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1. (a) Let us present state transitions as a graph:
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(1, 2) (2, 1) (3, 2)Then we may summarise probabilities for individual states:
P (1, 2) = 0.50× 0.25 = 0.125
P (2, 1) = 0.50× 0.50 = 0.25
P (2, 2) = 0.25× 0.50 = 0.125
P (2, 3) = 0.25× 0.25 + 0.25× 0.25 = 0.125
P (3, 2) = 0.50× 0.25 + 0.25× 0.50 = 0.25
P (3, 3) = 0.25× 0.25 + 0.25× 0.25 = 0.125The sum of probabilities is 1 (as it should).(b) We begin by writing down a set of equations for the expe
ted utilities

uij for ea
h state (i, j):














u12 = −0.25 + 0.5u12 (1)
u23 = −0.25 + 0.5a + 0.25u23 (2)
u22 = −0.25 + 0.5u21 + 0.25u12 − 0.25 = 0 (3)
u21 = −0.25 + a + 0.25u21 (4)Note in parti
ular how the 
ost −0.25 of a move is in
orporated inea
h equation. The set of equations is solved as follows.(1) =⇒ 0.5u12 = −0.25 =⇒ u12 = −0.5.(3) =⇒ 0.5u21 = 0.5− 0.25u12 = 0.625 =⇒ u21 = 0.625

0.5
= 1.25.(4) =⇒ a = 0.75u21 + 0.25 = 1.1875(2) =⇒ 0.75u23 = 0.5a− 0.25 =⇒ u23 = 0.5a−0.25

0.75
≈ 0.4583.Thus u12 = −0.5, u21 = 1.25, u23 ≈ 0.4583, a = 1.1875 ja 2a = 2.375.(
) Let us 
al
ulate the expe
ted utility u12 when ← is the a
tion as-signed to (1, 2) by the poli
y:

u12 = −0.25 + 0.50u12 + 0.25u12 + 0.25u12

=⇒ u12 = −0.25 + u12

=⇒ 0 = −0.25.There is no solution, i.e., the expe
ted utility u21 
annot be deter-mined. This is be
ause u21 −→ −∞.2. Given the simpli�ed (fully observable) grid environment
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the state spa
e of the agent is S = {(1, 1), (2, 1), (3, 1), (2, 2), (3, 2)} andthe set of possible a
tions A = {←, ↑,→, ↓}.A poli
y π is an arbitrary fun
tion from S to A. In other words, a poli
yatta
hs a unique a
tion a = π(s) to ea
h state s, and the agent exe-
utes a every time it is in s. An optimal poli
y π∗ assigns to ea
h state
s an a
tion a = π∗(s) that maximises the expe
ted utility EUs(a) =
∑

s′ T (s, a, s′)U(s′) where T (s, a, s′) gives the transition probability from
s to s′. Note that ∑

s′ T (s, a, s′) = 1 holds for ea
h state s and a
tion a.(a) The value iteration algorithm 
omputes iteratively the new utilityvalues for ea
h state s:
Ui+1(s) = R(s) + maxa

∑

s′ T (s, a, s′)Ui(s
′)where R(s) is the reward of the state (here 1 in (3, 2), −1 in (3, 1),and −0.2 in all other states). Su
h a 
al
ulation is repeated untilutility values 
onverge, i.e., |Ui+1(s) − Ui(s)| be
omes small enoughfor ea
h state s. Then the a
tion with the maximum expe
ted utilityis 
hosen as π∗(s) for a parti
ular state s.Round i = 0:State s a EUs(a)

(2, 2) ← 1 · (−0.2) = −0.2
↑ 0.9 · (−0.2) + 0.1 · 1 = −0.08
→ 0.8 · 1 + 0.2 · (−0.2) = 0.76 ×
↓ 0.9 · (−0.2) + 0.1 · 1 = −0.08

(2, 1) ← 1 · (−0.2) = −0.2 ×
↑ 0.9 · (−0.2) + 0.1 · (−1) = −0.28
→ 0.8 · (−1) + 0.2 · (−0.2) = −0.84
↓ 0.9 · (−0.2) + 0.1 · (−1) = −0.28

