip it in T.
 After r repetition return “probably unsatisfiable”
➤ Is this a Monte Carlo algorithm?
 No false positives but the probability of false negatives is high!
 (An exponential number of repetitions r is needed to achieve low probability for classes of 3SAT problems).

Monte Carlo algorithm for composite

➤ Fermat’s Theorem: For a prime N, for all $0 < a < N$, $a^{N-1} = 1 \mod N$.
➤ Fermat test for COMPOSITE:
 Pick random residue a modulo N.
 If $a^{N-1} \neq 1 \mod N$, then return “N is composite”
 Otherwise answer “N is probably prime”
➤ Monte Carlo algorithm?
 • By Fermat’s Theorem no false positive.
 • But is it the case that for a composite, for at least half of its nonzero residues a, $a^{N-1} \neq 1 \mod N$?
 (No, Carmichael numbers are exceptions)
Monte Carlo algorithm for composite—cont’d

➤ A refined algorithm for testing compositeness of \(N \)

Generate a random integer \(M \) between 2 and \(N - 1 \);
If \((M, N) > 1 \) then return “\(N \) is a composite”
else
 if \((M, N) \neq M^{N-1} \mod N \) then return “\(N \) is a composite”
 else return “\(N \) is probably a prime”.

where \((M, N) \) is the greatest common divisor of \(M \) and \(N \)
and \((M | N) \) is the Jacobi symbol.

➤ This is a Monte Carlo algorithm:

\((M, N) \) and \((M | N) \) can be computed in polynomial time, no false positives and the probability of false negative at most \(\frac{1}{2} \).

The class \(\text{RP} \)

Definition. Let \(L \) be a language. A polynomial time Monte Carlo Turing machine for \(L \) is a nondeterministic Turing machine \(N \)
(i) which is precise having exactly two nondet. choices at each step;
(ii) the number of steps in each computation for an input of length \(n \)
is \(p(n) \), a polynomial and
(iii) for each input \(x \):
 • If \(x \in L \), then at least half of the \(2^{p(|x|)} \) computations of \(N \) on \(x \)
halt with “yes”.
 • If \(x \notin L \), then all the \(2^{p(|x|)} \) computations halt with “no”.

The class of all languages with polynomial time Monte Carlo Turing machines is denoted by \(\text{RP} \) (randomized polynomial time).

Randomized complexity classes

➤ Randomized algorithms (such as Monte Carlo ones) can be analyzed using nondeterministic Turing machines but with a different interpretation of what it means for such a machine to accept its input.

➤ No coin-flipping is needed in the Turing machine!
The class RP—cont’d

The power of RP would not be affected if the probability of acceptance were not $\frac{1}{2}$ but any number $0 < \varepsilon < 1$:

- If $\varepsilon < \frac{1}{2}$, “repeat” the algorithm k times and accept iff at least one of the k computations accepts otherwise reject.
- Now the probability of false negative is at most $(1 - \varepsilon)^k$.
- By taking $k = \left\lceil -\frac{1}{\log(1-\varepsilon)} \right\rceil$, the probability of false negative is at most $\frac{1}{2}$.
- The running time is k times the original.
- As $\frac{1}{\log(1-\varepsilon)} \approx \frac{1}{\varepsilon}$, ε could even be of the form $\frac{1}{p(n)}$ where $p(n)$ is a polynomial and the overall algorithm would remain polynomial.

The class ZPP

- coRP: the languages having Monte Carlo machines with no false negatives and a limited number of false positives.
- PRIMES in coRP
- $ZPP = RP \cap coRP$ is the class of languages with Las Vegas algorithms (polynomial randomized algorithms with zero probability of error).
- A Las Vegas algorithm = two Monte Carlo algorithms: one for the language and one for its complement.
- Running k independent experiments with both algorithms:
 (i) sooner or later a definite answer will come: either a positive answer from the algorithm with no false positives or a negative one from the algorithm with no false negatives.
 (ii) probability of a definite answer is at least $1 - 2^{-k}$.
- PRIMES in RP and thus in ZPP.

The class PP

- Consider the problem MAJSAT:
 Given a Boolean expression, is it true that the majority of the 2^n truth assignments to its n variables satisfy it.
- It is not clear that MAJSAT is in NP (and thus less likely in RP).
- PP is the class of languages L having a nondeterministic polynomially bounded Turing machine N (precise and with two choices each step) such that for all inputs x, $x \in L$ iff more than half of the computations of N on input x end up accepting.

