To show that exact inference in Bayesian networks is NP-hard, we should somehow solve the problem of satisfying S using exact inference in a Bayesian network N(S) constructed from S.

Consider a Bayesian network N(S) with Boolean variables A_1, \ldots, A_m for atoms, C_1, \ldots, C_n for clauses and S_2, \ldots, S_n for conjunctions of the clauses so that S_i is to be true whenever C_1, \ldots, C_i are true.

The CPTs associated with these nodes are constructed as follows.

- A node A_i associated with an atom A_i does not have parents and

$$P(a_i) = P(\neg a_i) = \frac{1}{2}.$$

- A node C_j associated with a clause C_j depends directly on the k atoms appearing in its literals; $1 \le k \le 3$. The node is deterministic (logical or) so that at most one of the 2^k truth value combinations assigned to its parents makes C_j false. As regards CPT entries, $P(c_j) = 0$ for that combination and $P(c_j) = 1$ for others.
- The node S_2 depends on C_1 and C_2 and $P(s_2 | c_1, c_2) = 1$ and $P(s_2) = 0$ otherwise. Thus S_2 is also a deterministic node (logical and). Quite similarly, when i > 2, S_i depends on S_{i-1} and C_i . The CPT associated with S_i is defined by $P(s_i | s_{i-1}, c_i) = 1$ and $P(s_i) = 0$ for other combinations.

Now we have the following interconnection: the 3-SAT instance S is unsatisfiable if and only if $P(s_n) = 0$. It is also important to note that N(S)can be constructed in time polynomial to the *length* of S (number of symbols needed to represent S as a string). To this end, it is really necessary to introduce S_2, \ldots, S_n . If we tried to replace these Boolean variables by a single variable S, the respective CPT in N(S) would become exponential in n (which depends linearly on the length of S). The moral is that we can save space substantially by introducing auxiliary variables.

2. (a) Obviously, we have $\sum_{i=1}^{k} p_i = 1$. The cumulative distribution for $1 \le j \le k$ is obtained by summing up the first j probability values:

$$P(X \in \{x_1, \dots, x_j\}) = \sum_{i=1}^{j} P(X = x_i) = \sum_{i=1}^{j} p_j.$$

This distribution can be calculated for each j as follows (assuming an array p[1...k] of the probability values):

for j = 1 to k do cp[j] := p[j] + cp[j-1];

A sample for X is obtained in time linear to k as follows:

 $\begin{array}{l} r := \mathsf{random}();\\ i := 1;\\ \mathsf{while } \mathsf{cp}[i] < \mathsf{r} \text{ and } i < k \text{ do } i := i+1;\\ \mathsf{sample} := \mathsf{x}[i]; \end{array}$

Here the array x[1...k] contains the discrete values of X. The search for the correct index value i can be boosted by binary search $(\log_2 k)$ time can be achieved).

(b) Create an array index [1...N] of index values 1...k so that for each $1 \le i \le k$ there are round $(p_i \times N)$ copies of *i* successively in the array. Then shuffle the array by doing N exchange operations:

for
$$j = 1$$
 to N do
{ $i := round(random() \times (N + 1 - j)) + (j - 1);$
 $c := index[j]; index[j] := index[i]; index[i] := c;$ }

Individual samples are generated by executing for each j in the range from 1 to N an assignment sample := x[index[j]]. The distribution obtained in this way may appear too "perfect" for small N but nevertheless this might be a good approximation to use.

Another possibility is to create an array samples $[1 \dots M]$ that contains for each $1 \leq i \leq k$, round $(p_i \times M)$ successive copies of x_i . An individual sample is obtained by executing

```
sample := samples[round(ramdom() \times M)].
```

About the choice of M: one possibility is that $M \approx N$, or alternatively $M \ll N$, e.g., if $p_i \times M$ values turn out to be integers. The quality of the resulting distribution of X is now tightly connected to that of random().

For the sake of simplicity, it is assumed above that $round(random() \times n)$ gives us a random integer in the range $1 \dots n$.