RELATIONS BETWEEN COMPLEXITY CLASSES

➤ Basic requirements for complexity classes
➤ Complexity classes
➤ Hierarchy theorems
➤ Reachability method
➤ Class inclusions
➤ Simulating nondeterministic space
➤ Closure under complement

(C. Papadimitriou: Computational complexity, Chapter 7)

1. Basic Requirements for Complexity Classes

A complexity class is specified by
➤ model of computation (multi-string TMs)
➤ mode of computation (deterministic, nondeterministic, . . .)
➤ resource (time, space, . . .)
➤ bound (function f)

A complexity class is the set of all languages decided by some multi-string Turing machine M operating in the appropriate mode, and such that, for any input x, M expends at most f(|x|) units of the specified resource.

Reasonable bound functions

Definition. A function f : N → N is a proper complexity function if f is nondecreasing and there is a k-string TM M_f with input and output such that on any input x,
1. M_f(x) = ⊓ |f(|x|)| where ⊓ is a quasi-blank symbol,
2. M_f halts after O(|x| + f(|x|)) steps, and
3. M_f uses O(f(|x|)) space besides its input.

➤ Examples of proper complexity functions f(n):
 c, n, ⌈log n⌉, log^2 n, nlog n, n^2, n^3 + 3n, 2^n, √n, n!, . . .
➤ If f and g are proper, so are, e.g., f + g, f · g, 2^g.
➤ Only proper complexity functions will be used as bounds.

Precise Turing machines

Definition. Let M be a deterministic/nondeterministic multi-string Turing machine (with or without input and output).

Machine M is precise if there are functions f and g such that for every n ≥ 0, for every input x of length n, and for every computation of M,
1. M halts after precisely f(|x|) steps and
2. all of its strings (except those reserved for input and output whenever present) are at halting of length precisely g(|x|).

(Precise bounds will be convenient in various simulation results).
Simulating TMs with precise TMs

Proposition. Let M be a deterministic or nondeterministic TM deciding a language L within time/space $f(n)$ where f is proper. Then there is a precise TM M' which decides L in time/space $O(f(n))$.

Proof sketch. The simulating machine M'
1. computes a yardstick/alarm clock $\Gamma_f(|x|)$ using M_f and
2. simulates M for exactly $f(|x|)$ steps or
 simulates M using exactly $f(|x|)$ units of space.

2. Complexity Classes

- Given a proper complexity function f, we obtain following classes:
 - $\text{TIME}(f)$ (deterministic time)
 - $\text{NTIME}(f)$ (nondeterministic time)
 - $\text{SPACE}(f)$ (deterministic space)
 - $\text{NSPACE}(f)$ (nondeterministic space)

- The bound f can be a family of functions parameterized by a non-negative integer k; meaning the union of all individual classes.

 The most important are:
 - $\text{TIME}(n^k) = \bigcup_{j>0} \text{TIME}(n^j)$
 - $\text{NTIME}(n^k) = \bigcup_{j>0} \text{NTIME}(n^j)$

Complements of decision problems

- Given an alphabet Σ and a language $L \subseteq \Sigma^*$, the *complement* of L is $\overline{L} = \Sigma^* - L$.

- For a decision problem A, the answer for the complement “A COMPLEMENT” is “yes” iff the answer for A is “no”.

Example. SAT COMPLEMENT: given a Boolean expression ϕ in CNF, is ϕ unsatisfiable?

Example. $\text{REACHABILITY COMPLEMENT}$: given a graph (V, E) and nodes $v, u \in V$, is it the case that there is no path from v to u?
Closure under Complement

- For any complexity class \(C \), \(\text{co} C \) denotes the class \(\{ L \mid L \in C \} \).
- All deterministic time and space complexity classes are closed under complement. Hence, e.g., \(P = \text{co} P \).

 Proof. Exchange “yes” and “no” states of the deciding machine.
- The same holds for nondeterministic space complexity classes (to be shown in the sequel).
- An important open question: are nondeterministic time complexity classes closed under complement? E.g., \(\text{NP} = \text{coNP} \)?

3. Hierarchy Theorems

- We derive a quantitative hierarchy result: with sufficiently greater time allocation, Turing machines are able to perform more complex computational tasks.

