The class of \(\text{coNP} \)

- The relationship of \(\text{coNP} \) and \(\text{NP} \)
- The class \(\text{coNP} \cap \text{NP} \)
- Function problems vs. decision problems
- Classes of function problems
- Total functions

(C. Papadimitriou: *Computational Complexity*, Chapter 10)

coNP-completeness

Definition. A language \(L \) is \(\text{coNP} \)-complete iff \(L \in \text{coNP} \) and \(L \leq_{L} L' \) holds for every language \(L' \in \text{coNP} \).

Proposition. HAMILTON PATH COMPLEMENT and VALIDITY are \(\text{coNP} \)-complete.

Proof. Every language \(L \in \text{coNP} \) is reducible to VALIDITY, because \(L \in \text{NP} \) and, hence, there is a reduction \(R \) from \(L \) to SAT such that for every string \(x \), \(x \in L \) iff \(R(x) \in \text{SAT} \). But then for a reduction \(R'(x) = \neg R(x), x \in L \) iff \(R(x) \notin \text{SAT} \) iff \(R'(x) = \neg R(x) \in \text{VALIDITY} \). Similarly for HAMILTON PATH COMPLEMENT. \(\Box \)

1. The class of complement problems coNP

- \(\text{NP} \) is the class of problems with succinct certificates.
- \(\text{coNP} = \{L | L \in \text{NP}\} \) is the class of problems with succinct disqualifications.

 Example. Consider the problem of VALIDITY:
 INSTANCE: A Boolean expression \(\phi \) in CNF.
 QUESTION: Is \(\phi \) valid?

- VALIDITY is in \(\text{coNP} \): for an expression \(\phi \) which is not valid, a falsifying truth assignment is a succinct disqualification.

- HAMILTON PATH COMPLEMENT and SAT COMPLEMENT are also in \(\text{coNP} \).

- \(\text{P} \subseteq \text{coNP} \)

2. The Relationship of coNP and NP

Proposition. If \(L \subseteq \Sigma^* \) is \(\text{NP} \)-complete, then its complement \(L = \Sigma^* - L \) is \(\text{coNP} \)-complete.

Further observations:
- It is open whether \(\text{NP} = \text{coNP} \).
- If \(\text{P} = \text{NP} \), then \(\text{NP} = \text{coNP} \) (and \(\text{P} = \text{coNP} \)).
- It is possible that \(\text{P} \neq \text{NP} \) but \(\text{NP} = \text{coNP} \) (however, it is strongly believed that \(\text{NP} \neq \text{coNP} \)).
- The problems in \(\text{coNP} \) that are \(\text{coNP} \)-complete are the least likely problems to be in \(\text{P} \) and also in \(\text{NP} \) (see below).
Do coNP and NP coincide?

Proposition. If a coNP-complete problem is in NP, \(\text{NP} = \text{coNP} \).

Proof.

Suppose that \(L \) is a coNP-complete problem that is in NP.

(\(\subseteq \)) Consider \(L' \in \text{coNP} \). Then there is a reduction \(R \) from \(L' \) to \(L \). Then \(L' \in \text{NP} \), because \(L' \) can be decided by a polynomial time NTM which on input \(x \) computes first \(R(x) \) and then starts the NTM for \(L \).

(\(\supseteq \)) Consider \(L' \in \text{NP} \). Then \(L' \in \text{coNP} \) and there is a reduction \(R \) from \(L' \) to \(L \). Then similarly \(L' \in \text{NP} \) and hence \(L' \in \text{coNP} \).

The primality problem PRIMES

INSTANCE: An integer \(N \) in binary representation.

QUESTION: Is \(N \) a prime number?

- PRIMES \(\in \text{coNP} \) as any divisor acts as a succinct disqualification.
- Note that a \(\text{O}(\sqrt{N}) \) algorithm for PRIMES testing all relevant divisor candidates is only pseudopolynomial.
- PRIMES \(\in \text{NP} \) (as shown below) and hence PRIMES \(\in \text{NP} \cap \text{coNP} \).
- New result in August 2002:
 M. Agrawal, N. Kayal, N. Saxena: **PRIMES is in P 🌟**

PRIMES has succinct certificates

A succinct certificate for primality can be obtained using the following theorem.