(1, 1) ← 1 · (−0.2) = −0.2
↑ 1 · (−0.2) = −0.2
→ 1 · (−0.2) = −0.2
↓ 1 · (−0.2) = −0.2So, the optimal a
tion in (2, 2) is → and in (2, 1) it is ←. Sin
e alla
tions have the same expe
ted utilities in (1, 1) the 
hoi
e is free:
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-1SThe new expe
ted utilities are:
U1(2, 2) = −0.2 + 0.76 = 0.56

U1(2, 1) = −0.2− 0.2 = −0.4

U1(1, 1) = −0.2− 0.2 = −0.4Round i = 1:



State s a EUs(a)
(2, 2) ← 0.9 · 0.56 + 0.1 · (−0.4) = 0.464

↑ 0.9 · 0.56 + 0.1 · 1 = 0.604
→ 0.8 · 1 + 0.1 · 0.56 + 0.1 · (−0.4) = 0.816 ×
↓ 0.8 · (−0.4) + 0.1 · 0.56 + 0.1 · 1 = −0.164

(2, 1) ← 0.9 · (−0.4) + 0.1 · 0.56 = −0.304
↑ 0.8 · 0.56 + 0.1 · (−1) + 0.1 · (−0.4) = 0.308 ×
→ 0.8 · (−1) + 0.1 · (−0.4) + 0.1 · 0.56 = −0.784
↓ 0.9 · (−0.4) + 0.1 · (−1) = −0.46

(1, 1) ← 1 · (−0.4) = −0.4
↑ 1 · (−0.4) = −0.4
→ 1 · (−0.4) = −0.4
↓ 1 · (−0.4) = −0.4The resulting poli
y is

+1

-1Sand the new utility values are
U2(2, 2) = −0.2 + 0.816 = 0.616

U2(2, 1) = −0.2 + 0.308 = 0.108

U2(1, 1) = −0.2− 0.4 = −0.6While 
ontinuing the exe
ution of the value iteration algorithm, theoptimal a
tions in (2, 2) and (2, 1) stay un
hanged. Finally, the state
(1, 1) gets a (unique) optimal a
tion be
ause the utility of (2, 1) be-
omes higher than that of (1, 1). Thus, the resulting poli
y is:
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-1This is a
tually optimal but it takes still several rounds of the algo-rithm until the utility values stabilize.(b) In poli
y iteration we start by 
reating a random poli
y π0. Then,we 
ompute the utility values of states given the poli
y πi, revisethe poli
y πi to πi+1 by 
hoosing the a
tions with highest expe
tedutilities, and 
ompute new utility values. This pro
ess is 
ontinueduntil the poli
y under 
onstru
tion stabilises, i.e., πi+1 = πi.Suppose that the following random poli
y π0 is 
hosen:
+1

-1The utilities given π0 
an be 
omputed analyti
ally by solving thefollowing group of equations. In the following, uij denotes the utilityof the state (i, j).
u11 = 0.2u11 + 0.8u21 − 0.2

u21 = 0.8u11 + 0.1u21 + 0.1u22 − 0.2

u22 = 0.9u22 + 0.1 · 1− 0.2



The solution for this set of equations is:
u11 = −5.25

u21 = −5

u22 = −1Now we 
ompute the expe
ted utilities for di�erent a
tions:State s a EUs(a)
(2, 2) ← 0.9 · (−1) + 0.1 · (−5) = −1.4

↑ 0.9 · (−1) + 0.1 · 1 = −0.8
→ 0.8 · 1 + 0.1 · (−1) + 0.1 · (−5) = 0.2 ×
↓ 0.8 · (−5) + 0.1 · (−1) + 0.1 · 1 = −4

(2, 1) ← 0.8 · (−5.25) + 0.1 · (−5) + 0.1 · (−1) = −4.8
↑ 0.8 · (−1) + 0.1 · (−1) + 0.1 · (−5.25) = −1.425
→ 0.8 · (−1) + 0.1 · (−5) + 0.1 · (−1) = −1.4 ×
↓ 0.8 · (−5) + 0.1 · (−1) + 0.1 · (−5.25) = −4.625

(1, 1) ← 1 · (−5.25) = −5.25
↑ 0.9 · (−5.25) + 0.1 · (−5) = −5.225
→ 0.8 · (−5) + 0.2 · (−5.25) = −5.05 ×
↓ 0.9 · (−5.25) + 0.1 · (−5) = −5.225The revised poli
y π1 is

+1

-1After the next round of the algorithm, the a
tion for (2, 1) 
hangesto the optimal one, i.e., ↑.


