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1. (a) There are four Boolean variables C , S , R, and WG. For two of themwe have observed values s and wg while the values of the other twovariables (non-observables) remain open. This leads to four possibleatomi events as well as states for the respetive Markov hain:

x1 = {c, r}, x2 = {c,¬r}, x3 = {¬c, r}, and x4 = {¬c,¬r}.(b) Given the four states abobe, the respetive transition matrix Q on-tains 42 = 16 entries. The MCMC algorithm uses P(Xi | mb(Xi)) tosample new values for non-observables independently of eah other.Thus we need to determine P(C | mb(C )) and P(R | mb(R)). TheMarkov blankets in question are easily read o� from the �gure:
mb(C ) = {S ,R} and mb(R) = {C ,S ,WG}.
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The �rst sampling distribution is determined by
P(C | s , r)

= αP(s | C )P(r | C )P(C ) Eq. (14.11)
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P(C | s ,¬r)

= αP(s | C )P(¬r | C )P(C ) Eq. (14.11)
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21 〉.Quite similarly, for the seond sampling distribution, we have

P(R | c, s ,wg)

= αP(wg | s ,R)P(R | c) Eq. (14.11)
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and
P(R | ¬c, s ,wg)

= αP(wg | s ,R)P(R | ¬c) Eq. (14.11)
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51 〉.There are at least two approahes to arry out sampling. In the �rstone, the values C and R are sampled with equal probability, i.e., eahsampling step is preeded by a hoie between C and R. This modelleads to transition probabilities summarized in the following table:
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The other possibility is to sample C and R, e.g., in this order. Thisorresponds to the MCMC-Ask algorithm (on page 517) and tran-sitions between states take plae in two phases:
q(x → x

′) {c, r} {c,¬r} {¬c, r} {¬c,¬r}
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51The alternative transition matrix Q′ is obtained as a produt of therespetive transition matries QC and QR.() The matrix Q2 represents transition probabilities in two steps.



(d) Eah row of the matrix Qn approah the posterior probability distri-bution for the states of the hain. One strategy to ompute Qn is toompute repeated squares: Q2 = Q×Q, Q4 = Q2×Q2, Q8 = Q4×Q4,. . . , Q2k , . . . . For instane, every row in Q64 onsists of the followingprobabilities: 0.1424, 0.0324, 0.1780, 0.6472. For Q′ the onvergenetakes plae muh faster, i.e., (Q′)16 is enough.To make a omparison, we may alulate exat values as follows:
P(C ,R | s ,wg) = αP(wg | s ,R)P(R | C )P(s | C )P(C )
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≈ 〈0.1424, 0.0324, 0.1780, 0.6472〉.Note that P (C) an be dropped from the expression in pratise be-ause the probability is always 1
2 regardless of the value of C.2. A �re station has one �re truk. Upon an emergeny all, the truk goesout to �ght �re and then returns to the station. Our representation of thedomain is based on one Boolean variable FS whih means that �the trukis at the �re station�. The respetive Hidden Markov Model (HMM) isillustrated in the �gure; probabilities are assigned below in item (a).
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(a) We assume that eah day is divided into 24 time slies (one houreah). The probability of an alert is 1
12 . Further alulations arerequired to determine p, i.e., the returning probability of the trukafter one time slie. The expeted duration of one �re mission is

p + (1 − p) + p(1 − p) + (1 − p)2 + p(1 − p)2 + (1 − p)3 + . . .
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() To �nd out a stationary distribution P(FS t) = 〈q, 1 − q〉 for su�-iently large t, we may view P(FS t) as a message/vetor
f =

[

q

1 − q

]satisfying f = QT f (forward reasoning without sensor model). Byexpanding the given produt of matries yiels two equations:
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(1)Both equations turn out to be equivalent to q = 4
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