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UNCERTAINTYOutline

➤ A
ting under un
ertainty

➤ Basi
 probability notation

➤ The axioms of probability

➤ Inferen
e Using Full Joint Distributions

➤ Independen
e

➤ Bayes' rule and its useBased on the textbook by Stuart Russell & Peter Norvig:Arti�
ial Intelligen
e, A Modern Approa
h (2nd Edition)Chapter 13; ex
luding Se
tion 13.7
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1. ACTING UNDER UNCERTAINTY

➤ Agents almost never have a

ess to the whole truth about theirenvironment and have thus a
t under un
ertainty.

➤ Quali�
ation problem: how to de�ne the 
ir
umstan
es underwhi
h a given a
tion is guaranteed to work.It is typi
al that there are too many 
onditions(or ex
eptions to 
onditions) to be expli
itly enumerated.
➤ The right thing to do, the rational de
ision, depends both on therelative importan
e of the various goals and the likelihood that,and degree to whi
h, they will be a
hieved.
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Example. Suppose that our taxi-driving agent wants to drive someoneto an airport 15 miles away to 
at
h a �ight.

➤ Plan A90 involves leaving 90 minutes before the �ight.
➤ Plan A90 is su

essful given that1. the 
ar does not break or run out of gas,2. the agent does not get into an a

ident,3. the plane does not leave early, and so on . . .
➤ Performan
e measure: getting to the airport on time, avoidingunprodu
tive, long waits as well as speeding ti
kets.

➤ Other plans, su
h as A120, in
reases the likelihood of getting tothe airport on time, but also the likelihood of a long wait.
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Handling Un
ertain Knowledge

Example. Consider formalizing some diagnosti
 prin
iples:

∀p(Symptom(p,Toothache) →Disease(p,Cavity))

∀p(Symptom(p,Toothache) →Disease(p,Cavity)

∨Disease(p, ImpactedWisdom)

∨Disease(p,GumDisease)∨·· · )

∀p(Disease(p,Cavity)∧·· · →Symptom(p,Toothache))Di�
ulties with formalizations using senten
es of �rst-order logi
:1. Laziness: 
ompleting ante
edents/
onsequents is very laborious.2. Theoreti
al ignoran
e: the domain la
ks a 
omprehensive theory.3. Pra
ti
al ignoran
e: appli
ability to a patient is not guaranteed.
© 2008 TKK / ICS
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➤ Agent's knowledge on the environment 
an at best provideonly a degree of belief in relevant senten
es.

➤ Probability theory assigns a degree of belief P(φ)(a real number from the interval [0,1℄) to a senten
e φ.

➤ Individual senten
es φ are 
onsidered to be either true or false.� P(φ) = 0 means that φ is false in all 
ir
umstan
es� P(φ) = 1 means that φ is true in all 
ir
umstan
es.

➤ Probabilities provide a way of summarizing the un
ertainty.Example. A patient has a 
avity with a probability of 0.8 if (s)he hasa tootha
he. The remaining probability mass (0.2) summarizes allother explanations for tootha
he.
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Probability Theory vs. Fuzzy Logi


➤ Degrees of belief (as in probability theory) are di�erent fromdegrees of truth (as in fuzzy logi
).Example. Consider an atomi
 senten
e A stating �the door is 
losed�.� P(A) = 0.99 means that the door is 
losed almost for sure.� In 
ontrast to this, a degree of truth V (A) = 0.99 would mean thatthe door is almost 
ompletely 
losed.
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On The Role of Eviden
e
➤ The probability that an agent assigns to a senten
e φ depends ofthe per
epts φ1, . . . ,φn (eviden
e) obtained so far.
➤ Analogous to logi
al 
onsequen
e {φ1, . . . ,φn} |= φ.
➤ Prior/un
onditional probability P(φ) is the probability of φ withouteviden
e.

