PARALLEL COMPUTATION AND LOG SPACE

- Parallel algorithms
- Parallel models of computation
- The class NC
- The $L \subseteq NL$ problem
- Alternation

(C. Papadimitriou: *Computational complexity*, Chapters 15 and 16)

1. Parallel Algorithms

- A synchronous architecture with shared memory is assumed.
- The goal of parallel algorithms is to be dramatically better than sequential ones, preferably *polylogarithmic*, i.e. the length of parallel computation is $O(\log^k n)$ for some k.
- However, the executions of parallel algorithms should not require inordinately large (superpolynomial) numbers of processors.
- Let us study the effect of parallelism in two concrete cases: *matrix multiplication* and *graph reachability*.

Matrix Multiplication

- The goal is to compute the product of two $n \times n$ matrices A and B.
- The product $C = A \cdot B$ is defined by
 \[
 C_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj}
 \]
 for indices i and j ranging from 1 to n.
- There is a sequential algorithm with $O(n^3)$ arithmetic operations.
- The same can be achieved in $\log n$ parallel steps by n^3 processors.
- However, the number of processors required by the algorithm can be brought down to $\frac{n^3}{\log n}$ using *Brent’s principle*.

Graph Reachability

- It is suspected that depth-first search is inherently sequential so that it cannot be parallelized in polylogarithmic time.
- A completely different approach is based on the adjacency matrix A of a graph $G = (V,E)$ with self-loops ($A_{ii} = 1$ for all i).
- The Boolean product of A with itself $A^2 = A \cdot A$ is defined by
 \[
 A^2_{ij} = \bigvee_{k=1}^{n} (A_{ik} \wedge A_{kj})
 \]
 for all $1 \leq i, j \leq n = |V|$.
- A parallel algorithm is obtained by computing the *transitive closure* A^* of A by the sequence $A, A^2, A^4, \ldots, A^{2\log n}$.
- The computation involves $O(\log^2 n)$ parallel steps with $O(n^3 \log n)$ total work so that the number of processors required is $O(\frac{n^3}{\log n})$.
Other Problems Summarized

1. Arithmetic Operations
 Using the prefix sum technique, the sum of two \(n \)-bit binary integers can be computed in \(O(\log n) \) parallel time and \(O(n) \) work. For products of \(n \)-bit integers, the work becomes \(O(n^2 \log n) \).

2. Maximum Flow
 A prime example of a polynomial-time solvable problem that seems to be inherently sequential.

3. The Traveling Salesperson Problem
 Parallelism is not sufficient alone to conquer \(NP \)-completeness.

4. Determinants and Inverses
 There is a polylog parallel time & polynomial work algorithm.

Observations

- The amount of work done by a parallel algorithm can be no smaller than the time complexity of the best sequential algorithm.
- Parallel computation is \textit{not} the answer to \(NP \)-completeness: \(\text{work} = \text{parallel time} \times \text{number of processors} \).
- If the amount of work is exponential, then either the number of parallel steps or the number of processors (or both) is exponential.

2. Parallel Models of Computation

- TMs and RAMs are sequential because of the \textit{von Neumann property}: at each instant only a bounded amount of computational activity can occur.
- Boolean circuits are genuinely parallel.
- In the sequel, \textit{uniform} families of Boolean circuits will be used as the basic model of parallel algorithms and computation.
- The primary complexity measures for parallel computation are \textit{parallel time} and \textit{parallel work}.

Parallel time and work

- Let \(C = (C_0, C_1, \ldots) \) be a uniform family of Boolean circuits and let \(f(n) \) and \(g(n) \) be functions from integers to integers.
 - The \textit{parallel time} of \(C \) is at most \(f(n) \) iff for all \(n \) the \textit{depth} of \(C_n \) is at most \(f(n) \).
 - The \textit{parallel work} of \(C \) is at most \(g(n) \) iff for all \(n \) the \textit{size} of \(C_n \) is at most \(g(n) \).
- The class \(\text{PT}/\text{WK}(f(n), g(n)) \) consists of languages \(L \subseteq \{0, 1\}^* \) for which there is a uniform family of circuits \(C \) deciding \(L \) with \(O(f(n)) \) parallel time and \(O(g(n)) \) parallel work.

Example. \(\text{REACHABILITY} \in \text{PT}/\text{WK}(\log^2 n, n^3 \log n) \).
Parallel random access machines

- How realistic models of parallel computation are circuits? They correspond to parallel random access machines (PRAMs!)
- A PRAM program is a set of RAM programs $P = (\Pi_1, \ldots, \Pi_q)$, one for each of the q RAMs.
- Each RAM Π_i executes its own program, has its own program counter and accumulator, i.e. the ith register, but shares all registers (including accumulators and input).
- For concurrent writes the RAM with the smallest index prevails: i.e. the PRIORITY CRCW PRAM is assumed (see note 15.5.7).

Computing functions with PRAMs

- Let F be a function from finite sequences of integers to finite sequences of integers; and $f(n)$ and $g(n)$ functions from positive integers to positive integers.
- Let $\mathcal{P} = \{P_{m,n} \mid m,n \geq 0\}$ be a uniform family of PRAMs.

Definition. The family \mathcal{P} computes F in parallel time f with g processors iff for each $m,n \geq 0$, for $P_{m,n}$ it holds that

1. it has $q(m,n) \leq g(n)$ processors and
2. if $P_{m,n}$ is executed on input I of m integers with total length n, then all $q(m,n)$ RAMs reach a HALT instruction after at most $f(n)$ steps and the $k \leq q(m,n)$ first registers contain the output $F(I)$.