Theorem. A number \(p > 1 \) is prime iff there is a number \(1 < r < p \) such that \(r^{p-1} = 1 \mod p \) and, furthermore, \(r^{\frac{p-1}{q}} \neq 1 \mod p \) for all prime divisors \(q \) of \(p - 1 \).

Corollary. PRIMES is in \(\text{NP} \cap \text{coNP} \).

- The theorem provides a succinct certificate for the primality of \(p \):
 \[
 C(p) = (r; q_1, C(q_1), \ldots, q_k, C(q_k))
 \]
 where \(C(q_i) \) is a recursive primality certificate for each prime divisor \(q_i \) of \(p - 1 \).
- The recursion stops for prime divisors \(q_i = 2 \) for which \(C(q_i) = (1) \).
Verifying the certificate \(C(p) \)

The following observations can be made:

- The certificate \(C(p) \) is polynomial in the length of \(p \) (in \(\log p \)) and it can be checked by division and exponentiation.
- Ordinary multiplication and division are doable in polynomial time in the length of the input (in binary representation).
- Exponentiation \(r^{p-1} \mod p \) can be done in polynomial time by repeated squaring \(r, r^2, r^4, \ldots, r^l \) (mod \(p \)) where \(l = \lfloor \log_2(p - 1) \rfloor \) and then with at most \(l \) additional multiplications.

Thus, the certificate \(C(p) \) can be checked in polynomial time.

4. Function Problems vs. Decision Problems

- We have studied decision problems but many problems in practice require a more complicated answer than “yes” / “no”.
 - **Example.** Find a satisfying truth assignment for a formula.
 - **Example.** Compute an optimal tour for TSP.
- Such problems are called **function problems**.
- Decision problems are useful surrogates of function problems only in the context of **negative complexity results**.
 - **Example.** SAT and TSP(D) are \(\text{NP} \)-complete. Then unless \(\text{P} = \text{NP} \), there is no polynomial time algorithm for finding a satisfying truth assignment or an optimal tour.

The relationship of SAT and FSAT

FSAT: given a Boolean expression \(\phi \), if \(\phi \) is satisfiable then return a satisfying truth assignment of \(\phi \) otherwise return “no”.

- If FSAT can be solved in polynomial time, then clearly so can SAT.
- If SAT can be solved in polynomial time, then so can FSAT using the following algorithm given input \(\phi \) with variables \(x_1, \ldots, x_n \) \((\phi|x = \text{true}) \) denotes \(\phi \) where variable \(x \) is replaced by \(\text{true} \):
 - if \(\phi \not\in \text{SAT} \) then return “no”;
 - for all \(x \in \{x_1, \ldots, x_n\} \) do
 - if \(\phi|x = \text{true} \in \text{SAT} \) then \(T(x) := \text{true} \); \(\phi := \phi|x = \text{true} \)
 - else \(T(x) := \text{false} \); \(\phi := \phi|x = \text{false} \);
 - return \(T \);

The relationship of TSP(D) and TSP

- If TSP can be solved in polynomial time, then clearly so can TSP(D).
- If TSP(D) can be solved in polynomial time, then so can TSP in the following way.
 - An optimal tour can be found using the algorithm below which finds
 1. the cost \(0 \leq C \leq 2^n \) of an optimal tour by binary search and
 2. an optimal tour using the cost \(C \) computed in step 1.
 (Here \(n \) is the length of the encoding of the problem instance.)
 - Both steps involve a polynomial number of calls to the polynomial time algorithm for TSP(D) (assuming that such an algorithm exists).
An algorithm for TSP

An algorithm for TSP(D) is used as a subroutine:

```c
/* Find the cost C of an optimal tour by binary search*/
C := 0; C_u := 2^n;
while (C_u > C) do
  if there is a tour of cost \( \lfloor (C_u + C) / 2 \rfloor \) or less then
    C_u := \( \lfloor (C_u + C) / 2 \rfloor \)
  else
    C := \( \lfloor (C_u + C) / 2 \rfloor + 1 \);
/* Find an optimal tour */
For all intercity distances do
  set the distance to \( C + 1 \);
  if there is a tour of cost C or less, freeze the distance to \( C + 1 \)
  else restore the original distance and add it to the tour;
endfor
```

5. Classes of Function Problems

Definition. Let \(L \in \text{NP} \). Then there is a polynomial time decidable and polynomially balanced relation \(R_L \) such that for all strings \(x \), there is a string \(y \) with \(R_L(x, y) \) iff \(x \in L \).