 For a proper complexity function \(f(n) \geq n \), define

 \[
 H_f = \{ M \mid \text{M accepts input } x \text{ after at most } f(|x|) \text{ steps} \}.

 Thus \(H_f \) is the time-bounded version of \(H \), i.e. the language of the HALTING problem.

Upper bound for \(H_f \)

Lemma. \(H_f \in \text{TIME}((f(n))^3) \).

Proof sketch.

A 4-string machine \(U_f \) deciding \(H_f \) in time \(f(n)^3 \) is based on

(i) the universal Turing machine \(U \),
(ii) the single-string simulator of a multi-string machine,
(iii) the linear speedup machine, and
(iv) the machine \(M_f \) computing the yardstick of length \(f(n) \) where \(n \) is the length of the input \(M;x \).

Proof—cont’d.

The machine \(U_f \) operates as follows:

1. \(M_f \) computes the alarm clock \(\land^{f(|x|)} \) for \(M \) (string 4).
2. The description of \(M \) is copied on string 3 and string 2 initialized to encode the initial state \(s \) and string 1 the input \(x \).
3. Then \(U_f \) simulates \(M \) and advances the alarm clock. If \(U_f \) finds out that \(M \) accepts input \(x \) within \(f(|x|) \) steps, then \(U_f \) accepts, but if the alarm clock expires, then \(U_f \) rejects.

Observations:

- Since \(M \) is simulated using a single string, each simulation step takes \(O(f(n)^2) \) time.
- The total running time is \(O(f(n)^3) \) for \(f(|x|) \) steps.
The space hierarchy theorem

Theorem. If \(f(n) \geq n \) is a proper complexity function, then the class \(\text{SPACE}(f(n)) \) is a proper subset of \(\text{SPACE}(f(n) \log f(n)) \).

However, counter-intuitive results are obtained if non-proper complexity functions are allowed.

Theorem. (The Gap Theorem).
There is a recursive function \(f \) from the nonnegative integers to the nonnegative integers such that \(\text{TIME}(f(n)) = \text{TIME}(2^{f(n)}) \).

Proof sketch.
The bound \(f \) can be defined so that no TM \(M \) computing on input \(x \) with \(|x| = n \) halts after number of steps between \(f(n) \) and \(2^{f(n)} \).

Lower bound for \(H_f \)

Lemma. \(H_f \not\in \text{TIME}(f(\lfloor \frac{n}{2} \rfloor)) \)

Proof sketch.
- Suppose there is a TM \(M_{H_f} \) that decides \(H_f \) in time \(f(\lfloor \frac{n}{2} \rfloor) \).
- Consider \(D_f(M) \): if \(M_{H_f}(M;M) = \text{"yes"} \) then \(\text{"no"} \) else \(\text{"yes"} \).
- Thus \(D_f \) on input \(M \) runs in time \(f(\lfloor \frac{2|M|+1}{2} \rfloor) = f(|M|) \).
- If \(D_f(D_f) = \text{"yes"} \), then \(D_f \supseteq D_f \not\in H_f \) and \(D_f \) fails to accept input \(D_f \) within \(f(|D_f|) \) steps, i.e. \(D_f(D_f) = \text{"no"} \), a contradiction.
- Hence, \(D_f(D_f) \neq \text{"yes"} \). Then \(D_f(D_f) = \text{"no"} \) and \(M_{H_f}(D_f) = \text{"yes"} \). Therefore, \(D_f \) accepts input \(D_f \) within \(f(|D_f|) \) steps, i.e., \(D_f(D_f) = \text{"yes"} \), a contradiction again.

The time hierarchy theorem

Theorem. If \(f(n) \geq n \) is a proper complexity function, then the class \(\text{TIME}(f(n)) \) is strictly contained within \(\text{TIME}(f(2n+1))^3 \).

- \(\text{TIME}(f(n)) \subseteq \text{TIME}(f(2n+1))^3 \) as \(f \) is nondecreasing.
- By the first lemma: \(H_{f(2n+1)} \subseteq \text{TIME}(f(2n+1))^3 \).
- By the second lemma:
 - \(H_{f(2n+1)} \not\subseteq \text{TIME}(f(\lfloor \frac{2n+1}{2} \rfloor)) = \text{TIME}(f(n)) \).

