1. Syntax

- The syntax of Boolean logic (i.e. the set of well-formed Boolean expressions) is based on the following symbols:
 - Boolean variables (or atoms): \(X = \{x_1, x_2, \ldots \} \).
 - Boolean connectives: \(\lor, \land, \text{ and } \neg \).

- The set of Boolean expressions (formulae) is the smallest set such that all Boolean variables are Boolean expressions and if \(\phi_1 \) and \(\phi_2 \) are Boolean expressions, so are \(\neg \phi_1 \), \((\phi_1 \land \phi_2) \), and \((\phi_1 \lor \phi_2) \).

- An expression of the form \(x_i \) or \(\neg x_i \) is called a literal where \(x_i \) is a Boolean variable.

Example. \((x_1 \lor x_2) \land \neg x_3 \) is a Boolean expression but \((x_1 \lor \neg x_2) \land \neg x_3 \) is not.

Some notational conventions

- Simplified notation: \(\big(\big((x_1 \lor \neg x_3) \lor x_2 \big) \lor (x_4 \lor (x_2 \lor x_5)) \big) \) is written as \(x_1 \lor \neg x_3 \lor x_2 \lor x_4 \lor x_2 \lor x_5 \) or \(x_1 \lor \neg x_3 \lor x_2 \lor x_4 \lor x_5 \).

- Disjunctions and conjunctions involving \(n \) members:
 - \(\lor_{i=1}^{n} \phi_i \) stands for \(\phi_1 \lor \cdots \lor \phi_n \).
 - \(\land_{i=1}^{n} \phi_i \) stands for \(\phi_1 \land \cdots \land \phi_n \).

- Frequently appearing abbreviations:
 - An implication \(\phi_1 \rightarrow \phi_2 \) stands for \(\neg \phi_1 \lor \phi_2 \).
 - An equivalence \(\phi_1 \leftrightarrow \phi_2 \) stands for \((\neg \phi_1 \lor \phi_2) \land (\neg \phi_2 \lor \phi_1) \).

Motivation

- Logic involves interesting computational problems.
- Logic is “the calculus of computer science”:
 - digital circuit design, programming language semantics, specification and verification, constraint programming, logic programming, databases, artificial intelligence, knowledge representation, machine learning, . . .
- In computational complexity theory:
 - Computational problems from logic are of central importance; they can be used to express computation at various levels.
 - This leads to important connections between complexity concepts and actual computational problems.
2. Semantics

How to interpret Boolean expressions?

- Boolean expressions are propositions that are either true or false. They speak about a world where certain atomic proposition (Boolean variables) are either true or false.
- A truth assignment \(T \) is mapping from a finite subset \(X' \subseteq X \) to the set of truth values \{true, false\}.
- Let \(X(\phi) \) be the set of Boolean variables appearing in \(\phi \).

Definition. A truth assignment \(T : X' \rightarrow \{true, false\} \) is appropriate to \(\phi \) if \(X(\phi) \subseteq X' \).

Logical equivalence

Definition. Expressions \(\phi_1 \) and \(\phi_2 \) are logically equivalent \((\phi_1 \equiv \phi_2) \) iff for all truth assignments \(T \) appropriate to both of them,

\[
T \models \phi_1 \text{ iff } T \models \phi_2.
\]

Example.

\[
(\phi_1 \lor \phi_2) \equiv (\phi_2 \lor \phi_1)
\]

\[
((\phi_1 \land \phi_2) \land \phi_3) \equiv (\phi_1 \land (\phi_2 \land \phi_3))
\]

\[
\neg \neg \phi \equiv \phi
\]

3. Normal Forms

Theorem. Every Boolean expression is equivalent to one in conjunctive (disjunctive) normal form CNF (DNF).

- These forms are defined by:

 CNF: \((l_{i_1} \lor \cdots \lor l_{i_m}) \land \cdots \land (l_{m_1} \lor \cdots \lor l_{m_n})\)

 DNF: \((l_{i_1} \land \cdots \land l_{i_m}) \lor \cdots \lor (l_{m_1} \land \cdots \land l_{m_n})\)

 where each \(l_{ij} \) is a literal (Boolean variable or its negation).

- A disjunction \(l_1 \lor \cdots \lor l_n \) of literals is called a clause.