Theorem. MAJSAT is PP-complete.

Theorem. NP ⊆ PP.

PP is closed under complement.
The class PP—cont’d

- \(\text{ZPP} \subseteq \text{RP} \subseteq \text{NP} \subseteq \text{PP} \)
- \(\text{ZPP, RP} \) are plausible notions of efficient randomized computations (but \(\text{PP} \) is not).
- \(\text{PP} \) cannot be used algorithmically because acceptance by majority is too fragile: the acceptance probability can be \(\frac{1}{2} + 2^{-n|x|} \) and there is no plausible efficient experimentation that can detect such accepting behaviour (see below).

Detecting the more likely side of a bias coin

- To understand this consider the following problem:
 You have a biased coin with one side having probability \(\frac{1}{2} + \varepsilon \) and the other \(\frac{1}{2} - \varepsilon \). How to detect which side is more likely?
 Solution: Flip the coin many times and pick the side that appeared the most times. But how many times?

 - The Chernoff bound:
 Suppose that \(x_1, \ldots, x_n \) are independent random variables taking the values 1 and 0 with probabilities \(p \) and \(p - 1 \), respectively, and consider their sum \(X = \sum_{i=1}^{n} x_i \). Then for all \(0 \leq \theta \leq 1 \),
 \[\text{prob}[X \geq (1 + \theta)pn] \leq e^{-\frac{\theta^2}{2}}pn. \]
 - The probability that \(X \) deviates from its expected value (\(pn \)) decreases exponentially with the deviations.

Corollary:

- If \(p = \frac{1}{2} + \varepsilon \) for some \(\varepsilon > 0 \), then \(\text{prob}[\sum_{i=1}^{n} x_i \geq \frac{n}{2}] \leq e^{-\frac{\varepsilon^2}{6}}n. \)
- A bias of \(\varepsilon \) can be detected with reasonable confidence by taking a majority of about \(\frac{1}{\varepsilon} \) experiments (\(e^{-\frac{\varepsilon^2}{6\varepsilon^2}} = 0.85 \)).
- For a \(\text{PP} \) problem the bias \(\varepsilon \) can be as small as \(2^{-n|x|} \): an exponential number of repetitions of the algorithm is required to determine the correct answer with reasonable confidence.

- Is there some plausible notion of realistic computation between \(\text{RP} \) and \(\text{PP} \)?

\(\mathbb{BPP} \)

The class BPP

- \(\mathbb{BPP} \) is the class of languages \(L \) having a nondeterministic polynomially bounded Turing machine \(N \) (precise and with two choices each step) such that for all inputs \(x \),
 - if \(x \in L \), then at least \(\frac{1}{2} \) of the computations of \(N \) on \(x \) accept;
 - if \(x \not\in L \), then at least \(\frac{1}{2} \) of the computations of \(N \) on \(x \) reject;
 (bounded probability of error)
- \(\text{RP} \subseteq \mathbb{BPP} \subseteq \text{PP} \).
- Open: \(\mathbb{BPP} \subseteq \text{NP} \).
- \(\mathbb{BPP} \) is closed under complement.
- Semantic class
- No known complete problem
Random Sources

- In order to implement randomized algorithms (e.g., those for RP and BPP), we need a source of random bits.
- A perfect random source is a random variable with values that are infinite sequences \((x_1, x_2, \ldots)\) of bits such that for all \(n > 0\) and for all \((y_1, y_2, \ldots, y_n) \in \{0,1\}^n\)
 \[
 \text{prob}[x_i = y_i, i = 1, \ldots, n] = 2^{-n}
 \]
- A Monte Carlo algorithm could be implemented using a random source by generating a sequence \((x_1, x_2, \ldots)\) of bits and choosing the transition at each step \(i\) according to the bit \(x_i\).

Random Sources—cont’d

- A problem: where to find a perfect random source?
- A perfect random source should be
 - independent: the probability that \(x_i = 1\) does not depend on the previous or future outcomes
 - fair: the probability that \(x_i = 1\) should be exactly \(\frac{1}{2}\).
- The important requirement is independence:
 Any independent but unfair random sequence of bits can be turned into a fair one as follows:
 (i) Break the sequence in pairs and
 (ii) interpret: 01 \(\sim\) 0, 10 \(\sim\) 1 (ignoring 00 and 11).

