1. The Current-Best-Learning algorithm produces hypotheses listed in the following table (not necessarily unique). In the second column, FP and FN denote false positive and false negative examples, respectively.
(a) Starting from the hypothesis $\forall x(\operatorname{WillWait}(x) \leftrightarrow H u n(x))$:

Ex		Hypothesis:
x_{1}		$\forall x($ WillWait $(x) \leftrightarrow$ Hun $(x))$
x_{2}	FP	$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Hun}(x) \wedge \operatorname{Est}(x, 0-10))$
x_{3}	FN	$\forall x($ WillWait $(x) \leftrightarrow \operatorname{Est}(x, 0-10))$
x_{4}	FN	$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Est}(x, 0-10) \vee \operatorname{Est}(x, 10-30))$
x_{5}		$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Est}(x, 0-10) \vee \operatorname{Est}(x, 10-30))$
x_{6}		$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Est}(x, 0-10) \vee \operatorname{Est}(x, 10-30))$
x_{7}	FP	$\begin{aligned} \forall x(\operatorname{WillWait}(x) \leftrightarrow & (\operatorname{Est}(x, 0-10) \wedge \operatorname{Pat}(x, \text { some })) \\ & \vee E s t(x, 10-30)) \end{aligned}$
x_{8}		$\begin{aligned} \forall x(\operatorname{WillWait}(x) \leftrightarrow & (\operatorname{Est}(x, 0-10) \wedge \operatorname{Pat}(x, \text { some })) \\ & \vee E s t(x, 10-30)) \end{aligned}$
x_{9}		$\begin{aligned} \forall x(\operatorname{WillWait}(x) \leftrightarrow & (\operatorname{Est}(x, 0-10) \wedge \operatorname{Pat}(x, \text { some })) \\ & \vee E s t(x, 10-30)) \end{aligned}$
x_{10}	FP	$\begin{aligned} \forall x(\operatorname{WillWait}(x) \leftrightarrow & (E s t(x, 0-10) \wedge \operatorname{Pat}(x, \text { some })) \vee \\ & (E s t(x, 10-30) \wedge \neg \operatorname{Price}(x, \$ \$ \$))) \end{aligned}$
x_{11}		$\begin{aligned} \forall x(\operatorname{WillWait}(x) \leftrightarrow & (\operatorname{Est}(x, 0-10) \wedge \operatorname{Pat}(x, \text { some })) \vee \\ & (E s t(x, 10-30) \wedge \neg \operatorname{Price}(x, \$ \$ \$))) \end{aligned}$
x_{12}	FN	$\begin{aligned} \forall x(\operatorname{WillWait}(x) \leftrightarrow & (\operatorname{Est}(x, 0-10) \wedge \operatorname{Pat}(x, \text { some })) \vee \\ & (\operatorname{Est}(x, 10-30) \wedge \neg \operatorname{Price}(x, \$ \$ \$)) \vee \\ & (E s t(x, 30-60) \wedge \operatorname{Type}(x, \text { burger }))) \end{aligned}$

(b) For the hypothesis $\forall x(\operatorname{WillWait}(x) \leftrightarrow \neg E s t(x, 30-60))$:

Ex		Hypothesis:
x_{1}	FN	$\forall x($ WillWait $(x) \leftrightarrow \operatorname{Est}(x, 30-60) \vee \operatorname{Pat}(x$, some $))$
x_{2}	FP	$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Pat}(x$, some $))$
x_{3}		$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Pat}(x$, some $))$
x_{4}	FN	$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Pat}(x$, some $) \vee \operatorname{Hun}(x))$
x_{5}		$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Pat}(x$, some $) \vee \operatorname{Hun}(x))$
x_{6}		$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Pat}(x$, some $) \vee \operatorname{Hun}(x))$
x_{7}		$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Pat}(x$, some $) \vee \operatorname{Hun}(x))$
x_{8}		$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Pat}(x$, some $) \vee \operatorname{Hun}(x))$
x_{9}		$\forall x(\operatorname{WillWait}(x) \leftrightarrow \operatorname{Pat}(x$, some $) \vee \operatorname{Hun}(x))$
x_{10}	FP	$\begin{aligned} \forall x(\operatorname{WillWait}(x) \leftrightarrow & \operatorname{Pat}(x, \text { some }) \vee \\ & (\operatorname{Hun}(x) \wedge \neg \operatorname{Price}(x, \$ \$ \$))) \end{aligned}$
x_{11}		$\begin{aligned} \forall x(\operatorname{WillWait}(x) \leftrightarrow & \operatorname{Pat}(x, \text { some }) \vee \\ & (\operatorname{Hun}(x) \wedge \neg \operatorname{Price}(x, \$ \$ \$))) \end{aligned}$
x_{12}		$\begin{aligned} \forall x(\operatorname{WillWait}(x) \leftrightarrow & \operatorname{Pat}(x, \text { some }) \vee \\ & (\operatorname{Hun}(x) \wedge \neg \operatorname{Price}(x, \$ \$ \$))) \end{aligned}$