Corollary. \(P \) is a proper subset of \(\text{EXP} \).

- Since \(n^k = O(2^n) \), we have \(P \subseteq \text{TIME}(2^n) \subseteq \text{EXP} \).
- It follows by the time hierarchy theorem that \(\text{TIME}(2^n) \subset \text{TIME}(2^{n+1})^3 \subseteq \text{TIME}(2^{n^2}) \subseteq \text{EXP} \).

4. Reachability Method

Theorem. Let \(f(n) \) be a proper complexity function. Then

- (a) \(\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n)) \) and \(\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n)) \).
- (b) \(\text{NTIME}(f(n)) \subset \text{SPACE}(f(n)) \).
- (c) \(\text{NSPACE}(f(n)) \not\subseteq \text{TIME}(\log n + f(n)) \).

Proofs.

- (a) A TM is a NTM, too.
- (b) Simulation of all choices within space \(f(n) \) (see below).
- (c) Proof by reachability method (see below).
Proof of $\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n))$

- Let $L \in \text{NTIME}(f(n))$. Hence there is a precise nondeterministic Turing machine N that decides L in time $f(n)$.
- Let d be the degree on nondeterminism (maximal number of possible moves for any state-symbol pair in Δ).
- Any computation of N is a $f(n)$-long sequence of nondeterministic choices (represented by integers $0, 1, \ldots, d-1$).
- The simulating deterministic machine M considers all such sequences of choices and simulates N on each.

Proof—cont’d.

- With sequence $(c_1, c_2, \ldots, c_{f(n)})$ M simulates the actions that N would have taken had N taken choice c_i at step i.
- If a sequence leads N to halting with “yes”, then M does, too. Otherwise it considers the next sequence. If all sequences are exhausted without accepting, then M rejects.
- There is an exponential number of simulations to be tried but they can be carried out in space $f(n)$ by carrying them out one-by-one, always erasing the previous simulation to reuse space.
- As $f(n)$ is proper, the first sequence $0^{f(n)}$ can be generated in space $f(n)$.

Proof of $\text{NSPACE}(f(n)) \subseteq \text{TIME}(\log n + f(n))$

The reachability method is used to prove the claim.

- Consider a k-string nondeterministic TM M with input and output which decides a language L within space $f(n)$.
- We develop a deterministic method for simulating the nondeterministic computation of M on input x within time $c^{\log n + f(n)}$ where $n = |x|$ and c is a constant depending on M.
- The configuration graph $G(M, x)$ of M is used: nodes are all possible configurations of M and there is an edge between two nodes (configurations) C_1 and C_2 iff $C_1 \xrightarrow{M} C_2$.
- Now $x \in L$ iff there is a path from $C_0 = (s, x, \varepsilon, \varepsilon, \ldots, \varepsilon, \varepsilon)$ to some configuration of the form $C = (\text{“yes”}, \ldots)$ in $G(M, x)$.
Proof—cont’d.

- Hence, deciding whether \(x \in L \) holds can be done by solving a reachability problem for a graph with at most \(c_1 \log n + f(n) \) nodes.
- The problem can be solved, say, with a quadratic algorithm in time \(c_2 \log n + f(n) \) with \(c = c_2 c_1^2 \).
- The graph \(G(M,x) \) needs not to be represented explicitly (e.g., as an adjacency matrix) for the reachability algorithm.
- The existence of an edge from \(C \) to \(C' \) can be determined on the fly by examining \(C, C', \) and the description of \(M \).

5. Class Inclusions

Corollary. \(L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP \).

Proof.

1. \(L = SPACE(\log n) \subseteq NSPACE(\log n) = NL \) follows by (a).
2. \(NL = NSPACE(\log n) \subseteq TIME(\log n) = TIME(n^{\log c}) \subseteq P \) follows by (c).
3. By (a) \(TIME(n^k) \subseteq NTIME(n^k) \) which implies \(P \subseteq NP \).
4. By (b) \(NTIME(n^k) \subseteq SPACE(n^k) \) which implies \(NP \subseteq PSPACE \).
5. By (a) and (c) \(SPACE(n^k) \subseteq NSPACE(n^k) \subseteq TIME(\log n + n^k) \subseteq TIME(2^{n^k + c}) \subseteq EXP \).

