- 1. (a) We start by abstracting temperatures so that there are only two possible values high and normal (i.e., not high). These values are captured by the Boolean variable T below: if T = true, then the temperature is too high, and if T = false, the temperature is normal. We use the following nodes (random variables) in the network:
 - F_A The alarm is faulty.
 - T The temperature of the core is too high.
 - F_G The gauge is faulty.
 - G The gauge shows a high temperature.
 - A The alarm goes off.

Each variable is a Boolean one, i.e., takes T or F as its value. The dependencies described in the exercise text lead us to construct the following Bayesian network as a model of the domain:

- (b) The network is not a polytree, since there are two different paths from variable T to variable G.
- (c) See (a) for the abstraction of temperatures, i.e., the values of variable T. The CPT associated with G is the following:

Т	F_G	P(G)	$P(\neg G)$
Т	Т	y	1-y
Т	F	x	1-x
F	Т	1-y	y
F	F	1-x	\hat{x}

(d) The CPT associated with A is given below:

G	F_A	P(A)	$P(\neg A)$
Т	Т	0	1
Т	F	1	0
F	Т	0	1
F	F	0	1

Thus we may conclude that there is a logical relationship among the three variables involved: $A \leftrightarrow G \wedge \neg F_A$.

(e) The distribution $\mathbf{P}(T \mid \neg f_A, \neg f_G, a)$ can be determined for instance as follows:

	$\mathbf{P}(T \mid a, \neg f_A, \neg f_G)$	
=	$\mathbf{P}(T \mid a, \neg f_A, g, \neg f_G)$	$\{a \leftrightarrow g \land \neg f_A, \neg f_A, a\} \models g$
=	$\mathbf{P}(T \mid g, \neg f_G)$	Cond. Ind. $mb(T) = \{F_G, G\}$
=	$\alpha \mathbf{P}(g, \neg f_G \mid T) \mathbf{P}(T)$	Bayes & Normalization
=	$\alpha \mathbf{P}(g,\neg f_G,T)$	Cond. prob.
=	$\alpha \mathbf{P}(g \mid \neg f_G, T) \mathbf{P}(\neg f_G \mid T) \mathbf{P}(T).$	Network semantics

From this we obtain an expression for $P(t \mid a, \neg f_A, \neg f_G)$ by normalization, i.e., $1/\alpha$ is the sum of the two probability expressions:

$$\frac{P(g \mid \neg f_G, t)P(\neg f_G \mid t)P(t)}{P(g \mid \neg f_G, t)P(\neg f_G \mid t)P(t) + P(g \mid \neg f_G, \neg t)P(\neg f_G \mid \neg t)P(\neg t)}$$

which could also be rewritten as

$$\frac{1}{1+\frac{P(g|\neg f_G,\neg t)P(\neg f_G|\neg t)P(\neg t)}{P(g|\neg f_G,t)P(\neg f_G|t)P(t)}}.$$

If we substitute the known known probability values from the CPTs given above and extend the resulting fraction by x, we obtain

$$\frac{x}{x + (1-x)\frac{P(\neg f_G | \neg t)P(\neg t)}{P(\neg f_G | t)P(t)}}$$