The function problem associated with \(L \) (denoted \(F_L \)) is:

Given \(x \), find a string \(y \) such that \(R_L(x, y) \) if such a string \(y \) exists; otherwise return “no”.

➤ The class of all function problems associated as above with languages in \(\text{NP} \) is called \(\text{FNP} \).

➤ \(\text{FP} \) is the subclass of \(\text{FNP} \) solvable in polynomial time.

➤ FSAT is in \(\text{FNP} \) and FHORNSAT is in \(\text{FP} \) (but it is open whether TSP is in \(\text{FNP} \)).

Reductions and completeness for function problems

A function problem \(A \) reduces to a function problem \(B \) if there are string functions \(R, S \) computable in logarithmic space such that for all strings \(x, z \): if \(x \) is an instance of \(A \), then \(R(x) \) is an instance of \(B \) and if \(z \) is a correct output of \(R(x) \), then \(S(z) \) is a correct output of \(x \).

➤ Reductions compose among function problems.

➤ A problem \(A \) is complete for a class \(F \) of function problems if it is in \(F \) and every problem in \(F \) reduces to \(A \).

➤ \(\text{FP} \) and \(\text{FNP} \) are closed under reductions.

➤ FSAT is \(\text{FNP} \)-complete.

➤ \(\text{FP} = \text{FNP} \) iff \(P = \text{NP} \).

6. Total Functions

➤ There are certain important problems in \(\text{FNP} \) that are guaranteed to never return “no”.

Example. FACTORING: Given an integer \(N \), find its prime decomposition \(N = p_1^{k_1} \cdots p_m^{k_m} \).

(No known polynomial time algorithm).

➤ FACTORING seems to be different from the other hard problems in \(\text{FNP} \): it is a total function in a sense:

Definition. A problem \(L \) in \(\text{FNP} \) is called total if for every string \(x \) there is at least one string \(y \) such that \(R_L(x, y) \).

➤ The subclass of \(\text{FNP} \) containing all total function problems is denoted by \(\text{TFNP} \).
There are also other problems in TFNP with no known polynomial time algorithm.

Example. HAPPYNET:

INSTANCE: An undirected graph \(G = (V, E) \) with integer weights \(w \) on edges.

GOAL: Find a state of the graph where all nodes are happy.

- A state is a mapping \(S : V \rightarrow \{-1, +1\} \).
- A node \(i \) is happy in a state \(S \) of \(G = (V, E) \) if
 \[
 S(i) \cdot \sum_{[i, j] \in E} S(j)w[i, j] \geq 0.
 \]

Properties of HAPPYNET

- Every instance is guaranteed to have a happy state which can be found using the following algorithm:
 Start with any \(S \) and while there is an unhappy node, flip it.
- This algorithm is not polynomial but pseudopolynomial \(O(W) \) where \(W \) is the sum of all weights.
- No polynomial algorithm known.
- HAPPYNET is equivalent with finding stable states in neural networks in the Hopfield model.

Other total functions

- ANOTHER HAMILTON CYCLE is FNP-complete.
- ANOTHER HAMILTON CYCLE for cubic graphs is in TFNP.
- EQUAL SUMS:
 Given \(n \) positive integers \(a_1, \ldots , a_n \) such that \(\sum_{i=1}^{n} a_i < 2^n - 1 \), find two different subsets that have the same sum.
- EQUAL SUMS in TFNP.
 Proof. There are \(2^n \) subsets of \(a_1, \ldots , a_n \) and for each of them the sum is an integer between 0 and \(2^n - 2 \).
 Assume that all subsets have different sums. Then there are \(2^n \) different integers between 0 and \(2^n - 2 \), a contradiction. Hence, there are two different subsets that have the same sum. \(\square \)
Learning Objectives

➤ The definition of coNP and examples of languages from this class, e.g., VALIDITY.
➤ The characterization of coNP based on disqualifications.
➤ Reductions and completeness for function problems
➤ Relationship of decision problems and function problems