1. Consider the query $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$ for the network given below and how MCMC can answer it.
(a) How many states does the Markov chain have?
(b) Calculate the transition matrix Q containing $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$ for all states \mathbf{x} and \mathbf{x}^{\prime}.
(c) What does the square of the transition matrix Q^{2} represent?
(d) What about Q^{n} as $n \rightarrow \infty$.

(R\&N, Exercise 14.11.abcd)
2. A fire station has one fire truck. Upon an emergency call, the truck goes out to fight fire and then returns to the station.
(a) Design a hidden Markov model (HMM) with two states $f s$ (the truck is at the fire station) and $\neg f s$ to describe the behaviour of this system. Choose transition probabilities to reflect the following properties of the domain.

- On the average, there is an alert once in twelve hours.
- The expected duration for one fire mission is 3 hours.

Use one hour time slices in your model.
(b) Write down the corresponding transition matrix Q for the HMM as well as the transition model

$$
\mathbf{P}\left(F S_{t+1} \mid F S_{t}\right)
$$

using a Boolean random variable $F S$.
(c) Use the model to determine how many hours a day the truck spends at the fire station in the long run?
(d) Given a parametrised prior distribution $\mathbf{P}\left(F S_{0}\right)=\langle r, 1-r\rangle$, derive an exact expression for the distribution $\mathbf{P}\left(F S_{t}\right)$ as a function of t using the transition model and prediction.
(e) Does $\mathbf{P}\left(F S_{t}\right)$ converge as t approaches to infinity?

