1. Basic Definitions

Turing machines are used as the formal model of algorithms.

Turing machines can simulate arbitrary algorithms with inconsequential loss of efficiency using a single data structure: a string of symbols.

Definition. A Turing machine is a quadruple $M = (K, \Sigma, \delta, s)$ with a finite set of states K, a finite set of symbols Σ (alphabet of M) so that $\sqcup, \triangleright \in \Sigma$, a transition function δ:

$$K \times \Sigma \rightarrow (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\rightarrow, \leftarrow, =\},$$

a halting state h, an accepting state "yes", a rejecting state "no", and cursor directions: \rightarrow (right), \leftarrow (left), and $=$ (stay).

Example. Consider a Turing machine $M = (K, \Sigma, \delta, s)$ with $K = \{s, q\}$, $\Sigma = \{0, 1, \sqcup, \triangleright\}$ and a transition function δ defined as follows:

<table>
<thead>
<tr>
<th>$p \in K$</th>
<th>$\sigma \in \Sigma$</th>
<th>$\delta(p, \sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>$(s, 0, \rightarrow)$</td>
</tr>
<tr>
<td>s</td>
<td>1</td>
<td>$(s, 1, \rightarrow)$</td>
</tr>
<tr>
<td>s</td>
<td>\sqcup</td>
<td>(q, \sqcup, \leftarrow)</td>
</tr>
<tr>
<td>s</td>
<td>\triangleright</td>
<td>$(s, \triangleright, \rightarrow)$</td>
</tr>
<tr>
<td>q</td>
<td>0</td>
<td>$(h, 1, \rightarrow)$</td>
</tr>
<tr>
<td>q</td>
<td>1</td>
<td>$(q, 0, \leftarrow)$</td>
</tr>
<tr>
<td>q</td>
<td>\triangleright</td>
<td>$(h, \triangleright, \rightarrow)$</td>
</tr>
</tbody>
</table>

The machine computes $n + 1$ for a natural number n in binary.
The program starts with
(i) initial state \(s \),
(ii) the string initialized to \(\triangleright x \) where \(x \) is a finitely long string in \((\Sigma - \{\sqcup\})^* \) (\(x \) is the input of the machine) and
(iii) the cursor pointing to \(\triangleright \).

A machine has halted if one of the 3 halting states
(h. "yes", "no") has been reached.

If "yes" has been reached, the machine accepts the input.
If "no" has been reached, the machine rejects the input.

Output \(M(x) \) of a machine \(M \) on input \(x \):
(i) If \(M \) accepts/rejects, then \(M(x) = \text{"yes"/"no"} \).
(ii) If \(h \) has been reached, \(M(x) = y \)
where \(\triangleright y \sqcup u \ldots \) is the string of \(M \) at the time of halting.
(iii) If \(M \) never halts on input \(x \), then \(M(x) = \emptyset \)

Configurations reached in several steps

Yields in \(k \) steps: \((q,w,u) \xrightarrow{M}^k (q',w',u') \)
iff there are configurations \((q_i,w_i,u_i), i = 1,\ldots,k+1 \) such that –
\((q,w,u) \xrightarrow{M} (q_1,w_1,u_1) \),
\((q_i,w_i,u_i) \xrightarrow{M} (q_{i+1},w_{i+1},u_{i+1}), i = 1,\ldots,k \), and
\((q',w',u') = (q_{k+1},w_{k+1},u_{k+1}) \)

Yields: \((q,w,u) \xrightarrow{M}^* (q',w',u') \)
iff there is some \(k \geq 0 \) such that \((q,w,u) \xrightarrow{M}^k (q',w',u') \).

Therefore \(\xrightarrow{M}^* \) is the transitive and reflexive closure of \(\xrightarrow{M} \).

Operations and semantics

A configuration \((q,w,u) \):
\(q \in K \) is the current state and \(w,u \in \Sigma^* \) where
(i) \(w \) is the string to the left of the cursor including the symbol scanned by the cursor and
(ii) \(u \) is the string to the right of the cursor.

