T-79.5102 Autumn 2008
Special Course in Computational Logic

Tutorial 4

Solutions

1.

2.

An instance of the 3-SAT problem is often given as a set of clauses S =
{C4,...,Cy}. Each clause C; is a set of three literals [}, [?, and [3. A
literal is either an atom A € {4, ..., A, } or its negation —A. For the sake
of simplicity, we assume that n > 2 and m > 2 (we can add {41, 47, A2}

and {As, Az, A1} to S without affecting the satisfiability of .S).

To show that exact inference in Bayesian networks is NP-hard, we should
somehow solve the problem of satisfying S using exact inference in a
Bayesian network N(S) constructed from S.

Consider a Bayesian network N (S) with Boolean variables Ay, ..., A,, for
atoms, (1, ..., C, for clauses and S, . .., S, for conjunctions of the clauses
so that S; is to be true whenever Ci,..., C; are true.

The CPTs associated with these nodes are constructed as follows.

— A node A; associated with an atom A; does not have parents and
P(ag) = P(~a) = }.

— A node Cj associated with a clause C; depends directly on the &
atoms appearing in its literals; 1 < k£ < 3. The node is deterministic
(logical or) so that at most one of the 2¥ truth value combinations
assigned to its parents makes C; false. As regards CPT entries,
P(¢;) = 0 for that combination and P(c;) = 1 for others.

— The node Sy depends on C; and C and P(sy | ¢1,¢2) = 1 and
P(s2) = 0 otherwise. Thus S, is also a deterministic node (logical
and). Quite similarly, when ¢ > 2, S; depends on S;_; and C;.
The CPT associated with S; is defined by P(s; | s;—1,¢) = 1 and
P(s;) = 0 for other combinations.

Now we have the following interconnection: the 3-SAT instance S is un-
satisfiable if and only if P(s,) = 0. It is also important to note that N (S)
can be constructed in time polynomial to the length of S (number of sym-
bols needed to represent S as a string). To this end, it is really necessary
to introduce So, ..., S,. If we tried to replace these Boolean variables by a
single variable S, the respective CPT in N(S) would become exponential
in n (which depends linearly on the length of S). The moral is that we
can save space substantially by introducing auxiliary variables.

(a) Obviously, we have Zle p; = 1. The cumulative distribution for
1 < j < k is obtained by summing up the first j probability values:
J J
P(X €{my,...,x;})=> P(X =m)=> p;.
i=1

i=1
This distribution can be calculated for each j as follows (assuming
an array p[l...k] of the probability values):

for j =1 to k do cp[j] := plj] + cplj — 1;

A sample for X is obtained in time linear to & as follows:



r := random();

1:=1;

while cp[i] < rand i < kdoi:=i+1;
sample := x[i];

Here the array x[1 ... k] contains the discrete values of X. The search
for the correct index value ¢ can be boosted by binary search (log, &
time can be achieved).

(b) Create an array index|[1...N] of index values 1...k so that for each
1 < ¢ < k there are round(p; x N) copies of i successively in the array.
Then shuffle the array by doing IV exchange operations:

for j =1to N do
{4 := round(random() X (N +1—35)) + (5 — 1);
¢ := index[j]; index[j] := index[i]; index[i] := ¢; }

Individual samples are generated by executing for each j in the range
from 1 to N an assignment sample := x[index[j]]. The distribution
obtained in this way may appear too “perfect” for small N but nev-
ertheless this might be a good approximation to use.

Another possibility is to create an array samples|[1...M] that con-
tains for each 1 < i < k, round(p; x M) successive copies of z;. An
individual sample is obtained by executing

sample := samples[round(ramdom() x M)].

About the choice of M: one possibility is that M ~ N, or alterna-
tively M < N, e.g., if p; x M values turn out to be integers. The
quality of the resulting distribution of X is now tightly connected to
that of random().

For the sake of simplicity, it is assumed above that round(random() x n)
gives us a random integer in the range 1...n.



