1. Syntax

The syntax of Boolean logic (i.e. the set of well-formed Boolean expressions) is based on the following symbols:

- Boolean variables (or atoms): $X = \{x_1, x_2, \ldots\}$.
- Boolean connectives: \lor, \land, and \neg.

The set of Boolean expressions (formulae) is the smallest set such that all Boolean variables are Boolean expressions and if ϕ_1 and ϕ_2 are Boolean expressions, so are $\neg \phi_1$, $(\phi_1 \land \phi_2)$, and $(\phi_1 \lor \phi_2)$.

An expression of the form x_i or $\neg x_i$ is called a literal where x_i is a Boolean variable.

Example. $((x_1 \lor x_2) \land \neg x_3)$ is a Boolean expression but $((x_1 \lor x_2) \neg x_3)$ is not.

Some notational conventions

- Simplified notation: $((x_1 \lor \neg x_3) \lor (x_4 \lor (x_2 \land x_5)))$ is written as $x_1 \lor \neg x_3 \lor x_2 \lor x_4 \lor x_5$ or $x_1 \lor \neg x_3 \land x_2 \lor x_4 \land x_5$.

- Disjunctions and conjunctions involving n members:
 - $\lor_{i=1}^{n} \varphi_i$ stands for $\varphi_1 \lor \cdots \lor \varphi_n$.
 - $\land_{i=1}^{n} \varphi_i$ stands for $\varphi_1 \land \cdots \land \varphi_n$.

- Frequently appearing abbreviations:
 - An implication $\phi_1 \rightarrow \phi_2$ stands for $\neg \phi_1 \lor \phi_2$.
 - An equivalence $\phi_1 \leftrightarrow \phi_2$ stands for $(\neg \phi_1 \lor \phi_2) \land (\neg \phi_2 \lor \phi_1)$.

Motivation

- Logic involves interesting computational problems.

- Logic is “the calculus of computer science”: digital circuit design, programming language semantics, specification and verification, constraint programming, logic programming, databases, artificial intelligence, knowledge representation, machine learning, . . .

- In computational complexity theory:
 Computational problems from logic are of central importance; they can be used to express computation at various levels. This leads to important connections between complexity concepts and actual computational problems.
2. Semantics

How to interpret Boolean expressions?

- Boolean expressions are propositions that are either true or false. They speak about a world where certain atomic propositions (Boolean variables) are either true or false. This induces truth values for Boolean expressions as follows.

- A truth assignment T is a mapping from a finite subset $X' \subseteq X$ to the set of truth values $\{\text{true, false}\}$.

- Let $X\phi$ be the set of Boolean variables appearing in ϕ.

Definition. A truth assignment $T : X' \rightarrow \{\text{true, false}\}$ is appropriate to ϕ if $X(\phi) \subseteq X'$.

Logical equivalence

Definition. Expressions ϕ_1 and ϕ_2 are logically equivalent ($\phi_1 \equiv \phi_2$) iff for all truth assignments T appropriate to both of them,

$$T \models \phi_1 \text{ iff } T \models \phi_2.$$

Example.

$$(\phi_1 \lor \phi_2) \equiv (\phi_2 \lor \phi_1)$$

$$(\phi_1 \land \phi_2) \equiv (\phi_1 \land (\phi_2 \lor \phi_3))$$

$$(\lnot \phi_1 \equiv \phi)$$

$$(\lnot (\phi_1 \land \phi_2) \equiv (\lnot \phi_1 \lor \lnot \phi_2))$$

$$(\phi_1 \lor \phi_1) \equiv \phi_1$$

3. Normal Forms

Theorem. Every Boolean expression is equivalent to one in conjunctive (disjunctive) normal form CNF (DNF).

- These forms are defined by

 CNF: $(l_{11} \lor \cdots \lor l_{1n}) \land \cdots \land (l_{m1} \lor \cdots \lor l_{mn})$

 DNF: $(l_{11} \land \cdots \land l_{1n}) \lor \cdots \lor (l_{m1} \land \cdots \land l_{mn})$

 where each l_{ij} is a literal (Boolean variable or its negation).

- A disjunction $l_1 \lor \cdots \lor l_n$ of literals is called a clause.

- A conjunction $l_1 \land \cdots \land l_n$ of literals is called an implicant.

- We can assume that normal forms do not have repeated clauses/implicants or repeated literals in clauses/implicants.

Example.

$$(\lnot x_1 \lor \lnot x_1 \lor x_2) \equiv (\lnot x_1 \lor x_2).$$
Consider deriving a CNF for \(\phi \) (satisfiable iff \(T \models \phi \)).

Example. Consider deriving a CNF for \((x_1 \land \neg x_1) \lor \ldots \lor (x_n \land \neg x_n)\).

The result is a mixed conjunction and disjunction of literals.