➤ Posterior/
onditional probability P(φ | φ1 ∧·· ·∧φn) is theprobability of φ after obtaining pie
es of eviden
e φ1, . . . ,φn.
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Example. Consider a shu�ed standard pa
k of 52 playing 
ards.Let A mean �the 
ard drawn from the pa
k is the a
e of spades�.� Prior probabilities before looking the 
ard:

P(A) = 1
52 and P(¬A) = 51

52 .� Posterior probabilities after looking the 
ard:

P(A | A) =
P(A∧A)

P(A)
=

P(A)

P(A)
= 1 and

P(A | ¬A) =
P(A∧¬A)

P(¬A)
=

0
P(¬A)

= 0.

Note: all pie
es of eviden
e have to be taken into a

ount when theposterior probabilities of senten
es are determined.
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Un
ertainty and Rational De
isions

Example. Regarding the airport example, suppose that1. P(�Plan A90 su

eeds.�) = 0.95,2. P(�Plan A120 su

eeds.�) = 0.98, and3. P(�Plan A1440 su

eeds.�) = 0.9999.� Whi
h plan should be sele
ted for exe
ution?� What kind of 
riteria 
ould be used for making su
h a de
ision?

☞ In addition to estimating the su

ess rates of plans/a
tions, wehave to spe
ify preferen
es on the possible out
omes.
© 2008 TKK / ICS
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➤ By utility theory every state has a degree of usefulness, or utility,to an agent and the agent prefers states with higher utility.

➤ An agent may freely de�ne its preferen
es that may appear evenirrational from the point of view of other agents.

➤ Utility theory allows for altruism (unsel�shness).

➤ De
ision theory = probability theory + utility theory

The prin
iple of Maximum Expe
ted Utility (MEU):�an agent is rational if and only if it 
hooses an a
tionthat yields the highest expe
ted utility, averaged over all thepossible out
omes of the a
tion�.
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Design for a De
ision-theoreti
 Agent
➤ An abstra
t algorithm for a de
ision-theoreti
 agent that sele
tsrational a
tions is the following:

function DT-AGENT( percept) returns an action
static: a set probabilistic beliefs about the state of the world

calculate updated probabilities for current state based on
available evidence including current percept and previous action

calculate outcome probabilities for actions,
given action descriptions and probabilities of current states

select action with highest expected utility
given probabilities of outcomes and utility information

return action

➤ The steps of the algorithm will be re�ned in the sequel.


© 2008 TKK / ICS

AB
T-79.5102 / Autumn 2008 Un
ertainty 12

2. BASIC PROBABILITY NOTATION

➤ A formal language is used for representing and reasoning withun
ertain knowledge.

➤ An extension of the language of propositional logi
 is used:1. Atomi
 propositions of the form X = x involve a randomvariable X and a value x from its domain.2. Propositional 
onne
tives ¬, ∧, ∨, →, and ↔ 
an be used toform more 
omplex propositions.

➤ Degrees of belief are expressed as probabilities P(φ) that areassigned to propositions (or senten
es) φ of the language.

➤ The dependen
e on eviden
e/experien
e φ1, . . . ,φn is expressed interms of 
onditional probability statements P(φ | φ1, . . . ,φn).
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Random Variables

➤ Random variables are typi
ally divided into three kinds:1. Boolean random variables having the domain 〈true, false〉.Notational abbreviations: Cavity = true  cavity

Cavity = false  ¬cavity2. Dis
rete random variables take on values from a �nite or atmost 
ountable domain 〈x1,x2, . . .〉.3. Continuous random variables range over real numbers.

➤ We will mostly 
on
entrate on the dis
rete 
ase.

➤ Atomi
 propositions 
an be viewed as Boolean random variables.

➤ An expression X = xi (whi
h denotes that the random variable Xhas the value xi) is interpreted as an atomi
 proposition.
© 2008 TKK / ICS
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Example. Consider a random variable Weather that ranges overweather 
onditions sunny, rain, cloudy, and snow.Then we may assign probabilities to parti
ular values of Weather:

P(Weather = sunny) = 0.7

P(Weather = rain) = 0.2

P(Weather = cloudy) = 0.08

P(Weather = snow) = 0.02

➤ A probability distribution P assigns probabilities to all value
ombinations of the random variables involved.Example. In the example above, P(Weather) = 〈0.7,0.2,0.08,0.02〉.The probability distribution P(Weather,Cavity) is two-dimensional.
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Prior/Un
onditional Probabilities
➤ Un
onditional probabilities are applied when no other information(eviden
e) is available.Example. Let Cavity be a Boolean random variable meaning that �apatient has a 
avity�. Then the prior probability

P(Cavity = true) = 0.1, or P(cavity) = 0.1 for short,means that in the absen
e of any other information the patient has a
avity with a probability of 0.1.This probability may 
hange if new information be
omes available.Example. A prior probability distribution for the random variable

Weather is easily de�ned by setting P(Weather) = 〈0.7,0.2,0.08,0.02〉.


© 2008 TKK / ICS

AB
T-79.5102 / Autumn 2008 Un
ertainty 16

Posterior/Conditional Probabilities

➤ If new eviden
e is a
quired, 
onditional probabilities have to beused instead of un
onditional ones.

➤ Conditional probabilities 
an be de�ned in terms of un
onditionalones. When P(ψ) > 0 we have that

P(φ | ψ) =
P(φ∧ψ)

P(ψ)

.

Example. Suppose that Cavity and Toothache mean that �the patienthas a 
avity� and �the patient has a tootha
he�, respe
tively.The prior probability P(cavity) = 0.1 has to be repla
ed by a
onditional one P(cavity | toothache) = 0.8 in 
ase of a tootha
he.
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➤ Note: the 
onditional probability P(cavity | toothache) = 0.8 doesnot mean that P(cavity) = 0.8 when Toothache is true!

➤ The pre
eding de�nition 
an be rewritten as produ
t rule:

P(φ∧ψ) = P(φ | ψ)P(ψ), or alternatively

P(φ∧ψ) = P(ψ | φ)P(φ).

➤ Conditional probabilities and the produ
t rule 
an be generalizedfor probability distributions of random variables as follows:

P(X | Y ) =
P(X ∧Y )

P(Y )

and P(X ∧Y ) = P(X | Y )P(Y ).

➤ These have to be interpreted with respe
t to parti
ular values ofthe random variables X and Y involved. For instan
e,

P(X = x1 ∧Y = y2) = P(X = x1 | Y = y2)P(Y = y2).
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Where Do Probabilities Come From?

➤ Frequentist view: probabilities 
ome from experiments.If 10 out of 100 people have a 
avity, then P(cavity) = 0.10.

➤ Obje
tivist view: probabilities are real aspe
ts of the universethat are approximated by the probabilities obtained withexperiments.

➤ Subje
tivist view: an analyst tries to estimate probabilities.
➤ Referen
e 
lass problem: the more eviden
e is taken intoa

ount, the smaller be
omes the referen
e 
lass from whi
h
olle
t experimental data. This setting suggests the following:1. Minimizing the number of probabilities that need assessment.2. Maximizing the number of 
ases available for ea
h assessment.
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3. THE AXIOMS OF PROBABILITY
➤ Probabilities asso
iated with senten
es are axiomatized as follows:For all φ and ψ: A1. 0 ≤ P(φ) ≤ 1,A2. P(φ) = 0 if φ is unsatis�able,A3. P(φ) = 1 if φ is valid, andA4. P(φ∨ψ) = P(φ)+P(ψ)−P(φ∧ψ).

➤ The last axiom is easily veri�ed from a Venn diagram:

>A     B

True

A B
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Using the Axioms of Probability

Lemma. If φ and ψ are logi
ally equivalent, then P(φ) = P(ψ).Proof. Suppose that φ and ψ are logi
ally equivalent, i.e., |= φ ↔ ψ.1. |= ψ∨¬ψ and |= φ∨¬ψ.2. Both ψ∧¬ψ and φ∧¬ψ are unsatis�able.3. Using A4 we obtain

P(ψ∨¬ψ) = P(ψ)+P(¬ψ)−P(ψ∧¬ψ)

=⇒ P(¬ψ) = 1−P(ψ) and

P(φ∨¬ψ) = P(φ)+P(¬ψ)−P(φ∧¬ψ)

=⇒ 1 = P(φ)+1−P(ψ)−0

=⇒ P(φ) = P(ψ).

