Special Course in Computational Logic
 Tutorial 6

1. A rational engineer wants to travel from Otaniemi to Kirkkonummi using public transport. There are three possible routes:
I) First take a bus to downtown Helsinki (ticket 15 mk) and then travel from there to Kirkkonummi by train (24 mk).
II) Take a bus to Leppävaara (10 mk) and from there to Kirkkonummi by train (16 mk).
III) Take a bus to Tapiola, change to another bus and go to Kauklahti $(10 \mathrm{mk})$ and board a train from there $(10 \mathrm{mk})$.

The durations of the individual connections are shown in the figure:

(a) Suppose that the engineer has a cost function $U(t, m)=m+a t$ where m is the sum of ticket fares, t is the duration of trip, and $a=40 \mathrm{mk} / \mathrm{h}$ is his hourly rate.

- Which one of the alternatives minimises $U(t, m)$?
- What should his hourly rate be so that route III would be better than the route II?
- Is one of the routes clearly better or worse than the others?
(b) Consider a cost function $U\left(t_{1}, t_{2}, m\right)=a_{1} t_{1}+a_{2} t_{2}+m$ where t_{1} is the time spent in a bus, t_{2} the time spent on a train, $a_{1}=1.5 a$, and $a_{2}=0.5 a$. What is the best route now?
(c) Let $U(t)$ be as in item (a) but let us assume that buses may be delayed according to the following probability distribution:

Line	0 min	1 min	5 min	10 min	15 min
O-Hki	75%	20%	5%	-	-
O-T	80%	15%	5%	-	-
T-KL	20%	20%	20%	20%	20%
O-LV	30%	20%	-	20%	30%

Which choice is now the best alternative?

