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UNCERTAINTYOutline
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1. ACTING UNDER UNCERTAINTY

➤ Agents almost never have aess to the whole truth about theirenvironment and have thus at under unertainty.

➤ Quali�ation problem: how to de�ne the irumstanes underwhih a given ation is guaranteed to work.It is typial that there are too many onditions(or exeptions to onditions) to be expliitly enumerated.
➤ The right thing to do, the rational deision, depends both on therelative importane of the various goals and the likelihood that,and degree to whih, they will be ahieved.
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Example. Suppose that our taxi-driving agent wants to drive someoneto an airport 15 miles away to ath a �ight.

➤ Plan A90 involves leaving 90 minutes before the �ight.
➤ Plan A90 is suessful given that1. the ar does not break or run out of gas,2. the agent does not get into an aident,3. the plane does not leave early, and so on . . .
➤ Performane measure: getting to the airport on time, avoidingunprodutive, long waits as well as speeding tikets.

➤ Other plans, suh as A120, inreases the likelihood of getting tothe airport on time, but also the likelihood of a long wait.
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Handling Unertain Knowledge

Example. Consider formalizing some diagnosti priniples:

∀p(Symptom(p,Toothache) →Disease(p,Cavity))

∀p(Symptom(p,Toothache) →Disease(p,Cavity)

∨Disease(p, ImpactedWisdom)

∨Disease(p,GumDisease)∨·· · )

∀p(Disease(p,Cavity)∧·· · →Symptom(p,Toothache))Di�ulties with formalizations using sentenes of �rst-order logi:1. Laziness: ompleting anteedents/onsequents is very laborious.2. Theoretial ignorane: the domain laks a omprehensive theory.3. Pratial ignorane: appliability to a patient is not guaranteed.© 2008 TKK / ICS
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➤ Agent's knowledge on the environment an at best provideonly a degree of belief in relevant sentenes.

➤ Probability theory assigns a degree of belief P(φ)(a real number from the interval [0,1℄) to a sentene φ.

➤ Individual sentenes φ are onsidered to be either true or false.� P(φ) = 0 means that φ is false in all irumstanes� P(φ) = 1 means that φ is true in all irumstanes.

➤ Probabilities provide a way of summarizing the unertainty.Example. A patient has a avity with a probability of 0.8 if (s)he hasa toothahe. The remaining probability mass (0.2) summarizes allother explanations for toothahe.
© 2008 TKK / ICS
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Probability Theory vs. Fuzzy Logi

➤ Degrees of belief (as in probability theory) are di�erent fromdegrees of truth (as in fuzzy logi).Example. Consider an atomi sentene A stating �the door is losed�.� P(A) = 0.99 means that the door is losed almost for sure.� In ontrast to this, a degree of truth V (A) = 0.99 would mean thatthe door is almost ompletely losed.
© 2008 TKK / ICS
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On The Role of Evidene
➤ The probability that an agent assigns to a sentene φ depends ofthe perepts φ1, . . . ,φn (evidene) obtained so far.
➤ Analogous to logial onsequene {φ1, . . . ,φn} |= φ.
➤ Prior/unonditional probability P(φ) is the probability of φ withoutevidene.

➤ Posterior/onditional probability P(φ | φ1 ∧·· ·∧φn) is theprobability of φ after obtaining piees of evidene φ1, . . . ,φn.

© 2008 TKK / ICS
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Example. Consider a shu�ed standard pak of 52 playing ards.Let A mean �the ard drawn from the pak is the ae of spades�.� Prior probabilities before looking the ard:

P(A) = 1
52 and P(¬A) = 51

52 .� Posterior probabilities after looking the ard:

P(A | A) =
P(A∧A)

P(A)
=

P(A)

P(A)
= 1 and

P(A | ¬A) =
P(A∧¬A)

P(¬A)
=

0
P(¬A)

= 0.

Note: all piees of evidene have to be taken into aount when theposterior probabilities of sentenes are determined.

© 2008 TKK / ICS
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Unertainty and Rational Deisions

Example. Regarding the airport example, suppose that1. P(�Plan A90 sueeds.�) = 0.95,2. P(�Plan A120 sueeds.�) = 0.98, and3. P(�Plan A1440 sueeds.�) = 0.9999.� Whih plan should be seleted for exeution?� What kind of riteria ould be used for making suh a deision?

☞ In addition to estimating the suess rates of plans/ations, wehave to speify preferenes on the possible outomes.© 2008 TKK / ICS
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➤ By utility theory every state has a degree of usefulness, or utility,to an agent and the agent prefers states with higher utility.

➤ An agent may freely de�ne its preferenes that may appear evenirrational from the point of view of other agents.

