Solutions

1. (a) The costs of the three routes are as follows:

Route	Time (min)	Fares (mk)
I	57	39
$I I$	33	26
$I I I$	55	20

If the engineer's hourly salary is $a=40 \mathrm{mk}$, the values of the cost function $U(t, m)=m+a t$ are as follows:

$$
\begin{aligned}
& \text { I: } U(57,39)=39+\frac{57}{60} \cdot 40=77.00(\mathrm{mk}) \\
& \text { II: } U(33,26)=26+\frac{33}{60} \cdot 40=48.00(\mathrm{mk}) \\
& \text { III: } U(55,20)=20+\frac{55}{60} \cdot 40=56.70(\mathrm{mk})
\end{aligned}
$$

These values indicate that the second route is the best alternative. The point where $I I I$ becomes better than $I I$ can be found by solving the following inequality:

$$
\frac{33}{60} x+26 \geq \frac{55}{60} x+20 \Longleftrightarrow x \leq 16.36(\mathrm{mk} / \mathrm{h}) .
$$

Thus the engineer should earn less than $16.36 \mathrm{mk} / \mathrm{h}$ to make route $I I I$ a cheaper one. When a varies in the range $0-100$, the respective costs for the three routes have been plotted in the figure given below.

As regards costs, we note that I dominates (yields higher costs in any event) the two other routes so that it can be safely ignored by the engineer.
(b) Let us then introduce a revised cost function

$$
U\left(t_{1}, t_{2}, m\right)=a_{1} t_{1}+a_{2} t_{2}+m
$$

with parameters $a_{1}=1.5 a$ and $a_{2}=0.5 a$. The following times and ticket fares are associated with the routes under consideration:

Route	Time $t_{1}(\min)$	Time $t_{2}(\mathrm{~min})$	Fares (mk)
I	25	32	39
II	12	21	26
III	45	10	20

Thus, the overall costs of the routes are:

$$
\begin{aligned}
& \text { I: } U(25,32,39)=39+\frac{25}{60} \cdot 60+\frac{32}{60} \cdot 20=74.70(\mathrm{mk}) \\
& \text { II: } U(12,21,26)=26+\frac{12}{60} \cdot 60+\frac{21}{60} \cdot 20=45.00(\mathrm{mk}) \\
& \text { III: } U(45,10,20)=20+\frac{45}{60} \cdot 60+\frac{10}{60} \cdot 20=68.33(\mathrm{mk})
\end{aligned}
$$

Again, the second route turned out to be better than the others. The following figure shows how costs change as the function of the engineer's hourly salary:

Therefore, none of the options dominates within this interval.
(c) If the outcomes of choices made by the engineer are not deterministic, we use the expected utility $E[U(X)]$ as the basis for decisions. The probability distributions for the three options are:

Route	Time $t(\mathrm{~min})$	$P(t)$		Route	Time $t(\mathrm{~min})$	$P(t)$				
I	57	0.75		$I I I$	55	0.16				
	58	0.20		56	0.19					
	62	0.05		57	0.03					
	33	0.30		60	0.17					
$I I$	34	0.20		61	0.04					
	43	0.20		65	0.17					
	48	0.30		66	0.03					
									70	0.17
			71	0.03						
				75	0.01					

These lead to the following expected values and costs:

Route	$E(t)(\min)$	$U(t, m)(\mathrm{mk})$
I	57.45	77.3
$I I$	39.7	52.47
III	61.6	61.06

Thus $I I$ is again the leading option for the engineer.