Note: the choices made above are not unique (other solutions exist)!
2. In the candy domain, hypotheses are based on the following five mixings of the two flavours:
$h_{1}: 100 \%$ cherry
$h_{2}: 75 \%$ cherry and 25% lime
$h_{3}: 50 \%$ cherry and 50% lime
$h_{4}: 25 \%$ cherry and 75% lime
$h_{5}: 100 \%$ lime
After unwrapping four pieces of the surprise candy we note that three pieces are cherry flavoured.
(a) To find out the most likely (ML) hypothesis let us denote the observed data, i.e., three cherry candies and one lime candy, by d. The probability of \mathbf{d} (given each hypothesis h_{i} in turn) varies as follows:

$$
\begin{aligned}
& P\left(\mathbf{d} \mid h_{1}\right)=0 \\
& P\left(\mathbf{d} \mid h_{2}\right)=4 \cdot\left(\frac{3}{4}\right)^{3} \cdot \frac{1}{4}=\frac{27}{64} \approx 0.42 \\
& P\left(\mathbf{d} \mid h_{3}\right)=4 \cdot\left(\frac{1}{2}\right)^{3} \cdot \frac{1}{2}=0.25 \\
& P\left(\mathbf{d} \mid h_{4}\right)=4 \cdot\left(\frac{1}{4}\right)^{3} \cdot \frac{3}{4}=\frac{3}{64} \approx 0.047 \\
& P\left(\mathbf{d} \mid h_{5}\right)=0
\end{aligned}
$$

Thus h_{2} is the most likely hypothesis.
(b) Let us then suppose that the prior distribution of the bags is

$$
\langle 0.1,0.1,0.1,0.6,0.1\rangle .
$$

In order to determine the maximum a posteriori (MAP) hypothesis we calculate:
$P\left(h_{1}\right)=0.1$
$P\left(h_{2}\right)=0.1$
$P\left(h_{3}\right)=0.1$
$P\left(h_{4}\right)=0.6$
$P\left(h_{5}\right)=0.1$
$P\left(h_{1} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{1}\right) P\left(h_{1}\right)=0$
$P\left(h_{2} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{2}\right) P\left(h_{2}\right) \approx 0.042 \alpha$
$P\left(h_{3} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{3}\right) P\left(h_{3}\right) \approx 0.025 \alpha$
$P\left(h_{4} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{4}\right) P\left(h_{4}\right) \approx 0.028 \alpha$
$P\left(h_{5} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{5}\right) P\left(h_{5}\right)=0$
$P\left(h_{1} \mid \mathbf{d}\right)=0$
$P\left(h_{2} \mid \mathbf{d}\right)=\frac{0.042}{0.042+0.025+0.028} \approx 0.44$
$P\left(h_{3} \mid \mathbf{d}\right)=\frac{0.025}{0.042+0.025+0.028} \approx 0.26$
$P\left(h_{4} \mid \mathrm{d}\right)=\frac{0.028}{0.042+0.025+0.028} \approx 0.29$
$P\left(h_{5} \mid \mathbf{d}\right)=0$

We conclude that the maximum a posteriori hypothesis is h_{2}, i.e., the prior distribution does not affect the dominating hypothesis.
(c) Next we estimate the probability that the fifth piece of candy is lime:

$$
\begin{aligned}
P(\text { lime } \mid \mathbf{d})= & P\left(\text { lime } \mid h_{2}\right) P\left(h_{2} \mid \mathbf{d}\right)+P\left(\text { lime } \mid h_{3}\right) P\left(h_{3} \mid \mathbf{d}\right)+ \\
& P\left(\text { lime } \mid h_{4}\right) P\left(h_{4} \mid \mathbf{d}\right) .
\end{aligned}
$$

Using the prior distribution of bags given in item (b) we may calculate the probability of getting a lime for the fifth draw:

$$
P(\text { lime } \mid \mathbf{d})=0.25 \cdot 0.44+0.5 \cdot 0.26+0.75 \cdot 0.29 \approx 0.46 \text {. }
$$