6. Simulating Nondeterministic Space

- The question is how efficiently can we simulate nondeterministic space by deterministic space?
- It follows by the previous theorem that
 \(NSPACE(f(n)) \subseteq TIME(\log n + f(n)) \subseteq SPACE(\log n + f(n)) \).
- But can we do better than this?
- Yes, in fact. Nondeterministic space can be simulated with quadratic deterministic space (using a theorem that follows).

Which inclusions are proper?

Corollary. The class \(L \) is a proper subset of \(PSPACE \).

Proof. The space hierarchy theorem tells us \(L = SPACE(\log n) \subseteq SPACE(\log n \log \log(n)) \subseteq \SPACE(n^2) \subseteq PSPACE \). □

It is believed that all inclusions of the complexity classes in \(L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP \) are proper.

However, we only know that

- at least one of the inclusions between \(L \) and \(PSPACE \) is proper (but don’t know which) and
- at least one of the inclusions between \(P \) and \(EXP \) is proper (but don’t know which).
Savitch’s theorem

Theorem. \(\text{REACHABILITY} \in \SPACE(\log^2 n) \).

Proof sketch.
- Given a graph \(G \) and nodes \(x, y \) and \(i \geq 0 \), define \(\PATH(x, y, i) \): there is a path from \(x \) to \(y \) of length at most \(2^i \).
- If \(G \) has \(n \) nodes, any simple path is at most \(n \) long and we can solve reachability in \(G \) if we can compute whether \(\PATH(x, y, \lceil \log n \rceil) \) holds for any given nodes \(x, y \) of \(G \).
- This can be done using middle-first search.

Proof—cont’d.

- **function** \(\text{path}(x, y, i) \) /* middle-first search */
 - if \(i = 0 \) then
 - if \(x = y \) or there is an edge \((x, y) \) in \(G \) then return “yes”
 - else for all nodes \(z \) do
 - if \(\text{path}(x, z, i - 1) \) and \(\text{path}(z, y, i - 1) \) then return “yes”;
 - return “no”
- **Proof that** \(\text{path}(x, y, i) \) **correctly determines** \(\PATH(x, y, i) \):
 - If \(i = 0 \), then clearly \(\text{path} \) correctly determines \(\PATH(x, y, 0) \).
 - For \(i > 0 \), \(\text{path}(x, y, i) \) returns “yes” iff there is a node \(z \) with
 - \(\text{path}(x, z, i - 1) \) and \(\text{path}(z, y, i - 1) \) holding. By the inductive hypothesis there are paths from \(x \) to \(z \) and from \(z \) to \(y \) both at most \(2^{i-1} \) long. Then there is a path from \(x \) to \(y \) at most \(2^i \) long.

Corollary. For any proper complexity function \(f(n) \geq \log n \),

\[
\NSPACE(f(n)) \subseteq \SPACE((f(n))^2).
\]

Proof.
- To simulate an \(f(n) \)-space bounded NTM \(M \) on input \(x \), run the previous algorithm on the configuration graph \(G(M, x) \).
- The edges of the graph \(G(M, x) \) are determined on the fly by consulting the description of \(M \).
- The configuration graph has at most \(c_1 \log n + f(n) \leq c f(n) \) nodes.
- By Savitch’s theorem, the algorithm needs at most
 - \((\log c f(n))^2 = f(n)^2 \log^2 c = O(f(n)^2) \) space.

Corollary. \(\PSPACE = \NPSPACE \).

\[\square \] Nondeterminism is less powerful with respect to space than time.
7. Closure under Complement

- A key result about reachability will be established: the number of nodes reachable from a node \(x \) can be computed in nondeterministic \(\log n \) space!
- The complement (the number of nodes not reachable from \(x \)) can be handled in nondeterministic \(\log n \) space, too!
 (This quantity can be obtained by a simple subtraction.)
- It is open (and doubtful) whether nondeterministic time complexity classes are closed under complement.

Immerman-Szelepcsényi theorem

Theorem. Given a graph \(G \) and a node \(x \), the number of nodes reachable from \(x \) in \(G \) can be computed by a NTM within space \(\log n \).