The relation \(\xrightarrow{M} \) (yields in one step):
\((q,w,u) \xrightarrow{M} (q',w',u') \)
Let \(\sigma \) be the last symbol of \(w \) and \(\delta(q,\sigma) = (p,p,D) \).
Then \(q' = p \), and \(w',u' \) are obtained according to \((p,p,D) \).

Example. If \(D = \rightarrow \), then
(i) \(w' \) is \(w \) with its last symbol replaced by \(p \) and the first symbol of \(u \)
appended to it (\(\sqcup \) if \(u \) is empty) and
(ii) \(u' \) is \(u \) with the first removed (or empty, if \(u \) is empty).

2. Turing Machines as Algorithms

Turing machines are natural for solving problems on strings:

Let \(L \subseteq (\Sigma - \{\sqcup\})^* \) be a language.

A Turing machine \(M \) decides \(L \) iff for every string \(x \in (\Sigma - \{\sqcup\})^* \),
if \(x \in L \), \(M(x) = \text{"yes"} \) and
if \(x \notin L \), \(M(x) = \text{"no"} \).

If \(L \) is decided by a Turing machine, \(L \) is a recursive language.

A Turing machine \(M \) computes a (string) function
\(f : (\Sigma - \{\sqcup\})^* \rightarrow \Sigma^* \) iff for every string \(x \in (\Sigma - \{\sqcup\})^* \),
\(M(x) = f(x) \).

If such an \(M \) exists, \(f \) is called a recursive function.
Example. Transition function δ for checking even parity of $x \in \{0, 1\}^*$:

<table>
<thead>
<tr>
<th>$p \in K$</th>
<th>$\sigma \in \Sigma$</th>
<th>$\delta(p, \sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s, $>$</td>
<td>$(s, >, \rightarrow)$</td>
<td>t, $>$</td>
</tr>
<tr>
<td>s, 0</td>
<td>$(s, 0, \rightarrow)$</td>
<td>t, 0</td>
</tr>
<tr>
<td>s, 1</td>
<td>$(t, 1, \rightarrow)$</td>
<td>t, 1</td>
</tr>
<tr>
<td>s, \sqcup</td>
<td>("yes", \sqcup, \sqcap)</td>
<td>t, \sqcup</td>
</tr>
</tbody>
</table>

The respective Turing machine M decides $101 \in \{0, 1\}^*$ as follows:

$$(s, >, 101) \xrightarrow{M} (s, >, 1, 01)$$
$$\xrightarrow{M} (t, >, 10, 1)$$
$$\xrightarrow{M} (t, >, 101, \varepsilon)$$
$$\xrightarrow{M} (s, >, 101, \sqcup, \varepsilon)$$
$$\xrightarrow{M} ("yes", >, 101, \sqcup, \varepsilon).$$

Solving problems using Turing machines

- Instances of the problem need to be represented by strings.
- Solving a decision problem amounts to deciding the language consisting of the encodings of the "yes" instances of the problem.
- An optimization problem is solved by a Turing machine that computes the appropriate function from strings to strings (where the output is similarly represented as a string).

Recursively enumerable languages

- A Turing machine M accepts L if for every string $x \in (\Sigma - \{\sqcup\})^*$, if $x \in L$, then $M(x) = \text{"yes"}$ but if $x \notin L$, $M(x) = \uparrow$.
- If L is accepted by some Turing machine, L is a recursively enumerable language.
- We will later encounter examples of r.e. languages.

Proposition. If L is recursive, then it is recursively enumerable.

How does representation affect solvability?

- Any "finite" mathematical object can be represented by a finite string over an appropriate alphabet.

Example.

Graph:

```
1           2
\downarrow  \uparrow
3           4
```

Representations as a string:

```
"{(1, 10), (1, 11), (10, 100)}"

"(0110, 0001, 0000, 0000)"
```
 Representation vs. solvability?

- All acceptable encodings are related polynomially:
 If A and B are both “reasonable” representations of the same set of instances, and representation A of an instance is a string with \(n \) symbols, the representation B of the same instance has length at most \(p(n) \) for some polynomial \(p \).

- Exception: unary representation of numbers requires exponentially more symbols than the binary representation.

- A reasonably succinct input representation is assumed. In particular, numbers are always represented in binary.

