Solutions

1. (a) Let us present state transitions as a graph:

Then we may summarise probabilities for individual states:

$$
\begin{aligned}
& P(1,2)=0.50 \times 0.25=0.125 \\
& P(2,1)=0.50 \times 0.50=0.25 \\
& P(2,2)=0.25 \times 0.50=0.125 \\
& P(2,3)=0.25 \times 0.25+0.25 \times 0.25=0.125 \\
& P(3,2)=0.50 \times 0.25+0.25 \times 0.50=0.25 \\
& P(3,3)=0.25 \times 0.25+0.25 \times 0.25=0.125
\end{aligned}
$$

The sum of probabilities is 1 (as it should).
(b) We begin by writing down a set of equations for the expected utilities $u_{i j}$ for each state (i, j) :

$$
\left\{\begin{array}{l}
u_{12}=-0.25+0.5 u_{12} \tag{1}\\
u_{23}=-0.25+0.5 a+0.25 u_{23} \\
u_{22}=-0.25+0.5 u_{21}+0.25 u_{12}-0.25=0 \\
u_{21}=-0.25+a+0.25 u_{21}
\end{array}\right.
$$

Note in particular how the cost -0.25 of a move is incorporated in each equation. The set of equations is solved as follows.
$(1) \Longrightarrow 0.5 u_{12}=-0.25 \Longrightarrow u_{12}=-0.5$.
$(3) \Longrightarrow 0.5 u_{21}=0.5-0.25 u_{12}=0.625 \Longrightarrow u_{21}=\frac{0.625}{0.5}=1.25$.
$(4) \Longrightarrow a=0.75 u_{21}+0.25=1.1875$
$(2) \Longrightarrow 0.75 u_{23}=0.5 a-0.25 \Longrightarrow u_{23}=\frac{0.5 a-0.25}{0.75} \approx 0.4583$.
Thus $u_{12}=-0.5, u_{21}=1.25, u_{23} \approx 0.4583, a=1.1875$ ja $2 a=2.375$.
(c) Let us calculate the expected utility u_{12} when \leftarrow is the action assigned to $(1,2)$ by the policy:

$$
\begin{aligned}
& u_{12}=-0.25+0.50 u_{12}+0.25 u_{12}+0.25 u_{12} \\
& \Longrightarrow u_{12}=-0.25+u_{12} \\
& \Longrightarrow 0=-0.25
\end{aligned}
$$

There is no solution, i.e., the expected utility u_{21} cannot be determined. This is because $u_{21} \longrightarrow-\infty$.
2. Given the simplified (fully observable) grid environment

the state space of the agent is $S=\{(1,1),(2,1),(3,1),(2,2),(3,2)\}$ and the set of possible actions $A=\{\leftarrow, \uparrow, \rightarrow, \downarrow\}$.
A policy π is an arbitrary function from S to A. In other words, a policy attachs a unique action $a=\pi(s)$ to each state s, and the agent executes a every time it is in s. An optimal policy π^{*} assigns to each state s an action $a=\pi^{*}(s)$ that maximises the expected utility $\mathrm{EU}_{s}(a)=$ $\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)$ where $T\left(s, a, s^{\prime}\right)$ gives the transition probability from s to s^{\prime}. Note that $\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)=1$ holds for each state s and action a.
(a) The value iteration algorithm computes iteratively the new utility values for each state s :

$$
U_{i+1}(s)=R(s)+\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U_{i}\left(s^{\prime}\right)
$$

where $R(s)$ is the reward of the state (here 1 in $(3,2),-1$ in $(3,1)$, and -0.2 in all other states). Such a calculation is repeated until utility values converge, i.e., $\left|U_{i+1}(s)-U_{i}(s)\right|$ becomes small enough for each state s. Then the action with the maximum expected utility is chosen as $\pi^{*}(s)$ for a particular state s.

Round $i=0$:

State s	a	$\mathrm{EU}_{s}(a)$	
$(2,2)$	\leftarrow	$1 \cdot(-0.2)=-0.2$	
	\uparrow	$0.9 \cdot(-0.2)+0.1 \cdot 1=-0.08$	
	\rightarrow	$0.8 \cdot 1+0.2 \cdot(-0.2)=0.76$	\times
	\downarrow	$0.9 \cdot(-0.2)+0.1 \cdot 1=-0.08$	
$(2,1)$	\leftarrow	$1 \cdot(-0.2)=-0.2$	\times
	\uparrow	$0.9 \cdot(-0.2)+0.1 \cdot(-1)=-0.28$	
	\rightarrow	$0.8 \cdot(-1)+0.2 \cdot(-0.2)=-0.84$	
	\downarrow	$0.9 \cdot(-0.2)+0.1 \cdot(-1)=-0.28$	
$(1,1)$	\leftarrow	$1 \cdot(-0.2)=-0.2$	
	\uparrow	$1 \cdot(-0.2)=-0.2$	
	\rightarrow	$1 \cdot(-0.2)=-0.2$	
	\downarrow	$1 \cdot(-0.2)=-0.2$	

So, the optimal action in $(2,2)$ is \rightarrow and in $(2,1)$ it is \leftarrow. Since all actions have the same expected utilities in $(1,1)$ the choice is free:

