Solutions

1. (a) We start by abstracting temperatures so that there are only two possible values high and normal (i.e., not high). These values are captured by the Boolean variable T below: if $T=$ true, then the temperature is too high, and if $T=$ false, the temperature is normal. We use the following nodes (random variables) in the network:

- F_{A} - The alarm is faulty.
- T - The temperature of the core is too high.
- F_{G} - The gauge is faulty.
- G - The gauge shows a high temperature.
- A - The alarm goes off.

Each variable is a Boolean one, i.e., takes T or F as its value. The dependencies described in the exercise text lead us to construct the following Bayesian network as a model of the domain:

(b) The network is not a polytree, since there are two different paths from variable T to variable G.
(c) See (a) for the abstraction of temperatures, i.e., the values of variable T. The CPT associated with G is the following:

T	F_{G}	$P(G)$	$P(\neg G)$
T	T	y	$1-y$
T	F	x	$1-x$
F	T	$1-y$	y
F	F	$1-x$	x

(d) The CPT associated with A is given below:

G	F_{A}	$P(A)$	$P(\neg A)$
T	T	0	1
T	F	1	0
F	T	0	1
F	F	0	1

Thus we may conclude that there is a logical relationship among the three variables involved: $A \leftrightarrow G \wedge \neg F_{A}$.
(e) The distribution $\mathbf{P}\left(T \mid \neg f_{A}, \neg f_{G}, a\right)$ can be determined for instance as follows:

$$
\begin{aligned}
& \mathbf{P}\left(T \mid a, \neg f_{A}, \neg f_{G}\right) & & \\
= & \mathbf{P}\left(T \mid a, \neg f_{A}, g, \neg f_{G}\right) & & \left\{a \leftrightarrow g \wedge \neg f_{A}, \neg f_{A}, a\right\} \models g \\
= & \mathbf{P}\left(T \mid g, \neg f_{G}\right) & & \text { Cond. Ind. mb }(T)=\left\{F_{G}, G\right\} \\
= & \alpha \mathbf{P}\left(g, \neg f_{G} \mid T\right) \mathbf{P}(T) & & \text { Bayes \& Normalization } \\
= & \alpha \mathbf{P}\left(g, \neg f_{G}, T\right) & & \text { Cond. prob. } \\
= & \alpha \mathbf{P}\left(g \mid \neg f_{G}, T\right) \mathbf{P}\left(\neg f_{G} \mid T\right) \mathbf{P}(T) . & & \text { Network semantics }
\end{aligned}
$$

From this we obtain an expression for $P\left(t \mid a, \neg f_{A}, \neg f_{G}\right)$ by normalization, i.e., $1 / \alpha$ is the sum of the two probability expressions:

$$
\frac{P\left(g \mid \neg f_{G}, t\right) P\left(\neg f_{G} \mid t\right) P(t)}{P\left(g \mid \neg f_{G}, t\right) P\left(\neg f_{G} \mid t\right) P(t)+P\left(g \mid \neg f_{G}, \neg t\right) P\left(\neg f_{G} \mid \neg t\right) P(\neg t)}
$$

which could also be rewritten as

$$
\frac{1}{1+\frac{P\left(g \mid \neg f_{G}, \neg t\right) P\left(\neg f_{G} \mid \neg t\right) P(\neg t)}{P\left(g \mid \neg f_{G}, t\right) P\left(\neg f_{G} \mid t\right) P(t)}} .
$$

If we substitute the known known probability values from the CPTs given above and extend the resulting fraction by x, we obtain

$$
\frac{x}{x+(1-x) \frac{P\left(\neg f_{G} \mid-t\right) P(\neg t)}{P\left(\neg f_{G} \mid t\right) P(t)}} .
$$

