1. The class of complement problems \(\text{coNP}\)

- \(\text{NP}\) is the class of problems with succinct certificates.
- \(\text{coNP}\) is the class of problems with succinct disqualifications.

Example. Consider the problem of VALIDITY:

INSTANCE: A Boolean expression \(\phi\) in CNF.

QUESTION: Is \(\phi\) valid?

- VALIDITY is in \(\text{coNP}\): for an expression \(\phi\) which is not valid, a falsifying truth assignment is a succinct disqualification.
- \(\text{HAMILTON PATH COMPLEMENT}\) and \(\text{SAT COMPLEMENT}\) are also in \(\text{coNP}\).
- \(\text{P} \subseteq \text{coNP}\)

2. The Relationship of \(\text{coNP}\) and \(\text{NP}\)

Proposition. If \(L \subseteq \Sigma^*\) is \(\text{NP}\)-complete, then its complement \(L' = \Sigma^* - L\) is \(\text{coNP}\)-complete.

Further observations:

- It is open whether \(\text{NP} = \text{coNP}\).
- If \(\text{P} = \text{NP}\), then \(\text{NP} = \text{coNP}\) (and \(\text{P} = \text{coNP}\)).
- It is possible that \(\text{P} \neq \text{NP}\) but \(\text{NP} = \text{coNP}\) (however, it is strongly believed that \(\text{NP} \neq \text{coNP}\)).
- The problems in \(\text{coNP}\) that are \(\text{coNP}\)-complete are the least likely problems to be in \(\text{P}\) and also in \(\text{NP}\) (see below).
Do \(\text{coNP} \) and \(\text{NP} \) coincide?

Proposition. If a \(\text{coNP} \)-complete problem is in \(\text{NP} \), \(\text{NP} = \text{coNP} \).

Proof. Suppose that \(L \) is a \(\text{coNP} \)-complete problem that is in \(\text{NP} \).

(\(\supseteq \)) Consider \(L' \in \text{coNP} \). Then there is a reduction \(R \) from \(L' \) to \(L \). Then \(L' \in \text{NP} \), because \(L' \) can be decided by a polynomial time NTM which on input \(x \) computes first \(R(x) \) and then starts the NTM for \(L \).

(\(\subseteq \)) Consider \(L' \in \text{NP} \). Then \(L' \in \text{coNP} \) and there is a reduction \(R \) from \(L' \) to \(L \). Then similarly \(L' \in \text{NP} \) and hence \(L' \in \text{coNP} \). \(\square \)

The primality problem \(\text{PRIMES} \)

INSTANCE: An integer \(N \) in binary representation.

QUESTION: Is \(N \) a prime number?

- \(\text{PRIMES} \in \text{coNP} \) as any divisor acts as a succinct disqualification.
- Note that a \(O(\sqrt{N}) \) algorithm for \(\text{PRIMES} \) testing all relevant divisor candidates is only pseudopolynomial.
- \(\text{PRIMES} \in \text{NP} \) (as shown below) and hence \(\text{PRIMES} \in \text{coNP} \cap \text{NP} \).
- New result in August 2002: M. Agrawal, N. Kayal, N. Saxena: \(\text{PRIMES} \) is in \(\text{P} \) !!

PRIMES has succinct certificates

A succinct certificate for primality can be obtained using the following theorem.

Theorem. A number \(p > 1 \) is prime iff there is a number \(1 < r < p \) such that \(r^{p-1} = 1 \mod p \) and, furthermore, \(r^{q-1} \neq 1 \mod p \) for all prime divisors \(q \) of \(p - 1 \).

Corollary. \(\text{PRIMES} \) is in \(\text{NP} \cap \text{coNP} \).

- The theorem provides a succinct certificate for the primality of \(p \):
 \[C(p) = (r;q_1,C(q_1),\ldots,q_k,C(q_k)) \]
 where \(C(q_i) \) is a recursive primality certificate for each prime divisor \(q_i \) of \(p - 1 \).
- The recursion stops for prime divisors \(q_i = 2 \) for which \(C(q_i) = (1) \).
Verifying the certificate $C(p)$

The following observations can be made:

➤ The certificate $C(p)$ is polynomial in the length of p (in $\log p$) and it can be checked by division and exponentiation.

➤ Ordinary multiplication and division are doable in polynomial time in the length of the input (in binary representation).

➤ Exponentiation $r^{p-1} \mod p$ can be done in polynomial time by repeated squaring $r^1, r^2, r^4, \ldots, r^{2^l} \mod p$ where $l = \lfloor \log_2(p-1) \rfloor$ and then with at most l additional multiplications.

The certificate $C(p)$ can be checked in polynomial time.

4. Function Problems vs. Decision Problems

➤ We have studied decision problems but many problems in practice require a more complicated answer than “yes” / “no”.

Example. Find a satisfying truth assignment for a formula.

Example. Compute an optimal tour for TSP.

➤ Such problems are called function problems.

➤ Decision problems are useful surrogates of function problems only in the context of negative complexity results.

Example. SAT and TSP(D) are NP-complete. Then unless $P = NP$, there is no polynomial time algorithm for finding a satisfying truth assignment or an optimal tour.

The relationship of SAT and FSAT

FSAT: given a Boolean expression ϕ, if ϕ is satisfiable then return a satisfying truth assignment of ϕ otherwise return “no”.