Slightly Random Sources

- Perfect random sources seem to be hard to implement physically.
- A weaker concept: \(\delta\)-random source
 Let \(\delta\) be a number \(0 < \delta < \frac{1}{2}\) and \(p\) any function \(\{0,1\}^* \mapsto [\delta, 1 - \delta]\) (a highly complex function unknown to us).
 The \(\delta\)-random source \(S_p\) is a random variable with infinite bit sequences as values where the probability that the first \(n\) bits have the values \(y_1, y_2, \ldots, y_n\) is
 \[
 \prod_{i=1}^{n} (y_i p(y_1 \ldots y_{i-1}) + (1 - y_i)(1 - p(y_1 \ldots y_{i-1})))
 \]
 (Notice: the probability that the \(i\)th bit is 1 is \(p(y_1 \ldots y_{i-1})\), a number between \(\delta\) and \(1 - \delta\) that depends in an arbitrary way on all previous outcomes \(y_1 \ldots y_{i-1}\).)
Slightly random sources—cont’d

➤ Now $\delta \leq p(y_1 \ldots y_{i-1}) \leq 1 - \delta$
➤ A $\frac{1}{2}$-random source is a perfect random source.
➤ A δ-random source with $\delta < \frac{1}{2}$ is a slightly random source.
➤ Slightly random sources: Geiger counters, Zehner diodes, coins

The classes δ-RP and δ-BPP—cont’d

➤ Let N be a precise, polynomially bounded nondeterministic Turing Machine with exactly two choices per step.
➤ On input x the computation $N(x)$ is in effect a full binary tree of depth $n = p(|x|)$ (having $2^{n+1} - 1$ nodes of which 2^n are leaves and $2^n - 1$ internal).
➤ Let δ be a number $0 < \delta < \frac{1}{2}$. A δ-assignment F is a mapping from the set of edges of $N(x)$ to the interval $[\delta, 1 - \delta]$ such that the two edges leaving each internal node are assigned numbers adding up to one (p is precisely F on 1-choices).

The classes δ-RP and δ-BPP

➤ Given a δ-assignment F for each leaf l, $\text{prob}[l] = \Pi_{a \in P(l)} F(a)$ where $P(l)$ is the path from the root to leaf l.
➤ $\text{prob}[N(x) = \text{"yes"}|F]$ is the sum of $\text{prob}[l]$ for all "yes" leaves l of $N(x)$.
➤ We say that a language L is in δ-RP if there is a nondeterministic machine N, standardized as above, such that if $x \in L$, then $\text{prob}[N(x) = \text{"yes"}|F] \geq \frac{1}{2}$ and if $x \not\in L$, then $\text{prob}[N(x) = \text{"yes"}|F] = 0$ for all δ-assignments F.
➤ A language L is in δ-BPP if there is a nondeterministic machine N such that if $x \in L$, then $\text{prob}[N(x) = \text{"yes"}|F] \geq \frac{1}{2}$ and if $x \not\in L$, then $\text{prob}[N(x) = \text{"no"}|F] \geq \frac{3}{4}$ for all δ-assignments F.
Example. Consider the computation tree and 0.1-assignment

\[\text{prob}[L] = \prod_{a \in P(L)} F(a) = 0.6 \cdot 0.9 \cdot 0.8 = 0.432 \]

and for the right most leaf \(R \)
\[\text{prob}[R] = \prod_{a \in P(R)} F(a) = 0.4 \cdot 0.5 \cdot 0.6 = 0.120 \]

Simulating a randomized algorithm

- Assume that \(L \in \text{BPP} \), i.e., \(L \) is decided by a NTM \(N \) by clear majority.
- Construct a machine \(N' \) deciding \(L \) by clear majority when driven by any slightly random source.
- The basic idea: confuse the “adversary” by shattering the slightly random bits using inner products.
- Inner product of two sequences of bits \(\kappa = (\kappa_1, \ldots, \kappa_k) \) and \(\lambda = (\lambda_1, \ldots, \lambda_k) \) is the bit obtained by \(\kappa \cdot \lambda = \sum_{i=1}^{k} \kappa_i \lambda_i \mod 2 \).