- A conjunction \(l_1 \land \cdots \land l_n \) of literals is called an implicant.

- We can assume that normal forms do not have repeated clauses/implicants or repeated literals in clauses/implicants.

Example.

\[
(\neg x_1 \lor \neg x_1 \lor x_2) \equiv (\neg x_1 \lor x_2).
\]
CNF/DNF transformation

Any Boolean expression can be transformed into CNF/DNF as follows.

- Remove \leftrightarrow and \rightarrow:
 \[
 \alpha \leftrightarrow \beta \quad \rightarrow \quad (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)
 \]
 \[
 \alpha \rightarrow \beta \quad \rightarrow \quad \neg \alpha \lor \beta
 \]

- Push negations in front of Boolean variables:
 \[
 \neg \neg \alpha \quad \rightarrow \quad \alpha
 \]
 \[
 \neg (\alpha \lor \beta) \quad \rightarrow \quad \neg \alpha \land \neg \beta
 \]
 \[
 \neg (\alpha \land \beta) \quad \rightarrow \quad \neg \alpha \lor \neg \beta
 \]

The result is a mixed conjunction and disjunction of literals.

Example

Transform $(x_1 \lor x_2) \rightarrow (x_2 \leftrightarrow x_3)$ into CNF.

\[
(x_1 \lor x_2) \rightarrow (x_2 \leftrightarrow x_3)
\]

\[
\neg (x_1 \lor x_2) \lor (x_2 \leftrightarrow x_3)
\]

\[
\neg (x_1 \lor x_2) \lor ((\neg x_2 \lor x_3) \land (\neg x_3 \lor x_2))
\]

\[
((\neg x_1 \land \neg x_2) \lor ((\neg x_2 \lor x_3) \land (\neg x_3 \lor x_2)))
\]

\[
((\neg x_1 \lor (\neg x_2 \land x_3)) \land (\neg x_2 \lor (\neg x_3 \lor x_2)))
\]

\[
((\neg x_1 \lor (\neg x_2 \land x_3)) \land (\neg x_2 \lor (\neg x_3 \lor x_2)))
\]

\[
((\neg x_1 \lor (\neg x_2 \land x_3)) \land (\neg x_2 \lor (\neg x_3 \lor x_2)))
\]

\[
((\neg x_1 \lor (\neg x_2 \land x_3)) \land (\neg x_2 \lor (\neg x_3 \lor x_2)))
\]

The next phase depends on the normal form being pursued:

- For a CNF, move \land connectives outside \lor connectives:
 \[
 \alpha \lor (\beta \land \gamma) \quad \rightarrow \quad (\alpha \lor \beta) \land (\alpha \lor \gamma)
 \]
 \[
 (\alpha \land \beta) \lor \gamma \quad \rightarrow \quad (\alpha \lor \gamma) \land (\beta \lor \gamma)
 \]

- For a DNF, move \lor connectives outside \land connectives:
 \[
 \alpha \land (\beta \lor \gamma) \quad \rightarrow \quad (\alpha \land \beta) \lor (\alpha \land \gamma)
 \]
 \[
 (\alpha \lor \beta) \land \gamma \quad \rightarrow \quad (\alpha \land \gamma) \lor (\beta \land \gamma)
 \]

Note: Normal forms can be exponentially bigger than the original expression in the worst case.

Example. Consider deriving a CNF for $(x_1 \land \neg x_1) \lor \ldots \lor (x_n \land \neg x_n)$.

4. Satisfiability and Validity

- A Boolean expression ϕ is **satisfiable** iff there is a truth assignment T appropriate to it such that $T \models \phi$.
- A Boolean expression ϕ is **valid/tautology** (denoted by $\models \phi$) iff for every truth assignment T appropriate to it, $T \models \phi$.
- The interconnection of satisfiability and validity:
 \[
 \models \phi \text{ iff } \neg \phi \text{ is unsatisfiable.}
 \]
- Moreover, for any Boolean expressions ψ_1 and ψ_2,
 \[
 \psi_1 \equiv \psi_2 \text{ iff } \models \psi_1 \leftrightarrow \psi_2 \text{ iff } \neg (\psi_1 \leftrightarrow \psi_2) \text{ is unsatisfiable.}
 \]

Satisfiability forms a fundamental computational problem.
Satisfiability Problem

- **SAT problem:** Given \(\phi \) in CNF, is \(\phi \) satisfiable?

