1. (a) The costs of the three routes are as follows:

| Route | Time (min) | Fares (mk) |
|-------|------------|------------|
| Ι     | 57         | 39         |
| II    | 33         | 26         |
| III   | 55         | 20         |

If the engineer's hourly salary is a = 40 mk, the values of the cost function U(t,m) = m + at are as follows:

I: 
$$U(57, 39) = 39 + \frac{57}{60} \cdot 40 = 77.00 \text{ (mk)}$$
  
II:  $U(33, 26) = 26 + \frac{33}{60} \cdot 40 = 48.00 \text{ (mk)}$   
III:  $U(55, 20) = 20 + \frac{55}{60} \cdot 40 = 56.70 \text{ (mk)}$ 

These values indicate that the second route is the best alternative. The point where *III* becomes better than *II* can be found by solving the following inequality:

$$\frac{33}{50}x + 26 \ge \frac{55}{60}x + 20 \iff x \le 16.36 \text{ (mk/h)}.$$

Thus the engineer should earn less than 16.36 mk/h to make route *III* a cheaper one. When *a* varies in the range 0–100, the respective costs for the three routes have been plotted in the figure given below.



As regards costs, we note that I dominates (yields higher costs in any event) the two other routes so that it can be safely ignored by the engineer.

(b) Let us then introduce a revised cost function

$$U(t_1, t_2, m) = a_1 t_1 + a_2 t_2 + m$$

with parameters  $a_1 = 1.5a$  and  $a_2 = 0.5a$ . The following times and ticket fares are associated with the routes under consideration:

| Route | Time $t_1$ (min) | Time $t_2$ (min) | Fares (mk) |
|-------|------------------|------------------|------------|
| Ι     | 25               | 32               | 39         |
| II    | 12               | 21               | 26         |
| III   | 45               | 10               | 20         |

Thus, the overall costs of the routes are:

| I: $U(25, 32, 39) = 39 + \frac{25}{60} \cdot 60 + \frac{32}{60} \cdot 20 = 74.70 \text{ (mk)}$   |
|--------------------------------------------------------------------------------------------------|
| II: $U(12, 21, 26) = 26 + \frac{12}{60} \cdot 60 + \frac{21}{60} \cdot 20 = 45.00 \text{ (mk)}$  |
| III: $U(45, 10, 20) = 20 + \frac{45}{60} \cdot 60 + \frac{10}{60} \cdot 20 = 68.33 \text{ (mk)}$ |

Again, the second route turned out to be better than the others. The following figure shows how costs change as the function of the engineer's hourly salary:



Therefore, none of the options dominates within this interval.

(c) If the outcomes of choices made by the engineer are not deterministic, we use the expected utility E[U(X)] as the basis for decisions. The probability distributions for the three options are:

| Route | Time $t$ (min) | P(t) |   | Route | Time $t \pmod{t}$ | P(t) |
|-------|----------------|------|---|-------|-------------------|------|
| Ι     | 57             | 0.75 | - | III   | 55                | 0.16 |
|       | 58             | 0.20 |   |       | 56                | 0.19 |
|       | 62             | 0.05 |   |       | 57                | 0.03 |
| II    | 33             | 0.30 |   |       | 60                | 0.17 |
|       | 34             | 0.20 |   |       | 61                | 0.04 |
|       | 43             | 0.20 |   |       | 65                | 0.17 |
|       | 48             | 0.30 |   |       | 66                | 0.03 |
|       |                |      |   |       | 70                | 0.17 |
|       |                |      |   |       | 71                | 0.03 |
|       |                |      | _ |       | 75                | 0.01 |

These lead to the following expected values and costs:

| Route | E(t) (min) | $U(t,m) \pmod{mk}$ |
|-------|------------|--------------------|
| Ι     | 57.45      | 77.3               |
| II    | 39.7       | 52.47              |
| III   | 61.6       | 61.06              |

Thus II is again the leading option for the engineer.