Simulating machine \(N' \)

- On input \(x \), let \(n = p(|x|) \) be the length of \(N' \)’s computation on \(x \) and let \(k \) be an integer (a parameter depending on \(n \) and \(\delta \)).
- Generate \(n \) sequences of bits (blocks) \(\beta_1, \ldots, \beta_n \) using a \(\delta \)-random source where each \(\beta_i \) contains \(k \) bits.
- Do \(2^k \) parallel simulations of \(N \) with the sequences of choices
\[T = \{(\beta_1, \ldots, \beta_n) : \kappa = 0, 1, \ldots, 2^k - 1 \} \]
\[= \{(\beta_1 \cdot 0, \ldots, \beta_n \cdot 0), \ldots, (\beta_1 \cdot (2^k - 1), \ldots, \beta_n \cdot (2^k - 1))\} \]
- Of the \(2^k \) answers, adopt the majoritanian one as the answer of \(N' \).
Simulating machine N' — cont’d

To reduce the probability of a false answer by N' to at most $1/4$:

➤ Assume that probability of wrong answer by N is $1/32$ (instead of $1/4$).
➤ Set $k = \lceil \log_2 n + 5 \rceil$
➤ Now N' works within time $O(n^2k) = O(n^{1+\frac{1}{32-2\delta^2}})$, i.e. in polynomial time.

Corollary. For any $\delta > 0$, δ-RP = RP.

CIRCUIT COMPLEXITY

➤ A Boolean circuit with n inputs accepts a string $x = x_1 \ldots x_n$ of length n in $\{0, 1\}^*$ iff the output of the circuit is true given x as its input (i.e., input i is true if x_i is 1 and false otherwise).
➤ To relate circuits to strings of arbitrary length families of circuits are introduced.
➤ The size of a circuit is the number of gates in it.
➤ A family of circuits is an infinite sequence $C = (C_0, C_1, \ldots)$ of Boolean circuits where C_n has n input variables.

Languages with polynomial circuits

➤ A language $L \subseteq \{0, 1\}^*$ has polynomial circuits if there is a family $C = (C_0, C_1, \ldots)$ such that
 (i) the size of C_n is at most $p(n)$ for some fixed polynomial p;
 (ii) for all $x \in \{0, 1\}^*$, $x \in L$ iff the output of $C_{|x|}$ is true when x is given as input to $C_{|x|}$.

Proposition. All languages in P have polynomial circuits.

Proof. By the P-completeness proof of CIRCUIT VALUE:

Given a Turing machine M, its input x, and running time $p(|x|)$, a variable-free polynomial size circuit $C(M, x, p)$ is constructed such that the output of $C(M, x, p)$ is true iff M accepts x.

It is easy to modify input gates of $C(M, x, p)$ to variable gates reflecting the symbols in x.

Languages with polynomial circuits

Proposition. There are undecidable languages that have polynomial circuits.

Proof.

➤ Let $L \subseteq \{0, 1\}^*$ be an undecidable language and let $U \subseteq \{1\}^*$ be $U = \{1^n : \text{the binary expansion of } n \text{ is in } L\}$.
➤ U is undecidable.
➤ U has polynomial circuits (C_0, C_1, \ldots) where C_n consists of n input gates and
 • n-1 AND-gates (conjunction of all inputs) if $1^n \in U$ and
 • false output gate if $1^n \notin U$.
Uniformly polynomial circuits

A family $C = (C_0, C_1, \ldots)$ of circuits is said to be uniform if there is a $\log n$-space bounded Turing machine which on input 1^n outputs C_n.

A language $L \subseteq \{0, 1\}^*$ has uniformly polynomial circuits if there is a uniform family of polynomial circuits $C = (C_0, C_1, \ldots)$ that decides L.

Theorem. A language L has uniformly polynomial circuits iff $L \in \mathbf{P}$.

Proof. (\Rightarrow) $x \in L$ can be decided in polynomial time by constructing $C_{|x|}$ in $\log |x|$ space (and hence in polynomial time) and evaluating it for input x (in polynomial time).

(\Leftarrow) By the \mathbf{P}-completeness proof of CIRCUIT VALUE: Given a Turing machine M, its input x, and running time $p(|x|)$, the circuit $C(M, x, p)$ can be constructed in $\log |x|$ space.

Polynomial circuits and P vs NP

$P \neq NP$ equivalent to

Conjecture A: NP-complete problems have no uniformly polynomial circuits.

Conjecture B: NP-complete problems have no polynomial circuits, uniform or not.

Most Boolean functions do not have small circuits.

An approach to establish $P \neq NP$: show Conjecture B for some NP-complete problem.

Cannot be used for establishing $P \neq BPP$

Theorem. All languages in BPP have polynomial circuits.

Learning Objectives

- The concepts of Monte Carlo and Las Vegas algorithms
- The key randomized complexity classes: RP, ZPP, PP, BPP
- The concepts of perfect and slightly random sources
- Basic concepts of circuit complexity: languages with polynomial circuits and uniformly polynomial circuits.