
T-79.5102Spe
ial Course in Computational Logi
Tutorial 4Solutions Autumn 2008
1. An instan
e of the 3-SAT problem is often given as a set of 
lauses S =

{C1, . . . , Cn}. Ea
h 
lause Ci is a set of three literals l1i , l2i , and l3i . Aliteral is either an atom A ∈ {A1, . . . , Am} or its negation ¬A. For the sakeof simpli
ity, we assume that n ≥ 2 and m ≥ 2 (we 
an add {A1,¬A1, A2}and {A2,¬A2, A1} to S without a�e
ting the satis�ability of S).To show that exa
t inferen
e in Bayesian networks is NP-hard, we shouldsomehow solve the problem of satisfying S using exa
t inferen
e in aBayesian network N(S) 
onstru
ted from S.Consider a Bayesian network N(S) with Boolean variables A1, . . . ,Am foratoms, C1, . . . ,Cn for 
lauses and S2, . . . ,Sn for 
onjun
tions of the 
lausesso that Si is to be true whenever C1, . . . ,Ci are true.The CPTs asso
iated with these nodes are 
onstru
ted as follows.� A node Ai asso
iated with an atom Ai does not have parents and
P (ai) = P (¬ai) = 1

2
.� A node Cj asso
iated with a 
lause Cj depends dire
tly on the katoms appearing in its literals; 1 ≤ k ≤ 3. The node is deterministi
(logi
al or) so that at most one of the 2k truth value 
ombinationsassigned to its parents makes Cj false. As regards CPT entries,

P (cj) = 0 for that 
ombination and P (cj) = 1 for others.� The node S2 depends on C1 and C2 and P (s2 | c1, c2) = 1 and
P (s2) = 0 otherwise. Thus S2 is also a deterministi
 node (logi
aland). Quite similarly, when i > 2, Si depends on Si−1 and Ci.The CPT asso
iated with Si is de�ned by P (si | si−1, ci) = 1 and
P (si) = 0 for other 
ombinations.Now we have the following inter
onne
tion: the 3-SAT instan
e S is un-satis�able if and only if P (sn) = 0. It is also important to note that N(S)
an be 
onstru
ted in time polynomial to the length of S (number of sym-bols needed to represent S as a string). To this end, it is really ne
essaryto introdu
e S2, . . . ,Sn. If we tried to repla
e these Boolean variables by asingle variable S , the respe
tive CPT in N(S) would be
ome exponentialin n (whi
h depends linearly on the length of S). The moral is that we
an save spa
e substantially by introdu
ing auxiliary variables.2. (a) Obviously, we have ∑k

i=1
pi = 1. The 
umulative distribution for

1 ≤ j ≤ k is obtained by summing up the �rst j probability values:
P (X ∈ {x1, . . . , xj}) =

j∑

i=1

P (X = xi) =

j∑

i=1

pj .This distribution 
an be 
al
ulated for ea
h j as follows (assumingan array p[1 . . . k] of the probability values):for j = 1 to k do 
p[j] := p[j] + 
p[j − 1];A sample for X is obtained in time linear to k as follows:



r := random();
i := 1;while 
p[i] < r and i < k do i := i + 1;sample := x[i];Here the array x[1 . . . k] 
ontains the dis
rete values of X . The sear
hfor the 
orre
t index value i 
an be boosted by binary sear
h (log

2
ktime 
an be a
hieved).(b) Create an array index[1. . . N℄ of index values 1 . . . k so that for ea
h

1 ≤ i ≤ k there are round(pi×N) 
opies of i su

essively in the array.Then shu�e the array by doing N ex
hange operations:for j = 1 to N do
{ i := round(random() × (N + 1 − j)) + (j − 1);

c := index[j]; index[j] := index[i]; index[i] := c; }Individual samples are generated by exe
uting for ea
h j in the rangefrom 1 to N an assignment sample := x[index[j℄]. The distributionobtained in this way may appear too �perfe
t� for small N but nev-ertheless this might be a good approximation to use.Another possibility is to 
reate an array samples[1 . . .M ] that 
on-tains for ea
h 1 ≤ i ≤ k, round(pi × M) su

essive 
opies of xi. Anindividual sample is obtained by exe
utingsample := samples[round(ramdom() × M)].About the 
hoi
e of M : one possibility is that M ≈ N , or alterna-tively M ≪ N , e.g., if pi × M values turn out to be integers. Thequality of the resulting distribution of X is now tightly 
onne
ted tothat of random().For the sake of simpli
ity, it is assumed above that round(random() × n)gives us a random integer in the range 1 . . . n.