The next phase depends on the normal form being pursued:

- For a CNF, move \(\land \) connectives outside \(\lor \) connectives:
 \[
 \alpha \lor (\beta \land \gamma) \iff (\alpha \lor \beta) \land (\alpha \lor \gamma) \quad (6)
 \]
 \[
 (\alpha \land \beta) \lor \gamma \iff (\alpha \lor \gamma) \land (\beta \lor \gamma) \quad (7)
 \]

- For a DNF, move \(\lor \) connectives outside \(\land \) connectives:
 \[
 \alpha \land (\beta \lor \gamma) \iff (\alpha \land \beta) \lor (\alpha \land \gamma) \quad (8)
 \]
 \[
 (\alpha \lor \beta) \land \gamma \iff (\alpha \land \gamma) \lor (\beta \land \gamma) \quad (9)
 \]

Note: Normal forms can be exponentially bigger than the original expression in the worst case.

Example. Transform \((x_1 \lor x_2) \rightarrow (x_2 \leftrightarrow x_3)\) into CNF:

\[
\begin{align*}
(x_1 \lor x_2) & \rightarrow (x_2 \leftrightarrow x_3) \quad (1) \\
\neg(x_1 \lor x_2) & \lor (x_2 \leftrightarrow x_3) \quad (2) \\
\neg(x_1 \lor x_2) & \lor ((\neg x_2 \lor x_1) \land (\neg x_3 \lor x_2)) \quad (4) \\
(\neg x_1 \land \neg x_2) & \lor ((\neg x_2 \lor x_1) \land (\neg x_3 \lor x_2)) \quad (7) \\
(\neg x_1 \lor (\neg x_2 \lor x_1) \land (\neg x_3 \lor x_2)) \land (\neg x_2 \lor ((\neg x_2 \lor x_1) \land (\neg x_3 \lor x_2))) \quad (6) \\
((\neg x_1 \lor (\neg x_2 \lor x_1) \land (\neg x_3 \lor x_2)) \lor (\neg x_1 \lor (\neg x_2 \lor x_1) \land (\neg x_3 \lor x_2))) \quad (8)
\end{align*}
\]

Moreover, for any Boolean expressions \(\psi_1 \) and \(\psi_2 \),

\[
\psi_1 \equiv \psi_2 \iff \psi_1 \leftrightarrow \psi_2 \iff (\neg \psi_1 \leftrightarrow \psi_2) \text{ is unsatisfiable.}
\]

Satisfiability forms a fundamental computational problem.
Satisfiability Problem

- **SAT problem**: Given φ in CNF, is φ satisfiable?

 Example. $(x_1 \lor \neg x_2) \land \neg x_1$ is satisfiable

 but $(x_1 \lor \neg x_2) \land \neg x_1 \land x_2$ is unsatisfiable.

- SAT can be solved in $O(n^2)$ time (e.g., truth table method).

- SAT \in NP but SAT \in P remains open!

A nondeterministic Turing machine for $\varphi \in$ SAT:

for all variables x in φ do

- choose nondeterministically: $T(x) := \text{true}$ or $T(x) := \text{false}$;

if $T \models \varphi$ then return "yes" else return "no"

Horn clauses

- An interesting special case of SAT concerns Horn clauses, i.e., clauses (disjunction of literals) with at most one positive literal.

 Example. $\neg x_1 \lor x_2 \lor \neg x_3$ and $\neg x_1 \lor \neg x_3$, x_2 are Horn clauses but $\neg x_1 \lor x_2 \lor x_3$ is not.

- A Horn clause with a positive literal is called an implication and can be written as $(x_1 \land x_3) \rightarrow x_2$

 (or $\rightarrow x_2$ when there are no negative literals).

- HORSAT problem:

 Given a conjunction of Horn clauses, is it satisfiable?

Polynomial Time Algorithm for HORSAT

Algorithm $\text{horsat}(S)$

/* Determines whether $S \in$ HORSAT */

$T := \emptyset$ /* T is the set of true atoms */

repeat

 if there is an implication $(x_1 \land x_2 \land \cdots \land x_n) \rightarrow y$ in S

 such that $\{x_1, \ldots, x_n\} \subseteq T$ but $y \notin T$ then

 $T := T \cup \{y\}$

 until T does not change

if for all purely negative clauses $\neg x_1 \lor \cdots \lor \neg x_n$ in S,

 there is some literal $\neg x_i$ such that $x_i \notin T$ then

 return S is satisfiable

else return S is not satisfiable

HORSAT \in P.

5. Boolean Functions and Expressions

- An n-ary Boolean function is a mapping

 $\{\text{true, false}\}^n \rightarrow \{\text{true, false}\}$.

 Example. The connectives \lor, \land, \rightarrow, and \leftrightarrow can be viewed as binary Boolean functions and \neg is a unary function.

- Similarly, any Boolean expression φ can be interpreted as an n-ary Boolean function f_φ where $n = |X(\varphi)|$.