Simulation results

- PRAMs can simulate circuits:
 If $L \subseteq \{0,1\}^*$ is in $\text{PT}/\text{WK}(f(n),g(n))$, then there is a uniform PRAM that computes the corresponding function F_L in parallel time $O(f(n))$ using $O(\frac{g(n)}{f(n)})$ processors.
- Circuits can simulate PRAMs:
 Let F be computed by a uniform PRAM in parallel time $f(n)$ using $g(n)$ processors ($f(n),g(n)$ comp. from 1^n in log space). Then there is a uniform family of circuits of depth $O(f(n)(f(n)+\log n))$ and size $O(g(n)\cdot f(n)(n^k\cdot f(n)+g(n)))$ which computes the binary representation of F.
 (Here n^k is the time bound of the log space TM computing the nth PRAM in the family given 1^n as its input.)
3. The Class \(\text{NC} \)

- What would be the class of problems that is satisfactorily solved by parallel computers? A candidate definition (Nick’s class):
 \[\text{NC} = \text{PT}/\text{WK}(\log^k n, n^k). \]
- \(\text{NC} \) is the class of languages decided by PRAMs in polylogarithmic parallel time and with polynomially many processors.
- However, the difference between e.g. \(\log^3 n \) and \(\sqrt{n} \) is seen only for big \(n \): \(\log^3 10^8 > 18000 \) and \(\sqrt{10^8} = 10000 \).
- One possibility is to consider subclasses of \(\text{NC} \) for \(j = 1, 2, \ldots \):
 \[\text{NC}_j = \text{PT}/\text{WK}(\log^j n, n^k) \] — a potential hierarchy of classes.
- The class \(\text{NC}_2 \) provides an alternative (more conservative) notion of “efficient parallel computation”.

Relang \(\text{NC} \) with \(\text{P} \)

- Clearly \(\text{NC} \subseteq \text{P} \) but is \(\text{NC} = \text{P} \)?
- There seem to be problems in \(\text{P} \) that are inherently sequential.
- Since \(\text{NC} \) and \(\text{NC}_2 \) are closed under log space reductions, \(\text{P} \)-complete problems are the least likely to be in \(\text{NC} \).

\(\text{Conjecture: } \text{NC} \neq \text{P} \).

Example. ODD MAX FLOW:
Given a network \(N = (V, E, s, t, c) \), is the maximum flow value odd?

Theorem. ODD MAX FLOW is \(\text{P} \)-complete.
(So are MAX FLOW(D), HORNSAT, adn CIRCUIT VALUE.)

4. The \(\text{L} \equiv \text{NL} \) problem

We may relate logarithmic space classes and parallel complexity classes:

Theorem. \(\text{NC}_1 \subseteq \text{L} \subseteq \text{NL} \subseteq \text{NC}_2 \).

Proof.
1. The last inclusion follows by reachability method, since REACHABILITY belongs to \(\text{NC}_2 \).
2. The inclusion in the middle is trivial.
3. For the first inclusion, we have to compose three algorithms that operate in logarithmic space (recall Proposition 8.2).

Proof of \(\text{NC}_1 \subseteq \text{L} \) — continued

The following logspace algorithms are needed:
1. The first generates a circuit \(C \) from the given uniform family.
2. The second transforms \(C \) into an equivalent circuit/expression \(E \) whose gates have all outdegree one (no shared subexpressions).
 - Each path in \(C \) identifies a gate in \(E \).
3. The third evaluates the output gate of the tree-like circuit \(E \).
 - During the recursive evaluation, it is sufficient to remember the label of the gate being evaluated and its truth value.

\(\text{Conjecture: } \text{NC}_1 \neq \text{L} \).

The composition operates in logarithmic space. \(\Box \)
Parallel computation thesis

➤ Space and parallel time are polynomially related!
➤ This can be generalized beyond logarithmic space:

\[\text{PT/WK}(f(n), k^{f(n)}) \subseteq \text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n)) \subseteq \text{PT/WK}(f(n)^2, k^{f(n)^2}). \]

Theorem. REACHABILITY is NL-complete.

Theorem. 2SAT is NL-complete.

Actually, all languages in L are L-complete!

Theorem. NL is precisely the class of all graph-theoretic properties expressible in Krom existential second-order logic with successor.

 Alternation

➤ Alternation is an important generalization of nondeterminism.
➤ In a nondeterministic computation each configuration is an implicit OR of its successor configurations: i.e. it “leads to acceptance” if at least one of its successors does.
➤ The idea is to allow both OR and AND configurations in a tree of configurations generated by a NTM N computing on input x.

Definition. An alternating Turing machine N is a nondeterministic Turing machine where the set of states K is partitioned into two sets \(K = K_{\text{AND}} \cup K_{\text{OR}} \).

Given the tree of configurations of N on input x, the eventually accepting configurations of N are defined recursively:

1. Any leaf configuration with state “yes” is eventually accepting.
2. A configuration with state in \(K_{\text{AND}} \) is eventually accepting iff all its successors are.
3. A configuration with state in \(K_{\text{OR}} \) is eventually accepting iff at least one of its successors is.

\[N \text{ accepts } x \text{ iff its initial configuration is eventually accepting.} \]

Alternation-based complexity classes

Definition. An alternating Turing machine N decides a language L iff N accepts all strings \(x \in L \) and rejects all strings \(x \notin L \).

➤ It is straightforward to define \(\text{ATIME}(f(n)) \) and \(\text{ASPACE}(f(n)) \); and using them, \(\text{AP} = \text{ATIME}(n^k) \) and \(\text{AL} = \text{ASPACE}(\log n) \).
➤ Roughly speaking, alternating space classes correspond to deterministic time but one exponential higher.

Theorem. MONOTONIC CIRCUIT VALUE is AL-complete.

Corollary. AL = P.

Corollary. \(\text{ASPACE}(f(n)) = \text{TIME}(k^{f(n)}) \).