3. Turing Machines with Multiple Strings

- Turing machines with multiple strings and associated cursors are more convenient from the programmer’s point of view.

- They can be simulated by an ordinary Turing machine with an inconsequential loss of efficiency.

- A \(k \)-string Turing machine with an integer parameter \(k \geq 1 \) is a quadruple \(M = (K, \Sigma, \delta, s) \) where the transition function \(\delta \) has been generalized to handle \(k \) strings simultaneously:

\[
\delta: K \times \Sigma^k \to (K \cup \{ \text{"yes"}, \text{"no"} \}) \times (\Sigma \times \{ \text{\downarrow, \land} \}^k)
\]

- This definition yields an ordinary Turing machine when \(k = 1 \).

Generalized transitions

- Transitions are determined by

\[\delta(q, \sigma_1, \ldots, \sigma_k) = (p, p_1, D_1, \ldots, p_k, D_k) \]

If \(M \) is in the state \(q \), the cursor of the first string is scanning \(\sigma_1 \), that of the second \(\sigma_2 \) and so on, then the next state is \(p \), the first cursor will write \(p_1 \) and move \(D_1 \) and so on.

- A configuration is defined as a \(2k + 1 \)-tuple \((q, w_1, u_1, \ldots, w_k, u_k)\).

- A \(k \)-string machine with input \(x \) starts from the configuration

\[(s, \text{\downarrow}, x, \text{\land}, \varepsilon, \ldots, \text{\land}, \varepsilon) \]

- Relations \(\sim \), \(\Rightarrow \), \(\rightarrow \) are defined in analogy to ordinary machines.

- Output is defined as for ordinary machines:

 If \((s, \text{\downarrow}, x, \text{\land}, \varepsilon, \ldots, \text{\land}, \varepsilon) \) \(\Rightarrow^* \) \((\text{"yes"}, w_1, u_1, \ldots, w_k, u_k) \), then \(M(x) = \text{"yes"} \).

 If \((s, \text{\downarrow}, x, \text{\land}, \varepsilon, \ldots, \text{\land}, \varepsilon) \) \(\Rightarrow^* \) \((\text{"no"}, w_1, u_1, \ldots, w_k, u_k) \), then \(M(x) = \text{"no"} \).

 If \((s, \text{\downarrow}, x, \text{\land}, \varepsilon, \ldots, \text{\land}, \varepsilon) \) \(\Rightarrow^* \) \((y, w_1, u_1, \ldots, w_k, u_k) \), then \(M(x) = y \) where \(y \) is \(w_k u_k \) with the leading \(\text{\downarrow} \) and trailing \(\text{\land} \)s removed.

- The time required by \(M \) on input \(x \) is \(t \) iff

 \[(s, \text{\downarrow}, x, \text{\downarrow}, \text{\land}, \varepsilon, \ldots, \text{\downarrow}, \text{\land}, \varepsilon) \Rightarrow^* (H, w_1, u_1, \ldots, w_k, u_k) \]

 where \(H \in \{ \text{\downarrow, "yes"}, \text{"no"} \} \).

 If \(M(x) = \text{\downarrow} \), then the time required is thought to be \(\infty \).
Complexity classes

- Performance measured by the amount of time (or space) required on instances of size n using a function of n.
- Machine M operates within time $f(n)$ if for any input string x, the time required by M on x is at most $f(|x|)$.
- Function $f(n)$ is a time bound for M.
- A complexity class $\text{TIME}(f(n))$ is a set of languages L decided by a multistring Turing machine operating within time $f(n)$.
- Notice that worst-case inputs are taken into account.

Multiple strings vs. a single string

Theorem. Given any k-string Turing machine M operating within time $f(n)$, we can construct a Turing machine M' operating within time $O(f(n)^2)$ and such that for any input x, $M(x) = M'(x)$.