➤ Utility theory allows for altruism (unsel�shness).

➤ Deision theory = probability theory + utility theory

The priniple of Maximum Expeted Utility (MEU):�an agent is rational if and only if it hooses an ationthat yields the highest expeted utility, averaged over all thepossible outomes of the ation�.
© 2008 TKK / ICS
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Design for a Deision-theoreti Agent
➤ An abstrat algorithm for a deision-theoreti agent that seletsrational ations is the following:

function DT-AGENT( percept) returns an action
static: a set probabilistic beliefs about the state of the world

calculate updated probabilities for current state based on
available evidence including current percept and previous action

calculate outcome probabilities for actions,
given action descriptions and probabilities of current states

select action with highest expected utility
given probabilities of outcomes and utility information

return action

➤ The steps of the algorithm will be re�ned in the sequel.

© 2008 TKK / ICS
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2. BASIC PROBABILITY NOTATION

➤ A formal language is used for representing and reasoning withunertain knowledge.

➤ An extension of the language of propositional logi is used:1. Atomi propositions of the form X = x involve a randomvariable X and a value x from its domain.2. Propositional onnetives ¬, ∧, ∨, →, and ↔ an be used toform more omplex propositions.

➤ Degrees of belief are expressed as probabilities P(φ) that areassigned to propositions (or sentenes) φ of the language.

➤ The dependene on evidene/experiene φ1, . . . ,φn is expressed interms of onditional probability statements P(φ | φ1, . . . ,φn).

© 2008 TKK / ICS
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Random Variables

➤ Random variables are typially divided into three kinds:1. Boolean random variables having the domain 〈true, false〉.Notational abbreviations: Cavity = true  cavity

Cavity = false  ¬cavity2. Disrete random variables take on values from a �nite or atmost ountable domain 〈x1,x2, . . .〉.3. Continuous random variables range over real numbers.

➤ We will mostly onentrate on the disrete ase.

➤ Atomi propositions an be viewed as Boolean random variables.

➤ An expression X = xi (whih denotes that the random variable Xhas the value xi) is interpreted as an atomi proposition.© 2008 TKK / ICS
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Example. Consider a random variable Weather that ranges overweather onditions sunny, rain, cloudy, and snow.Then we may assign probabilities to partiular values of Weather:

P(Weather = sunny) = 0.7

P(Weather = rain) = 0.2

P(Weather = cloudy) = 0.08

P(Weather = snow) = 0.02

➤ A probability distribution P assigns probabilities to all valueombinations of the random variables involved.Example. In the example above, P(Weather) = 〈0.7,0.2,0.08,0.02〉.The probability distribution P(Weather,Cavity) is two-dimensional.

© 2008 TKK / ICS
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Prior/Unonditional Probabilities
➤ Unonditional probabilities are applied when no other information(evidene) is available.Example. Let Cavity be a Boolean random variable meaning that �apatient has a avity�. Then the prior probability

P(Cavity = true) = 0.1, or P(cavity) = 0.1 for short,means that in the absene of any other information the patient has aavity with a probability of 0.1.This probability may hange if new information beomes available.Example. A prior probability distribution for the random variable

Weather is easily de�ned by setting P(Weather) = 〈0.7,0.2,0.08,0.02〉.

© 2008 TKK / ICS
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Posterior/Conditional Probabilities

➤ If new evidene is aquired, onditional probabilities have to beused instead of unonditional ones.

➤ Conditional probabilities an be de�ned in terms of unonditionalones. When P(ψ) > 0 we have that

P(φ | ψ) =
P(φ∧ψ)

P(ψ)

.

Example. Suppose that Cavity and Toothache mean that �the patienthas a avity� and �the patient has a toothahe�, respetively.The prior probability P(cavity) = 0.1 has to be replaed by aonditional one P(cavity | toothache) = 0.8 in ase of a toothahe.

© 2008 TKK / ICS
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➤ Note: the onditional probability P(cavity | toothache) = 0.8 doesnot mean that P(cavity) = 0.8 when Toothache is true!

➤ The preeding de�nition an be rewritten as produt rule:

P(φ∧ψ) = P(φ | ψ)P(ψ), or alternatively

P(φ∧ψ) = P(ψ | φ)P(φ).

➤ Conditional probabilities and the produt rule an be generalizedfor probability distributions of random variables as follows:

P(X | Y ) =
P(X ∧Y )

P(Y )

and P(X ∧Y ) = P(X | Y )P(Y ).

➤ These have to be interpreted with respet to partiular values ofthe random variables X and Y involved. For instane,

P(X = x1 ∧Y = y2) = P(X = x1 | Y = y2)P(Y = y2).