➤ If FSAT can solved in polynomial time, then clearly so can SAT.

➤ If SAT can be solved in polynomial time, then so can FSAT using the following algorithm given input ϕ with variables x_1, \ldots, x_n ($\phi[x = \text{true}]$ denotes ϕ where variable x is replaced by true):

1. if $\phi \notin \text{SAT}$ then return “no”;
2. for all $x \in \{x_1, \ldots, x_n\}$ do
 a. if $\phi[x = \text{true}] \in \text{SAT}$ then $T(x) := \text{true}$; $\phi := \phi[x = \text{true}]$
 b. else $T(x) := \text{false}$; $\phi := \phi[x = \text{false}]$
3. return T;

The relationship of TSP(D) and TSP

➤ If TSP can solved in polynomial time, then clearly so can TSP(D).

➤ If TSP(D) can solved in polynomial time, then so can TSP in the following way.

1. An optimal tour can be found using the algorithm below which finds
 a. the cost $0 \leq C \leq 2^n$ of an optimal tour by binary search and
 b. an optimal tour using the cost C computed in step 1.

2. (Here n is the length of the encoding of the problem instance.)

3. Both steps involve a polynomial number of calls to the polynomial time algorithm for TSP(D) (given such an algorithm exists).
An algorithm for TSP

An algorithm for TSP(D) is used as a subroutine:

```c
/* Find the cost C of an optimal tour by binary search*/
C := 0; C_u := 2^n;
while (C_u > C) do
  if there is a tour of cost \lfloor (C_u + C)/2 \rfloor or less then
    C_u := \lfloor (C_u + C)/2 \rfloor;
  else
    C := \lfloor (C_u + C)/2 \rfloor + 1;
  /* Find an optimal tour */
  For all intercity distances do
    set the distance to C_u + 1;
    if there is a tour of cost C or less, freeze the distance to C_u + 1
    else restore the original distance and add it to the tour;
endfor
```

5. Classes of Function Problems

Definition. Let \(L \in \text{NP} \). Then there is a polynomial time decidable and polynomially balanced relation \(R_L \) such that for all strings \(x \), there is a string \(y \) with \(R_L(x, y) \) iff \(x \in L \).

The function problem associated with \(L \) (denoted \(F_L \)) is:

- The class of all function problems associated as above with languages in \(\text{NP} \) is called \(\text{FNP} \).
- \(\text{FP} \) is the subclass of \(\text{FNP} \) solvable in polynomial time.
- FSAT is in \(\text{FNP} \) and FHORNSAT is in \(\text{FP} \) (but it is open whether TSP is in \(\text{FNP} \)).

Reductions and completeness for function problems

A function problem \(A \) reduces to a function problem \(B \) if there are string functions \(R, S \) computable in logarithmic space such that for all strings \(x, z \): if \(x \) is an instance of \(A \), then \(R(x) \) is an instance of \(B \) and if \(z \) is a correct output of \(R(x) \), then \(S(z) \) is a correct output of \(x \).

- Reductions compose among function problems.
- A problem \(A \) is complete for a class \(\mathcal{F}_C \) of function problems if it is in \(\mathcal{F}_C \) and every problem in \(\mathcal{F}_C \) reduces to \(A \).
- \(\text{FP} \) and \(\text{FNP} \) are closed under reductions.
- FSAT is \(\text{FNP} \)-complete.
- \(\text{FP} = \text{FNP} \) iff \(P = \text{NP} \).

6. Total Functions

- There are certain important problems in \(\text{FNP} \) that are guaranteed to never return "no".

Example. FACTORING: Given an integer \(N \), find its prime decomposition \(N = p_1^{k_1} \cdots p_m^{k_m} \).
(No known polynomial time algorithm).

- FACTORING seems to be different from the other hard problems in \(\text{FNP} \); it is a total function in a sense:

Definition. A problem \(L \) in \(\text{FNP} \) is called total if for every string \(x \) there is at least one string \(y \) such that \(R_L(x, y) \).

- The subclass of \(\text{FNP} \) containing all total function problems is denoted by \(\text{TFNP} \).
There are also other problems in TFNP with no known polynomial time algorithm.

Example. HAPPYNET:

INSTANCE: An undirected graph \(G = (V, E) \) with integer weights \(w \) on edges.

GOAL: Find a state of the graph where all nodes are happy.

- A state is a mapping \(S: V \mapsto \{-1, +1\} \).
- A node \(i \) is happy in a state \(S \) of \(G = (V, E) \) if
 \[S(i) \cdot \sum_{[i, j] \in E} S(j)w[i, j] \geq 0. \]

Properties of HAPPYNET

- Every instance is guaranteed to have a happy state which can be found using the following algorithm:
 Start with any \(S \) and while there is an unhappy node, flip it.
- This algorithm is not polynomial but pseudopolynomial \(O(W) \) where \(W \) is the sum of all weights.
- No polynomial algorithm known.
- HAPPYNET equivalent with finding stable states in neural networks in the Hopfield model.

Learning Objectives

- The definition of coNP and examples of languages from this class, e.g., VALIDITY.
- The characterization of coNP based on disqualifications.
- Reductions and completeness for function problems
- Relationship of decision problems and function problems