© 2008 TKK / ICS
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➤ Other propositional 
onne
tives are 
overed as follows:1. P(φ∧ψ) = P(φ)+P(ψ)−P(φ∨ψ) (A4)2. P(¬φ) = 1−P(φ)3. P(φ → ψ) = P(¬φ∨ψ) = P(¬φ∨ (φ∧ψ)) (Lemma)

= P(¬φ)+P(φ∧ψ)−P(¬φ∧φ∧ψ) (A4)

= 1−P(φ)+P(φ∧ψ)−0

= 1−P(φ)+P(ψ | φ)P(φ) (Def. of P(ψ | φ))4. P(φ ↔ ψ) = P((¬φ∨ψ)∧ (¬ψ∨φ)) (Lemma)

= 1−P(φ)+1−P(ψ)+2 ·P(φ∧ψ)−1 (A4,A3)

= 1−P(φ)−P(ψ)+2 ·P(φ∧ψ)


© 2008 TKK / ICS

AB

T-79.5102 / Autumn 2008 Un
ertainty 22

Why the Axioms of Probability Are Reasonable?

➤ Bruno de Finetti, 1931:�If Agent 1 expresses a set of degrees of belief thatviolate the axioms of probability theory then there is abetting strategy for Agent 2 that guarantees that Agent 1will lose money.�Example. Consider the following betting s
enario:

Agent 1 Agent 2 Outcome for Agent 1
Proposition Belief Bet Stakes A ^ B A ^ :B :A ^ B :A ^ :B

A 0.4 A 4 to 6 -6 -6 4 4
B 0.3 B 3 to 7 -7 3 -7 3

A _ B 0.8 :(A _ B) 2 to 8 2 2 2 -8

-11 -1 -1 -1

☞ Choi
es made by Agent 2 guarantee that Agent 1 loses money.
© 2008 TKK / ICS
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4. INFERENCES USINGFULL JOINT DISTRIBUTIONS
➤ Consider a system of n random variables X1, . . . ,Xn that may rangeover di�erent domains.

➤ An atomi
 event X1 = x1 ∧·· ·∧Xn = xn is an assignment ofparti
ular values x1, . . . ,xn to the variables X1, . . . ,Xn.
➤ The full joint probability distribution P(X1, . . . ,Xn) assignsprobabilities to all possible atomi
 events.
➤ The joint probability distribution grows rapidly with respe
t to thenumber of variables (e.g., 2n entries for n Boolean variables).

☞ It is infeasible to spe
ify/store the whole distribution.
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➤ For Boolean random variables, atomi
 events 
orrespond to
onjun
tions of literals (propositional atoms or their negations).

➤ Atomi
 events are mutually ex
lusive: any 
onjun
tion of atomi
events is ne
essarily false.

➤ The disjun
tion of all atomi
 events is ne
essarily true: entries inthe joint probability distribution sum to 1.

➤ Probabilities provided by the joint probability distribution 
an beused for 
omputing probabilities of arbitrary senten
es φ:

P(φ) is the sum of probabilitiesassigned to atomi
 events satisfying φ.

➤ Also, 
onditional probabilities P(φ | φ1, . . . ,φn) 
an be 
omputed by

P(φ | φ1, . . . ,φn) =
P(φ∧φ1 ∧·· ·∧φn)

P(φ1 ∧·· ·∧φn)

.
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toothache ¬toothache

cavity 0.04 0.06

¬cavity 0.01 0.891. cavity∧¬toothache is one of the atomi
 events,2. P(cavity) = P(cavity∧ tootache)+P(cavity∧¬toothache)

= 0.04+0.06 = 0.10,3. P(cavity∨ toothache) = 1−P(¬cavity∧¬toothache)

= 1−0.89 = 0.11,4. P(cavity | toothache) =
P(cavity∧ toothache)

P(toothache)
=

0.04
0.04+0.01

= 0.80.
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Conditioning

➤ Marginalization is a pro
ess where 
ertain variables Y1, . . . ,Ym aresummed out from a probability distribution:

P(X1, . . . ,Xn) = ∑
y1,...,ym

P(X1, . . . ,Xn,y1, . . . ,ym).Example. Re
all from the pre
eding example P(cavity) =
P(cavity∧ toothache)+P(cavity∧¬toothache) = 0.10.