© 2008 TKK / ICS
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Where Do Probabilities Come From?

➤ Frequentist view: probabilities ome from experiments.If 10 out of 100 people have a avity, then P(cavity) = 0.10.

➤ Objetivist view: probabilities are real aspets of the universethat are approximated by the probabilities obtained withexperiments.

➤ Subjetivist view: an analyst tries to estimate probabilities.
➤ Referene lass problem: the more evidene is taken intoaount, the smaller beomes the referene lass from whihollet experimental data. This setting suggests the following:1. Minimizing the number of probabilities that need assessment.2. Maximizing the number of ases available for eah assessment.

© 2008 TKK / ICS
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3. THE AXIOMS OF PROBABILITY
➤ Probabilities assoiated with sentenes are axiomatized as follows:For all φ and ψ: A1. 0 ≤ P(φ) ≤ 1,A2. P(φ) = 0 if φ is unsatis�able,A3. P(φ) = 1 if φ is valid, andA4. P(φ∨ψ) = P(φ)+P(ψ)−P(φ∧ψ).

➤ The last axiom is easily veri�ed from a Venn diagram:

>A     B

True

A B

© 2008 TKK / ICS

AB
T-79.5102 / Autumn 2008 Unertainty 20

Using the Axioms of Probability

Lemma. If φ and ψ are logially equivalent, then P(φ) = P(ψ).Proof. Suppose that φ and ψ are logially equivalent, i.e., |= φ ↔ ψ.1. |= ψ∨¬ψ and |= φ∨¬ψ.2. Both ψ∧¬ψ and φ∧¬ψ are unsatis�able.3. Using A4 we obtain

P(ψ∨¬ψ) = P(ψ)+P(¬ψ)−P(ψ∧¬ψ)

=⇒ P(¬ψ) = 1−P(ψ) and

P(φ∨¬ψ) = P(φ)+P(¬ψ)−P(φ∧¬ψ)

=⇒ 1 = P(φ)+1−P(ψ)−0

=⇒ P(φ) = P(ψ).
© 2008 TKK / ICS
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➤ Other propositional onnetives are overed as follows:1. P(φ∧ψ) = P(φ)+P(ψ)−P(φ∨ψ) (A4)2. P(¬φ) = 1−P(φ)3. P(φ → ψ) = P(¬φ∨ψ) = P(¬φ∨ (φ∧ψ)) (Lemma)

= P(¬φ)+P(φ∧ψ)−P(¬φ∧φ∧ψ) (A4)

= 1−P(φ)+P(φ∧ψ)−0

= 1−P(φ)+P(ψ | φ)P(φ) (Def. of P(ψ | φ))4. P(φ ↔ ψ) = P((¬φ∨ψ)∧ (¬ψ∨φ)) (Lemma)

= 1−P(φ)+1−P(ψ)+2 ·P(φ∧ψ)−1 (A4,A3)

= 1−P(φ)−P(ψ)+2 ·P(φ∧ψ)

© 2008 TKK / ICS
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Why the Axioms of Probability Are Reasonable?

➤ Bruno de Finetti, 1931:�If Agent 1 expresses a set of degrees of belief thatviolate the axioms of probability theory then there is abetting strategy for Agent 2 that guarantees that Agent 1will lose money.�Example. Consider the following betting senario:

Agent 1 Agent 2 Outcome for Agent 1
Proposition Belief Bet Stakes A ^ B A ^ :B :A ^ B :A ^ :B

A 0.4 A 4 to 6 -6 -6 4 4
B 0.3 B 3 to 7 -7 3 -7 3

A _ B 0.8 :(A _ B) 2 to 8 2 2 2 -8

-11 -1 -1 -1

☞ Choies made by Agent 2 guarantee that Agent 1 loses money.© 2008 TKK / ICS
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4. INFERENCES USINGFULL JOINT DISTRIBUTIONS
➤ Consider a system of n random variables X1, . . . ,Xn that may rangeover di�erent domains.

➤ An atomi event X1 = x1 ∧·· ·∧Xn = xn is an assignment ofpartiular values x1, . . . ,xn to the variables X1, . . . ,Xn.
➤ The full joint probability distribution P(X1, . . . ,Xn) assignsprobabilities to all possible atomi events.
➤ The joint probability distribution grows rapidly with respet to thenumber of variables (e.g., 2n entries for n Boolean variables).

☞ It is infeasible to speify/store the whole distribution.

© 2008 TKK / ICS
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➤ For Boolean random variables, atomi events orrespond toonjuntions of literals (propositional atoms or their negations).