 Example. \((x_1 \lor \neg x_2) \land \neg x_1\) is satisfiable but \((x_1 \lor \neg x_2) \land \neg x_1 \land x_2\) is unsatisfiable.

- SAT can be solved in \(O(n^2 2^n)\) time (e.g., truth table method).

- SAT \(\in\) NP but SAT \(\in\) P remains open!

A nondeterministic Turing machine for \(\phi \in\) SAT:

- for all variables \(x\) in \(\phi\) do
 - choose nondeterministically: \(T(x):=\text{true}\) or \(T(x):=\text{false}\);
 - if \(T|=\phi\) then return "yes" else return "no".

Horn clauses

- An interesting special case of SAT concerns Horn clauses, i.e., clauses (disjunction of literals) with at most one positive literal.

 Example. \(\neg x_1 \lor x_2 \lor \neg x_3\) and \(\neg x_1 \lor \neg x_3, x_2\) are Horn clauses but \(\neg x_1 \lor x_2 \lor x_3\) is not.

- A Horn clause with a positive literal is called an implication and can be written as \((x_1 \land x_3) \rightarrow x_2\) (or \(\rightarrow x_2\) when there are no negative literals).

- HORNSAT problem:
 Given a conjunction of Horn clauses, is it satisfiable?

Polynomial Time Algorithm for HORNSAT

Algorithm hornsat(S)
/* Determines whether \(S \in\) HORNSAT */

\(T:=\emptyset\) /* \(T\) is the set of true atoms */

repeat
 if there is an implication \((x_1 \land x_2 \land \cdots \land x_n) \rightarrow y\) in \(S\) such that \(\{x_1, \ldots, x_n\} \subseteq T\) but \(y \notin T\) then
 \(T:=T \cup \{y\}\)
 until \(T\) does not change

if for all purely negative clauses \(\neg x_1 \lor \cdots \lor \neg x_n\) in \(S\), there is some literal \(\neg x_i\) such that \(x_i \notin T\) then
 return \(S\) is satisfiable
else return \(S\) is not satisfiable

\(\implies\) HORNSAT \(\in\) P.

5. Boolean Functions and Expressions

- An \(n\)-ary Boolean function is a mapping \(\{\text{true}, \text{false}\}^n \rightarrow \{\text{true}, \text{false}\}\).

 Example. The connectives \(\lor, \land, \rightarrow,\) and \(\leftrightarrow\) can be viewed as binary Boolean functions and \(\neg\) is a unary function.

- Similarly, any Boolean expression \(\phi\) can be interpreted as an \(n\)-ary Boolean function \(f_\phi\) where \(n=|X(\phi)|\).

- A Boolean expression \(\phi\) with variables \(x_1, \ldots, x_n\) expresses the \(n\)-ary function \(f\) if for any \(n\)-tuple of truth values \(t=(t_1, \ldots, t_n)\),

 \[
 f(t) = \begin{cases}
 \text{true}, & \text{if } T|=\phi, \\
 \text{false}, & \text{if } T \not|=\phi.
 \end{cases}
 \]

 where \(T\) satisfies \(T(x_i)=t_i\) for every \(i=1, \ldots, n\).
Proposition. Any n-ary Boolean function \(f \) can be expressed as a Boolean expression \(\phi_f \) involving variables \(x_1, \ldots, x_n \).

- The idea: model the rows of the truth table giving \(\text{true} \) as a disjunction of conjunctions.
- Let \(F \) be the set of all \(n \)-tuples \(t = (t_1, \ldots, t_n) \) with \(f(t) = \text{true} \).
- For each \(t \), let \(D_t \) be a conjunction of literals \(x_i \) if \(t_i = \text{true} \) and \(\neg x_i \) if \(t_i = \text{false} \).
- Let \(\phi_f = \bigwedge_{t \in F} D_t \).
- Note that \(\phi_f \) may get big in the worst case: \(O(n2^n) \).

\[\phi_f = (\neg x_1 \land x_2) \lor (x_1 \land \neg x_2). \]

\(\square \) Not all Boolean functions can be expressed concisely.

\[
\begin{array}{|c|c|c|}
\hline
x_1 & x_2 & f \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\hline
\end{array}
\]

Example.