➤ The 
onditioning rule is a variant of marginalization based on
onditional probabilities:

P(X1, . . . ,Xn) = ∑
y1,...,ym

P(X1, . . . ,Xn | y1, . . . ,ym)P(y1, . . . ,ym).
➤ These rules 
an be used in derivations of probability expressions.
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5. INDEPENDENCEExample. Suppose that we build a 
ombined model with variables
Cavity, Toothache, and Weather.Question: how P(cavity, toothache,Weather = cloudy) is related to
P(cavity, toothache)?

➤ Propositions φ and ψ are (absolutely) independent i�
P(φ∧ψ) = P(φ)P(ψ) ⇐⇒ P(φ | ψ) = P(φ) ⇐⇒ P(ψ | φ) = P(ψ)whenever P(φ | ψ) and P(ψ | φ) are de�ned.Example. Assuming Weather = cloudy and cavity∧ toothacheindependent of ea
h other, we obtain

P(cavity, toothache,Weather = cloudy) =

P(cavity, toothache)P(Weather = cloudy).
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6. BAYES' RULE AND ITS USE

➤ Bayes' rule (or Bayes' theorem) is derived from the produ
t rule:

P(φ | ψ)P(ψ) = P(φ∧ψ) = P(ψ | φ)P(φ)

=⇒ P(ψ | φ) =
P(φ | ψ)P(ψ)

P(φ)

given that P(φ) > 0.

➤ Bayes' rule 
an be used for diagnosti
 inferen
e, i.e. 
omputing

P(d | s) on the basis of other three probabilities:

• P(d) for a disease d,

• P(s) for a symptom s, and

• P(s | d) for the 
ausal relationship of s and d.

➤ A generalization for joint distributions or random variables:

P(Y | X) =
P(X | Y )P(Y )

P(X)

.
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➤ Bayes' rule 
an be further generalized by 
onditioning:

P(φ | ψ∧χ) =
P(φ∧ψ∧χ)

P(ψ∧χ)

=
P(φ∧ψ∧χ)

P(φ∧χ)
·

P(φ∧χ)

P(χ)
·

P(χ)

P(ψ∧χ)

=
P(ψ | φ∧χ)P(φ | χ)

P(ψ | χ)

.Here the senten
e χ stands for any ba
kground eviden
e.

➤ For random variables and a ba
kground eviden
e E this be
omes

P(Y | X ,E) =
P(X | Y,E)P(Y | E)

P(X | E)
.
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Applying Bayes' Rule: the Simple Case

Example. Consider Boolean random variables S and M whi
h mean�the patient has a sti� ne
k� and �the patient has meningitis�,respe
tively.

➤ Given the probabilities P(s | m) = 1/2, P(m) = 1/50000, and
P(s) = 1/20, we may apply Bayes' rule to 
ompute

P(m | s) =
P(s | m)P(m)

P(s)

=
1
2 ·

1
50000
1

20

=
1

5000

.
➤ Diagnosti
 knowledge is often more fragile than 
ausal one:an epidemi
 in
reases P(m) and P(m | s) but not P(s | m).
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NormalizationExample. Suppose we are interested in a further 
ondition of thepatient: W means that �the patient has a whiplash injury�.
➤ The relative likelihood of meningitis and whiplash 
an be assessedwithout knowing the prior probability P(s) of the symptom.

P(m | s)
P(w | s)

=
P(s | m)P(m)

P(s | w)P(w)
=

1
2 ·

1
50000

4
5 ·

1
1000

=
1
80

➤ This kind of 
omparison may be enough for de
ision making.

➤ Would it be possible to 
ompute the value of P(m | s)without assessing the prior probability P(s) dire
tly?
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➤ One possibility is to use 
onditioning:

P(s) = P(s | m)P(m)+P(s | ¬m)P(¬m).