➤ Atomi events are mutually exlusive: any onjuntion of atomievents is neessarily false.

➤ The disjuntion of all atomi events is neessarily true: entries inthe joint probability distribution sum to 1.

➤ Probabilities provided by the joint probability distribution an beused for omputing probabilities of arbitrary sentenes φ:

P(φ) is the sum of probabilitiesassigned to atomi events satisfying φ.

➤ Also, onditional probabilities P(φ | φ1, . . . ,φn) an be omputed by

P(φ | φ1, . . . ,φn) =
P(φ∧φ1 ∧·· ·∧φn)

P(φ1 ∧·· ·∧φn)

.

© 2008 TKK / ICS
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toothache ¬toothache

cavity 0.04 0.06

¬cavity 0.01 0.891. cavity∧¬toothache is one of the atomi events,2. P(cavity) = P(cavity∧ tootache)+P(cavity∧¬toothache)

= 0.04+0.06 = 0.10,3. P(cavity∨ toothache) = 1−P(¬cavity∧¬toothache)

= 1−0.89 = 0.11,4. P(cavity | toothache) =
P(cavity∧ toothache)

P(toothache)
=

0.04
0.04+0.01

= 0.80.
© 2008 TKK / ICS
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Conditioning

➤ Marginalization is a proess where ertain variables Y1, . . . ,Ym aresummed out from a probability distribution:

P(X1, . . . ,Xn) = ∑
y1,...,ym

P(X1, . . . ,Xn,y1, . . . ,ym).Example. Reall from the preeding example P(cavity) =
P(cavity∧ toothache)+P(cavity∧¬toothache) = 0.10.

➤ The onditioning rule is a variant of marginalization based ononditional probabilities:

P(X1, . . . ,Xn) = ∑
y1,...,ym

P(X1, . . . ,Xn | y1, . . . ,ym)P(y1, . . . ,ym).
➤ These rules an be used in derivations of probability expressions.

© 2008 TKK / ICS
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5. INDEPENDENCEExample. Suppose that we build a ombined model with variables
Cavity, Toothache, and Weather.Question: how P(cavity, toothache,Weather = cloudy) is related to
P(cavity, toothache)?

➤ Propositions φ and ψ are (absolutely) independent i�
P(φ∧ψ) = P(φ)P(ψ) ⇐⇒ P(φ | ψ) = P(φ) ⇐⇒ P(ψ | φ) = P(ψ)whenever P(φ | ψ) and P(ψ | φ) are de�ned.Example. Assuming Weather = cloudy and cavity∧ toothacheindependent of eah other, we obtain

P(cavity, toothache,Weather = cloudy) =

P(cavity, toothache)P(Weather = cloudy).

© 2008 TKK / ICS
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6. BAYES' RULE AND ITS USE

➤ Bayes' rule (or Bayes' theorem) is derived from the produt rule:

P(φ | ψ)P(ψ) = P(φ∧ψ) = P(ψ | φ)P(φ)

=⇒ P(ψ | φ) =
P(φ | ψ)P(ψ)

P(φ)

given that P(φ) > 0.

➤ Bayes' rule an be used for diagnosti inferene, i.e. omputing

P(d | s) on the basis of other three probabilities:

• P(d) for a disease d,

• P(s) for a symptom s, and

• P(s | d) for the ausal relationship of s and d.

➤ A generalization for joint distributions or random variables:

P(Y | X) =
P(X | Y )P(Y )

P(X)

.

© 2008 TKK / ICS
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➤ Bayes' rule an be further generalized by onditioning:

P(φ | ψ∧χ) =
P(φ∧ψ∧χ)

P(ψ∧χ)

=
P(φ∧ψ∧χ)

P(φ∧χ)
·

P(φ∧χ)

P(χ)
·

P(χ)

P(ψ∧χ)

=
P(ψ | φ∧χ)P(φ | χ)

P(ψ | χ)

.Here the sentene χ stands for any bakground evidene.

➤ For random variables and a bakground evidene E this beomes

P(Y | X ,E) =
P(X | Y,E)P(Y | E)

P(X | E)
.

© 2008 TKK / ICS
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Applying Bayes' Rule: the Simple Case

Example. Consider Boolean random variables S and M whih mean�the patient has a sti� nek� and �the patient has meningitis�,respetively.

➤ Given the probabilities P(s | m) = 1/2, P(m) = 1/50000, and
P(s) = 1/20, we may apply Bayes' rule to ompute

P(m | s) =
P(s | m)P(m)

P(s)

=
1
2 ·

1
50000
1

20

=
1

5000

.
➤ Diagnosti knowledge is often more fragile than ausal one:an epidemi inreases P(m) and P(m | s) but not P(s | m).