Proof.

- Let us define \(S(k) \) as the set of nodes in \(G \) which are reachable from \(x \) via paths of length \(k \) or less.
- The strategy is to compute values \(|S(1)|, |S(2)|, \ldots, |S(n-1)| \) iteratively and recursively, i.e. \(|S(i)| \) is computed from \(|S(i-1)| \).
- Given that the number of nodes in \(G \) is \(n \), the number of nodes reachable from \(x \) in \(G \) is \(|S(n-1)| \).
- Let \(G(v,u) \) mean that \(v = u \) or there is an arc from \(v \) to \(u \) in \(G \).

Proof—cont’d.

The nondeterministic algorithm:

\[
|S(0)| := 1; \\
\text{for } k := 1, 2, \ldots, n-1 \text{ do} \\
\quad l := 0; \\
\quad \text{for each node } u := 1, 2, \ldots, n \text{ do} \\
\quad \quad \text{check whether } u \in S(k) \text{ and set } reply \text{ accordingly;} \\
\quad \quad /* \text{ See below how this is implemented */} \\
\quad \quad \text{if } reply = \text{true} \text{ then } l := l + 1; \\
\quad \text{end for;} \\
\quad |S(k)| := l \\
\text{end for}
\]
Proof—cont’d.

/* Check whether \(u \in S(k) \) and set reply */
\(m := 0; \text{reply} := \text{false}; \)
for each node \(v := 1, 2, \ldots, n \) do
 /* check whether \(v \in S(k-1) \) */
 \(w_0 := x; \text{path} := \text{true} \)
 for \(p := 1, 2, \ldots, k-1 \) do
 guess a node \(w_p; \) if not \(G(w_{p-1},w_p) \) then \(\text{path} := \text{false} \)
 end for
 if \(\text{path} = \text{true} \) and \(w_{k-1} = v \) then
 \(m := m + 1; \) /* \(v \in S(k-1) \) holds */
 if \(G(v,u) \) then reply := \text{true} \)
 end if
end for
if \(m < |S(k-1)| \) then “give up” (end in “no” state)

Corollary. If \(f(n) \geq \log n \) is a proper complexity function, then
\(\text{NSPACE}(f(n)) = \text{coNSPACE}(f(n)) \).

Proof sketch.

- Suppose \(L \in \text{NSPACE}(f(n)) \) is decided by an \(f(n) \)-space bounded
 NTM \(M \). We build an \(f(n) \)-space bounded NTM \(\overline{M} \) deciding \(L \).

- On input \(x \), \(\overline{M} \) runs the previous algorithm on the configuration
 graph \(G(M,x) \) associated with \(M \) and \(x \).

- \(\overline{M} \) rejects if it finds an accepting configuration in any \(S(k) \).

- Since \(G(M,x) \) has at most \(n_g = c^{f(n)} \) nodes, then \(\overline{M} \) can accept if
 \(|S(n_g - 1)| \) is computed without an accepting configuration.

- Due to bound \(n_g \), \(\overline{M} \) needs at most \(\log c^{f(n)} = O(f(n)) \) space.

Proof—cont’d.

- Variables can be implemented on a \(\log n \)-space bounded NTM.

- The algorithm computes correctly \(|S(k)| \) (by induction on \(k \)):
 - If \(k = 0 \), then \(|S(k)| = 1 \) as given by the algorithm.
 - For \(k > 0 \), consider a computation that does not “give up”. We
 need to show that counter \(l \) is incremented iff \(u \in S(k) \).

If counter \(l \) is incremented, then reply = \text{true} implying that
\(u \in S(k) \), i.e. there is a path \((x =)w_0, \ldots, w_{k-1}(= v), u \).
If \(u \in S(k) \), then there is some \(v \in S(k-1) \) such that \(G(v,u) \). But
as the computation does not “give up”, \(m = |S(k-1)| \) (which is the
correct value by induction) and therefore all \(v \in S(k-1) \) are
verified as such and, thus, reply is set to \text{true}.

- Moreover, clearly there is at least one accepting computation
 where paths to the members of \(S(k-1) \) are correctly guessed.