Examples of Problems

➤ Representation of problems
➤ Solving problems with algorithms
➤ Rates of growth
➤ Further examples
➤ Reductions
(C. Papadimitriou, *Computational complexity*, Chapter 1)

Problems vs. Algorithms

This course focuses on analyzing the computational complexity of problems (not algorithms).

➤ A problem: an infinite set of possible instances with a question
➤ A decision problem: a question with a yes/no answer

Example. REACHABILITY:
INSTANCe: A graph \((V,E)\) and nodes \(v,u \in V\).
QUESTION: Is there a path in the graph from \(v\) to \(u\)?

Algorithm for REACHABILITY

\[
S := \{v\}; \text{mark } v; \\
\text{while } S \neq \{\} \text{ do} \\
\quad \text{choose a node } i \text{ and remove it from } S; \\
\quad \text{for all } (i,j) \in E \text{ do} \\
\quad\quad \text{if } j \text{ is not marked then mark } j \text{ and add it to } S \\
\quad\text{endif} \\
\text{endfor} \\
\text{ endwhile; } \\
\text{if } u \text{ marked then return 'there is a path from } v \text{ to } u' \\
\text{else return 'there is no path from } v \text{ to } u' \\
\text{endif}
\]

Questions

How efficient is the algorithm?
How is it affected by

➤ Programming language?
➤ Computer architecture?
➤ Representation of the graph?
➤ Representation of the set \(S\)

Given certain assumptions the algorithm terminates in \(O(|E|)\) steps.
Rates of Growth

Let $f, g : \mathbb{N} \to \mathbb{N}$.

- \[f(n) = O(g(n)) \] (\textit{f grows as \textit{g} or slower}), if there are positive integers c and n_0 such that for all $n \geq n_0$, $f(n) \leq c \cdot g(n)$
- \[f(n) = \Omega(g(n)) \], if $g(n) = O(f(n))$
- \[f(n) = \Theta(g(n)) \], if $g(n) = O(f(n))$ and $f(n) = O(g(n))$.

Example. If $p(n)$ is a polynomial of degree d, then $p(n) = \Theta(n^d)$.

If $c > 1$ is an integer and $p(n)$ a polynomial, then $p(n) = O(c^n)$ but $p(n) \neq \Omega(c^n)$, i.e.,

\textit{any polynomial grows strictly slower than any exponential}.

If $k > 1$ is an integer, then $\log^k n = O(n)$

Simplifying Assumptions

The following simplifying assumptions are introduced when the computational complexity of problems is analyzed:

- A problem is \textit{efficiently solvable} when there is an algorithm solving the problem such that the rate of growth of the solution time is \textit{polynomial} w.r.t. the size n of the input ($O(n^d)$)
- A problem is \textit{intractable} when no polynomial time algorithm available for it.
- Consider the \textit{worst-case performance} (not, e.g., average case).
- Mathematical model of algorithms: \textit{Turing machines}

Discussion

Possible criticism:

- Not all polynomial time algorithms are efficient in practice. There are efficient computations that are not polynomial. For instance, consider n^{80} vs 2^{100}.
- Average case analysis is more informative than worst-case.

\begin{quote}
\textit{"Adopting polynomial time worst-case performance as our criterion of efficiency results in an elegant and useful theory that says something meaningful about practical computation, and would be impossible without this simplification."}
\end{quote}

Further Examples

- Maximum flow
- Bipartite matching
- The traveling salesperson problem
Maximum Flow

MAX FLOW

INSTANCE: Network $N = (V, E, s, t, c)$, where (V, E) is a (directed) graph, $s, t \in V$, the source s has no incoming edges, the sink t has no outgoing edges and c is a function giving a capacity for each edge (each $c(i, j)$ is a positive integer).

QUESTION: What is the largest possible value for the flow in N?

Definition. A flow is a function f that assigns for each edge (i, j) a nonnegative integer $f(i, j) \leq c(i, j)$ such that for each node (except s, t) the sum of fs of the incoming edges is equal to the sum of fs of the outgoing edges.

The value of the flow is the sum of the flows in the edges leaving s.

Discussion

➤ MAX FLOW is an optimization problem.
➤ MAX FLOW(D) (decision problem)
 INSTANCE: Network N and integer K (goal/target value)
 QUESTION: Is there a flow of value K or more?
➤ MAX FLOW and MAX FLOW(D) are roughly equivalent.
➤ MAX FLOW is a nice example of a problem where the challenge was to find a polynomial time solution method.
➤ When “the barrier of exponentiality” was broken, more and more efficient polynomial time algorithms were developed ($O(n^3)$,...,$O(n^3)$,...)

Bipartite Matching

MATCHING

INSTANCE: Bipartite graph $B = (U, V), E)$, where $U = \{u_1, \ldots, u_n\}$, $V = \{v_1, \ldots, v_n\}$, and $E \subseteq U \times V$.

QUESTION: Is there a set $M \subseteq E$ of n edges such that for any two edges $(u, v), (u', v') \in M$, $u \neq u'$ and $v \neq v'$ (is there a perfect matching)?

Reductions

➤ A reduction is an algorithm that solves problem A by transforming any instance x of A to an equivalent instance of a problem B (for which an algorithm already exists).

Algorithm for A:

<table>
<thead>
<tr>
<th>Input x</th>
<th>Reduction $R(x)$</th>
<th>Algorithm for B</th>
<th>Answer</th>
</tr>
</thead>
</table>

➤ An efficient algorithm for B provides an efficient algorithm for A if the reduction R from A to B is efficient.
Example

MATCHING can be solved by a reduction to MAX FLOW:
Given any bipartite graph \(B = (U, V, E) \), construct a network
\[N = (V \cup U \cup \{s, t\}, E', s, t, c), \]
where
\[E' = E \cup \{(s, u) \mid u \in U\} \cup \{(v, t) \mid v \in V\} \]
and all capacities equal to 1.

\(B \) has a perfect matching iff \(N \) has a flow of value \(n \).

Discussion

A naive algorithm for TSP: enumerate all possible permutations, compute the cost of each, and pick the best.
Not very practical: \(O(n!) \) tours, e.g. \(10! = 3,628,800 \).

For TSP no polynomial algorithm is known (despite very intensive efforts of developing one).
Conjecture: there can be no polynomial-time algorithm for TSP.
This is closely related to one of the most important open problems in computer science: \(P = NP? \)

The Traveling Salesperson Problem

TSP

INSTANCE: \(n \) cities \(1, \ldots, n \) and a nonnegative integer distance \(d_{ij} \)
between any two cities \(i \) and \(j \) (such that \(d_{ij} = d_{ji} \)).

QUESTION:
What is the shortest tour of the cities, i.e., a permutation \(\pi \) such that
\[\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \]
is as small as possible (where \(\pi(n+1) = \pi(1) \)).

Decision problem TSP(D): is there a tour of length at most \(B \) (budget)?

Learning Objectives

Ability to read and formulate decision/optimization problems
Basic understanding of growth rates (polynomial vs. exponential)
The idea of reducing one problem in another