6. Boolean Circuits

A more economical way to represent Boolean functions?

Syntax:

- A graph \(C = (V,E) \) where \(V = \{1,2,\ldots,n\} \) is the set of gates and \(C \) must be acyclic (\(i < j \) for all edges \((i,j) \in E \)).
- All gates \(i \) have a sort \(s(i) \in \{\text{true},\text{false},\land,\lor,\neg\} \cup \{x_1,x_2,\ldots\} \).
 - If \(s(i) \in \{\text{true},\text{false}\} \cup \{x_1,x_2,\ldots\} \), the indegree of \(i \) is 0 (inputs).
 - If \(s(i) = \neg \), the indegree of \(i \) is 1.
 - If \(s(i) \in \{\lor,\land\} \), the indegree of \(i \) is 2.
- Node \(n \) is the output of the circuit.

Semantic

A truth assignment is a function \(T : X(C) \rightarrow \{\text{true},\text{false}\} \) where \(X(C) \) is the set of variables appearing in a circuit \(C \).

The truth value \(T(i) \) for each gate \(i \) is defined inductively:

- If \(s(i) = \text{true} \), \(T(i) = \text{true} \) and if \(s(i) = \text{false} \), \(T(i) = \text{false} \).
- If \(s(i) \in X(C) \), then \(T(i) = T(s(i)) \).
- If \(s(i) = \neg \), then \(T(i) = \text{true} \) if \(T(j) = \text{false} \), otherwise \(T(i) = \text{false} \) where \((j,i) \) is the unique edge entering \(i \).
- If \(s(i) = \land \), then \(T(i) = \text{true} \) if \(T(j) = T(j') = \text{true} \) else \(T(i) = \text{false} \) where \((j,i) \) and \((j',i) \) are the two edges entering \(i \).
- If \(s(i) = \lor \), then \(T(i) = \text{true} \) if \(T(j) = T(j') = \text{true} \) or \(T(j') = \text{true} \) else \(T(i) = \text{false} \) where \((j,i) \) and \((j',i) \) are the two edges to \(i \).
- \(T(C) = T(n) \), i.e. the value of the circuit \(C \).

Boolean circuits vs. Boolean expressions

- For each Boolean circuit \(C \), there is a corresponding Boolean expression \(\phi_C \).
- For each Boolean expression \(\phi \), there is a corresponding Boolean circuit \(C_\phi \) such that for any \(T \) appropriate for both,
 \[T(C_\phi) = \text{true} \text{ if } T \models \phi. \]

Idea: just introduce a new gate for each subexpression of \(\phi \).

- Notice that Boolean circuits allow shared subexpressions but Boolean expressions do not.
Computational problems related with Boolean circuits

➤ CIRCUIT SAT:
Given a circuit \(C \), is there a truth assignment \(T : X(C) \to \{ \text{true}, \text{false} \} \) such that \(T(C) = \text{true} \)?

➤ CIRCUIT SAT \(\in \text{NP} \).

➤ CIRCUIT VALUE:
Given a circuit \(C \) with no variables, is it the case that \(T(C) = \text{true} \)?

➤ CIRCUIT VALUE \(\in \text{P} \).
(No truth assignment is needed as \(X(C) = \emptyset \)).

Circuits computing Boolean functions

➤ A Boolean circuit with variables \(x_1, \ldots, x_n \) computes an \(n \)-ary Boolean function \(f \) if for any \(n \)-tuple of truth values \(t = (t_1, \ldots, t_n) \), \(f(t) = T(C) \) where \(T(x_i) = t_i \) for \(i = 1, \ldots, n \).

➤ Any \(n \)-ary Boolean function \(f \) can be computed by a Boolean circuit involving variables \(x_1, \ldots, x_n \).

➤ Not every Boolean function has a concise circuit computing it.

Theorem. For any \(n \geq 2 \) there is an \(n \)-ary Boolean function \(f \) such that no Boolean circuit with \(\frac{2^n}{2n} \) or fewer gates can compute it. However, all natural families of Boolean functions seem to need only a linear number of gates to compute!