➤ Then P(m | s) = αP(s | m)P(m) and P(¬m | s) = αP(s | ¬m)P(¬m)follow for α = 1/P(s).

➤ Thus α is a normalizing 
onstant that s
ales the produ
ts

P(s | m)P(m) and P(s | ¬m)P(¬m) so that they sum to 1.

➤ Generalizing for arbitrary random variables X and Y :

P(Y | X) = αP(X | Y )P(Y )where α makes the entries in P(Y | X) sum to 1.
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Combining Eviden
e

Example. Re
all the dentist example (Boolean random variables

Cavity and Toothache) and a further Boolean random variable Catchmeaning that �a 
avity is dete
ted with a steel probe�.

➤ Suppose that we know the probabilities

P(cavity | toothache) = 0.8 and P(cavity | catch) = 0.95.

➤ What if both toothache and catch are known?

➤ We know by Bayes' rule that P(cavity | catch∧ toothache) =

P(catch∧ toothache | cavity)P(cavity)
P(catch∧ toothache)

.

➤ Many (nontrivial) probabilities have to be known!
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Bayesian Updating

➤ The idea is to in
orporate pie
es of eviden
e one at a time.1. P(cavity | toothache) = P(cavity)
P(toothache | cavity)

P(toothache)2. Using toothache as a 
onditioning 
ontext:

P(cavity | toothache∧ catch) =

P(cavity | toothache)
P(catch | toothache∧ cavity)

P(catch | toothache)
=

P(cavity)
P(toothache | cavity)

P(toothache)
P(catch | toothache∧ cavity)

P(catch | toothache)

.
☞ Still many probabilities have to be spe
i�ed!

➤ Bayesian updating is order-independent.
© 2008 TKK / ICS
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Conditional Independen
e
➤ For instan
e, Boolean variables Tootache and Catch are
onditionally independent given Cavity ⇐⇒

P(Catch | Toothache,Cavity) = P(Catch | Cavity) and
P(Toothache | Catch,Cavity) = P(Toothache | Cavity).

➤ Using these, we obtain P(cavity | toothache∧ catch) =

P(cavity)
P(toothache | cavity)

P(toothache)
P(catch | cavity)

P(catch | toothache)

➤ Finally, the produ
t P(toothache)P(catch | toothache) in thedenominator 
an be eliminated by normalization:

P(Z | X ,Y ) = αP(Z)P(X | Z)P(Y | Z).
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Naive Bayes Model

➤ In a sense, Cavity separates Tootache and Catch be
ause it is adire
t 
ause of both variables.

➤ A 
ommonly o

urring pattern is that a single 
ause dire
tlyin�uen
es a number of e�e
ts, all of whi
h are 
onditionallyindependent, given the 
ause.

➤ In this 
ase, the full joint distribution 
an be written as

P(Cause,Effect1, . . . ,Effectn) = P(Cause)∏
i

P(Effecti | Cause).

☞ Conditional independen
e assertions allow probabilisti
systems to s
ale up.

➤ In pra
ti
e, the naive Bayes model 
an work surprisingly well evenif the 
onditional independen
e assumption is not fully true.
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SUMMARY

➤ Un
ertainty arises be
ause of both laziness and ignoran
e.

➤ Probabilities provide a way of summarizing the agent's beliefs.

➤ Bayes' rule/theorem allows unknown probabilities to be
omputed from known, stable ones.

➤ The full joint probability distribution spe
i�es the probability ofea
h 
omplete assignment of values to all random variables.

➤ The joint distribution is typi
ally far too large to 
reate or use.

➤ Sometimes it 
an be fa
tored using 
onditional independen
eassumptions whi
h make the naive Bayes model e�e
tive.
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QUESTIONSRe
onsider so

er playing agents:

➤ Whi
h fa
tors 
ause un
ertainty in this domain?In parti
ular, 
onsider fa
tors that are related with1. the environment of agents,2. per
eptual information, and3. out
omes of a
tions.

➤ Is it possible to deal with these fa
tors using probabilities?
➤ What are the ways for determining the probabilities involved?
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