The new expected utilities are:

$$
\begin{aligned}
& U_{1}(2,2)=-0.2+0.76=0.56 \\
& U_{1}(2,1)=-0.2-0.2=-0.4 \\
& U_{1}(1,1)=-0.2-0.2=-0.4
\end{aligned}
$$

Round $i=1$:

State s	a	$\mathrm{EU}_{s}(a)$	
$(2,2)$	\leftarrow	$0.9 \cdot 0.56+0.1 \cdot(-0.4)=0.464$	
	\uparrow	$0.9 \cdot 0.56+0.1 \cdot 1=0.604$	
	\rightarrow	$0.8 \cdot 1+0.1 \cdot 0.56+0.1 \cdot(-0.4)=0.816$	\times
	\downarrow	$0.8 \cdot(-0.4)+0.1 \cdot 0.56+0.1 \cdot 1=-0.164$	
$(2,1)$	\leftarrow	$0.9 \cdot(-0.4)+0.1 \cdot 0.56=-0.304$	
	\uparrow	$0.8 \cdot 0.56+0.1 \cdot(-1)+0.1 \cdot(-0.4)=0.308$	\times
	\rightarrow	$0.8 \cdot(-1)+0.1 \cdot(-0.4)+0.1 \cdot 0.56=-0.784$	
	\downarrow	$0.9 \cdot(-0.4)+0.1 \cdot(-1)=-0.46$	
$(1,1)$	\leftarrow	$1 \cdot(-0.4)=-0.4$	
	\uparrow	$1 \cdot(-0.4)=-0.4$	
	\rightarrow	$1 \cdot(-0.4)=-0.4$	
	\downarrow	$1 \cdot(-0.4)=-0.4$	

The resulting policy is

and the new utility values are

$$
\begin{aligned}
& U_{2}(2,2)=-0.2+0.816=0.616 \\
& U_{2}(2,1)=-0.2+0.308=0.108 \\
& U_{2}(1,1)=-0.2-0.4=-0.6
\end{aligned}
$$

While continuing the execution of the value iteration algorithm, the optimal actions in $(2,2)$ and $(2,1)$ stay unchanged. Finally, the state $(1,1)$ gets a (unique) optimal action because the utility of $(2,1)$ becomes higher than that of $(1,1)$. Thus, the resulting policy is:

This is actually optimal but it takes still several rounds of the algorithm until the utility values stabilize.
(b) In policy iteration we start by creating a random policy π_{0}. Then, we compute the utility values of states given the policy π_{i}, revise the policy π_{i} to π_{i+1} by choosing the actions with highest expected utilities, and compute new utility values. This process is continued until the policy under construction stabilises, i.e., $\pi_{i+1}=\pi_{i}$. Suppose that the following random policy π_{0} is chosen:

The utilities given π_{0} can be computed analytically by solving the following group of equations. In the following, $u_{i j}$ denotes the utility of the state (i, j).

$$
\begin{aligned}
& u_{11}=0.2 u_{11}+0.8 u_{21}-0.2 \\
& u_{21}=0.8 u_{11}+0.1 u_{21}+0.1 u_{22}-0.2 \\
& u_{22}=0.9 u_{22}+0.1 \cdot 1-0.2
\end{aligned}
$$

The solution for this set of equations is:

$$
\begin{aligned}
& u_{11}=-5.25 \\
& u_{21}=-5 \\
& u_{22}=-1
\end{aligned}
$$

Now we compute the expected utilities for different actions:

State s	a	$\mathrm{EU}_{s}(a)$	
$(2,2)$	\leftarrow	$0.9 \cdot(-1)+0.1 \cdot(-5)=-1.4$	
	\uparrow	$0.9 \cdot(-1)+0.1 \cdot 1=-0.8$	
	\rightarrow	$0.8 \cdot 1+0.1 \cdot(-1)+0.1 \cdot(-5)=0.2$	\times
	\downarrow	$0.8 \cdot(-5)+0.1 \cdot(-1)+0.1 \cdot 1=-4$	
$(2,1)$	\leftarrow	$0.8 \cdot(-5.25)+0.1 \cdot(-5)+0.1 \cdot(-1)=-4.8$	
	\uparrow	$0.8 \cdot(-1)+0.1 \cdot(-1)+0.1 \cdot(-5.25)=-1.425$	
	\rightarrow	$0.8 \cdot(-1)+0.1 \cdot(-5)+0.1 \cdot(-1)=-1.4$	\times
	\downarrow	$0.8 \cdot(-5)+0.1 \cdot(-1)+0.1 \cdot(-5.25)=-4.625$	
$(1,1)$	\leftarrow	$1 \cdot(-5.25)=-5.25$	
	\uparrow	$0.9 \cdot(-5.25)+0.1 \cdot(-5)=-5.225$	
	\rightarrow	$0.8 \cdot(-5)+0.2 \cdot(-5.25)=-5.05$	\times
	\downarrow	$0.9 \cdot(-5.25)+0.1 \cdot(-5)=-5.225$	

The revised policy π_{1} is

After the next round of the algorithm, the action for $(2,1)$ changes to the optimal one, i.e., \uparrow.