© 2008 TKK / ICS
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NormalizationExample. Suppose we are interested in a further ondition of thepatient: W means that �the patient has a whiplash injury�.
➤ The relative likelihood of meningitis and whiplash an be assessedwithout knowing the prior probability P(s) of the symptom.

P(m | s)
P(w | s)

=
P(s | m)P(m)

P(s | w)P(w)
=

1
2 ·

1
50000

4
5 ·

1
1000

=
1
80

➤ This kind of omparison may be enough for deision making.

➤ Would it be possible to ompute the value of P(m | s)without assessing the prior probability P(s) diretly?

© 2008 TKK / ICS
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➤ One possibility is to use onditioning:

P(s) = P(s | m)P(m)+P(s | ¬m)P(¬m).

➤ Then P(m | s) = αP(s | m)P(m) and P(¬m | s) = αP(s | ¬m)P(¬m)follow for α = 1/P(s).

➤ Thus α is a normalizing onstant that sales the produts

P(s | m)P(m) and P(s | ¬m)P(¬m) so that they sum to 1.

➤ Generalizing for arbitrary random variables X and Y :

P(Y | X) = αP(X | Y )P(Y )where α makes the entries in P(Y | X) sum to 1.

© 2008 TKK / ICS
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Combining Evidene

Example. Reall the dentist example (Boolean random variables

Cavity and Toothache) and a further Boolean random variable Catchmeaning that �a avity is deteted with a steel probe�.

➤ Suppose that we know the probabilities

P(cavity | toothache) = 0.8 and P(cavity | catch) = 0.95.

➤ What if both toothache and catch are known?

➤ We know by Bayes' rule that P(cavity | catch∧ toothache) =

P(catch∧ toothache | cavity)P(cavity)
P(catch∧ toothache)

.

➤ Many (nontrivial) probabilities have to be known!

© 2008 TKK / ICS
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Bayesian Updating

➤ The idea is to inorporate piees of evidene one at a time.1. P(cavity | toothache) = P(cavity)
P(toothache | cavity)

P(toothache)2. Using toothache as a onditioning ontext:

P(cavity | toothache∧ catch) =

P(cavity | toothache)
P(catch | toothache∧ cavity)

P(catch | toothache)
=

P(cavity)
P(toothache | cavity)

P(toothache)
P(catch | toothache∧ cavity)

P(catch | toothache)

.
☞ Still many probabilities have to be spei�ed!

➤ Bayesian updating is order-independent.© 2008 TKK / ICS
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Conditional Independene
➤ For instane, Boolean variables Tootache and Catch areonditionally independent given Cavity ⇐⇒

P(Catch | Toothache,Cavity) = P(Catch | Cavity) and
P(Toothache | Catch,Cavity) = P(Toothache | Cavity).

➤ Using these, we obtain P(cavity | toothache∧ catch) =

P(cavity)
P(toothache | cavity)

P(toothache)
P(catch | cavity)

P(catch | toothache)

➤ Finally, the produt P(toothache)P(catch | toothache) in thedenominator an be eliminated by normalization:

P(Z | X ,Y ) = αP(Z)P(X | Z)P(Y | Z).

© 2008 TKK / ICS
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Naive Bayes Model

➤ In a sense, Cavity separates Tootache and Catch beause it is adiret ause of both variables.

➤ A ommonly ourring pattern is that a single ause diretlyin�uenes a number of e�ets, all of whih are onditionallyindependent, given the ause.

➤ In this ase, the full joint distribution an be written as

P(Cause,Effect1, . . . ,Effectn) = P(Cause)∏
i

P(Effecti | Cause).

☞ Conditional independene assertions allow probabilistisystems to sale up.

➤ In pratie, the naive Bayes model an work surprisingly well evenif the onditional independene assumption is not fully true.© 2008 TKK / ICS
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SUMMARY

➤ Unertainty arises beause of both laziness and ignorane.

➤ Probabilities provide a way of summarizing the agent's beliefs.

➤ Bayes' rule/theorem allows unknown probabilities to beomputed from known, stable ones.

➤ The full joint probability distribution spei�es the probability ofeah omplete assignment of values to all random variables.

➤ The joint distribution is typially far too large to reate or use.

➤ Sometimes it an be fatored using onditional independeneassumptions whih make the naive Bayes model e�etive.
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QUESTIONSReonsider soer playing agents:

➤ Whih fators ause unertainty in this domain?In partiular, onsider fators that are related with1. the environment of agents,2. pereptual information, and3. outomes of ations.

➤ Is it possible to deal with these fators using probabilities?
➤ What are the ways for determining the probabilities involved?
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