1. An instance of the 3-SAT problem is often given as a set of clauses \(S = \{C_1, \ldots, C_n\} \). Each clause \(C_i \) is a set of three literals \(l_1^i, l_2^i, l_3^i \). A literal is either an atom \(A \in \{A_1, \ldots, A_m\} \) or its negation \(\neg A \). For the sake of simplicity, we assume that \(n \geq 2 \) and \(m \geq 2 \) (we can add \(\{A_1, \neg A_1, A_2\} \) and \(\{A_2, \neg A_2, A_1\} \) to \(S \) without affecting the satisfiability of \(S \)).

To show that exact inference in Bayesian networks is NP-hard, we should somehow solve the problem of satisfying \(S \) using exact inference in a Bayesian network \(N(S) \) constructed from \(S \).

Consider a Bayesian network \(N(S) \) with Boolean variables \(A_1, \ldots, A_m \) for atoms, \(C_1, \ldots, C_n \) for clauses and \(S_2, \ldots, S_n \) for conjunctions of the clauses so that \(S_i \) is to be true whenever \(C_1, \ldots, C_i \) are true.

The CPTs associated with these nodes are constructed as follows.

- A node \(A_i \) associated with an atom \(A_i \) does not have parents and
 \[P(a_i) = P(\neg a_i) = \frac{1}{2}. \]

- A node \(C_j \) associated with a clause \(C_j \) depends directly on the \(k \) atoms appearing in its literals; \(1 \leq k \leq 3 \). The node is deterministic (logical or) so that at most one of the \(2^k \) truth value combinations assigned to its parents makes \(C_j \) false. As regards CPT entries,
 \[P(c_j) = 0 \] for that combination and
 \[P(c_j) = 1 \] for others.

- The node \(S_2 \) depends on \(C_1 \) and \(C_2 \) and
 \[P(s_2 \mid c_1, c_2) = 1 \] and
 \[P(s_2) = 0 \] otherwise. Thus \(S_2 \) is also a deterministic node (logical and). Quite similarly, when \(i > 2 \), \(S_i \) depends on \(S_{i-1} \) and \(C_i \).

The CPT associated with \(S_i \) is defined by
\[P(s_i \mid s_{i-1}, c_i) = 1 \] and
\[P(s_i) = 0 \] for other combinations.

Now we have the following interconnection: the 3-SAT instance \(S \) is unsatisfiable if and only if \(P(s_n) = 0 \). It is also important to note that \(N(S) \) can be constructed in time polynomial to the length of \(S \) (number of symbols needed to represent \(S \) as a string). To this end, it is really necessary to introduce \(S_2, \ldots, S_n \). If we tried to replace these Boolean variables by a single variable \(S \), the respective CPT in \(N(S) \) would become exponential in \(n \) (which depends linearly on the length of \(S \)). The moral is that we can save space substantially by introducing auxiliary variables.

2. (a) Obviously, we have \(\sum_{i=1}^{k} p_i = 1 \). The cumulative distribution for
\(1 \leq j \leq k \) is obtained by summing up the first \(j \) probability values:
\[P(X \in \{x_1, \ldots, x_j\}) = \sum_{i=1}^{j} P(X = x_i) = \sum_{i=1}^{j} p_i. \]

This distribution can be calculated for each \(j \) as follows (assuming an array \(p[1 \ldots k] \) of the probability values):
\[\text{for } j = 1 \text{ to } k \text{ do } cp[j] := p[j] + cp[j - 1]; \]

A sample for \(X \) is obtained in time linear to \(k \) as follows:
\(r \) := random();
\(i := 1; \)
while \(c[p[i] < r \) and \(i < k \) do \(i := i + 1; \)
\textbf{sample} := \textbf{x}[i];

Here the array \(x[1 \ldots k] \) contains the discrete values of \(X \). The search for the correct index value \(i \) can be boosted by binary search (\(\log_2 k \) time can be achieved).

(b) Create an array \(\textbf{index}[1 \ldots N] \) of index values \(1 \ldots k \) so that for each \(1 \leq i \leq k \) there are \(\text{round}(p_i \times N) \) copies of \(i \) successively in the array. Then shuffle the array by doing \(N \) exchange operations:

\[
\text{for } j = 1 \text{ to } N \text{ do } \\
\{ i := \text{round}(\text{random()} \times (N + 1 - j)) + (j - 1) ; \\
\quad c := \textbf{index}[j] ; \textbf{index}[j] := \textbf{index}[i] ; \textbf{index}[i] := c ; \}
\]

Individual samples are generated by executing for each \(j \) in the range from 1 to \(N \) an assignment \(\textbf{sample} := x[\textbf{index}[j]] \). The distribution obtained in this way may appear too "perfect" for small \(N \) but nevertheless this might be a good approximation to use.

Another possibility is to create an array \(\textbf{samples}[1 \ldots M] \) that contains for each \(1 \leq i \leq k \), \(\text{round}(p_i \times M) \) successive copies of \(x_i \). An individual sample is obtained by executing

\[
\textbf{sample} := \textbf{samples}[\text{round(\text{random()} \times M)]} .
\]

About the choice of \(M \): one possibility is that \(M \approx N \), or alternatively \(M \ll N \), e.g., if \(p_i \times M \) values turn out to be integers. The quality of the resulting distribution of \(X \) is now tightly connected to that of \text{random()}.

For the sake of simplicity, it is assumed above that \(\text{round(\text{random()} \times n) \) gives us a random integer in the range \(1 \ldots n}.\)