Proof sketch:

- M' is based on an extended alphabet $\Sigma' = \Sigma \cup \{\triangleright, \triangleleft\}$.
- M' represents a configuration of M by concatenation

 $$(q, w_1, u_1, \ldots, w_k, u_k) \mapsto (q, \triangleright, w'_1 u_1 \triangleleft w'_2 u_2 \ldots w'_k u_k \triangleleft)$$

 where each w'_i is w_i with the leading \triangleright replaced by \triangleright' and the last symbol σ_i by \triangleleft to keep track of cursor positions.
- Initial configuration: $(s, \triangleright, \triangleright' x \triangleright' \triangleleft \ldots \triangleright' \triangleleft \triangleleft)$

4. Linear Speedup

- When using Turing machines, the rate of growth of the time/space requirements is important but the precise multiplicative and additive constants are not.
- In practice this also holds to some extent because of continuously improving computer hardware.

Theorem. Let $L \in \text{TIME}(f(n))$. Then for any $\varepsilon > 0$, $L \in \text{TIME}(f'(n))$ where $f'(n) = \varepsilon f(n) + n + 2$.
Proof sketch

➤ Let \(M = (K, \Sigma, \delta, s) \) be a \(k \)-string machine deciding \(L \) in time \(f(n) \).

We construct a \(k' \)-string machine \(M' = (K', \Sigma', \delta', s') \) operating within time bound \(f'(n) \) and simulating \(M \).

(If \(k > 1 \), \(k' = k \) and if \(k = 1 \), then \(k' = 2 \)).

➤ Performance savings are obtained by adding word length:

Each symbol of \(M' \) encodes several symbols of \(M \) and each move of \(M' \) several moves of \(M \).

➤ Given \(M \) and \(\varepsilon \) we take some integer \(m \) and use \(m \)-tuples of symbols of \(M \) in \(M' \).

➤ The linear term \((n + 2)\) in the theorem is due to condensing input.

5. Space bounds

➤ Strings cannot become shorter during computation.

➤ Thus the sum of lengths of the final strings provides a preliminary definition of the space consumed by a computation.

➤ There is an overcharge: sublinear space bounds are not covered!

Example. The language of palindromes can be decided by a 3-string Turing machine in logarithmic space.

➤ This suggests us to exclude the effects of reading the input and writing the output as regards the consumption of space.
Turing machines with input and output

Definition. A k-string Turing machine ($k > 2$) with input and output is an ordinary k-string Turing machine with the following restrictions on the program δ:

If $\delta(q, \sigma_1, \ldots, \sigma_k) = (p, \rho_1, D_1, \ldots, \rho_k, D_k)$, then

(a) $\rho_1 = \sigma_1$ (read-only input string),
(b) $D_k \neq \leftarrow$ (write-only output string), and
(c) if $\sigma_1 = \bot$, then $D_1 = \leftarrow$ (end of input respected).

Proposition. For any k-string Turing machine M operating within time bound $f(n)$ there is a $(k + 2)$-string Turing machine M' with input and output which operates within time bound $O(f(n))$.

Space consumption

Definition. Suppose that for a k-string Turing machine M and an input x, $(x, \triangleright, x, \triangleright, \ldots, \triangleright, \triangleright, \epsilon, \ldots, \epsilon) \xrightarrow{M^*} (H, w_1, u_1, \ldots, w_k, u_k)$ where $H \in \{"yes", "no", h\}$ is a halting state.

Then the space required by M on input x is $\sum_{i=1}^{k} |w_i| u_i$.

If M is a Turing machine with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i| u_i$.

Let $f : N \rightarrow N$.

Turing machine M operates within space bound $f(n)$ if for any input x, M requires space at most $f(|x|)$.

Learning Objectives

➤ A deeper understanding why $(k$-string) Turing machines make a reasonable model of computation.
➤ You should know how time/space complexity classes are derived using bounds on computations.
➤ The idea that multiplicative/additive constants do not count.
➤ The definitions and background of complexity classes P and L.

Space complexity classes

Definition. A space complexity class $\text{SPACE}(f(n))$ is a set of languages L decidable by a Turing machine with input and output operating within space bound $f(n)$.

Definition. The class $\text{SPACE}(\log(n))$ is denoted by L.

Example. The language of palindromes belongs to L.

Theorem. Let $L \in \text{SPACE}(f(n))$. Then for any $\varepsilon > 0$, $L \in \text{SPACE}(2^+ \varepsilon f(n))$.

☞ Constants do not count for space as well.