- A Boolean expression φ with variables x_1, \ldots, x_n expresses the n-ary function f if for any n-tuple of truth values $t = (t_1, \ldots, t_n)$,

 $f(t) = \begin{cases}
 \text{true}, & \text{if } T \models \varphi, \\
 \text{false}, & \text{if } T \not\models \varphi.
 \end{cases}$

 where T satisfies $T(x_i) = t_i$ for every $i = 1, \ldots, n$.
Proposition. Any \(n \)-ary Boolean function \(f \) can be expressed as a Boolean expression \(\phi_f \) involving variables \(x_1, \ldots, x_n \).

- The idea: model the rows of the truth table giving \(\text{true} \) as a disjunction of conjunctions.
- Let \(F \) be the set of all \(n \)-tuples \(t = (t_1, \ldots, t_n) \) with \(f(t) = \text{true} \).
- For each \(t \), let \(D_t \) be a conjunction of literals \(x_i \) if \(t_i = \text{true} \) and \(\neg x_i \) if \(t_i = \text{false} \).
- Let \(\phi_f = \bigvee_{t \in F} D_t \)
- Note that \(\phi_f \) may get big in the worst case: \(O(n2^n) \).

Not all Boolean functions can be expressed concisely.

Example.

\[
\begin{array}{c|cc}
 x_1 & x_2 & f \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]

\(\phi_f = \neg x_1 \land x_2 \lor (x_1 \land \neg x_2) \).

6. Boolean Circuits

A more economical way to represent Boolean functions?

Syntax:

- A graph \(C = (V, E) \) where \(V = \{1, 2, \ldots, n\} \) is the set of gates and \(C \) must be acyclic (\(i < j \) for all edges \((i, j) \in E \)).
- All gates \(i \) have a sort \(s(i) \in \{\text{true}, \text{false}, \land, \lor, \neg\} \cup \{x_1, x_2, \ldots\} \).
 - If \(s(i) \in \{\text{true, false}\} \cup \{x_1, x_2, \ldots\} \), the indegree of \(i \) is 0 (inputs).
 - If \(s(i) = \neg \), the indegree of \(i \) is 1.
 - If \(s(i) \in \{\lor, \land\} \), the indegree of \(i \) is 2.
- Node \(n \) is the output of the circuit.

Semantics

A truth assignment is a function \(T : X(C) \rightarrow \{\text{true, false}\} \) where \(X(C) \) is the set of variables appearing in a circuit \(C \).

The truth value \(T(i) \) for each gate \(i \) is defined inductively:

- If \(s(i) = \text{true}, T(i) = \text{true} \) and if \(s(i) = \text{false}, T(i) = \text{false} \).
- If \(s(i) \in X(C), T(i) = T(s(i)) \).
- If \(s(i) = \neg \), then \(T(i) = \text{true} \) if \(T(j) = \text{false} \), otherwise \(T(i) = \text{false} \) where \((j, i) \) is the unique edge entering \(i \).
- If \(s(i) = \land \), then \(T(i) = \text{true} \) if \(T(j) = T(j') = \text{true} \) else \(T(i) = \text{false} \) where \((j, i) \) and \((j', i) \) are the two edges entering \(i \).
- If \(s(i) = \lor \), then \(T(i) = \text{true} \) if \(T(j) = \text{true} \) or \(T(j') = \text{true} \) else \(T(i) = \text{false} \) where \((j, i) \) and \((j', i) \) are the two edges to \(i \).
- \(T(C) = T(n) \), i.e. the value of the circuit \(C \).
Computational problems related with Boolean circuits

- **CIRCUIT SAT:**
 Given a circuit C, is there a truth assignment $T : X(C) \rightarrow \{\text{true, false}\}$ such that $T(C) = \text{true}$?

- **CIRCUIT SAT $\in \text{NP}$**.

- **CIRCUIT VALUE:**
 Given a circuit C with no variables, is it the case that $T(C) = \text{true}$?

- **CIRCUIT VALUE $\in \text{P}$**.
 (No truth assignment is needed as $X(C) = \emptyset$).

Circuits computing Boolean functions

- A Boolean circuit with variables x_1, \ldots, x_n **computes** an n-ary Boolean function f if for any n-tuple of truth values $t = (t_1, \ldots, t_n)$, $f(t) = T(C)$ where $T(x_i) = t_i$ for $i = 1, \ldots, n$.

- Any n-ary Boolean function f can be computed by a Boolean circuit involving variables x_1, \ldots, x_n.

- Not every Boolean function has a concise circuit computing it.

Theorem. For any $n \geq 2$ there is an n-ary Boolean function f such that no Boolean circuit with $\frac{2^n}{2n}$ or fewer gates can compute it.

However, all natural families of Boolean functions seem to need only a linear number of gates to compute!

Learning Objectives

- You should deeply understand the syntax and semantics of Boolean expressions — including their use in practice.

- The relationship/difference between Boolean expressions and circuits.

- Knowing the idea of representing Boolean functions in terms of Boolean expressions and circuits.

- Four computational problems related with Boolean logic and circuits: SAT, HORNSAT, CIRCUIT SAT, and CIRCUIT VALUE.