2

UNCERTAINTY

Outline

- Acting under uncertainty
- ➤ Basic probability notation
- > The axioms of probability
- ► Inference Using Full Joint Distributions
- ► Independence
- ➤ Bayes' rule and its use

T-79.5102 / Autumn 2008

Based on the textbook by Stuart Russell & Peter Norvig:

Artificial Intelligence, A Modern Approach (2nd Edition)

Chapter 13; excluding Section 13.7

© 2008 TKK / ICS

1. ACTING UNDER UNCERTAINTY

Uncertainty

- ➤ Agents almost never have access to the whole truth about their environment and have thus act under **uncertainty**.
- ► Qualification problem: how to define the circumstances under which a given action is *guaranteed* to work.
 - It is typical that there are too many conditions (or exceptions to conditions) to be explicitly enumerated.
- The right thing to do, the rational decision, depends both on the relative importance of the various goals and the likelihood that, and degree to which, they will be achieved.

Example. Suppose that our taxi-driving agent wants to drive someone to an airport 15 miles away to catch a flight.

- > Plan A_{90} involves leaving 90 minutes before the flight.
- > Plan A_{90} is successful given that
 - 1. the car does not break or run out of gas,
 - 2. the agent does not get into an accident,
 - 3. the plane does not leave early, and so on ...
- Performance measure: getting to the airport on time, avoiding unproductive, long waits as well as speeding tickets.
- Other plans, such as A₁₂₀, increases the likelihood of getting to the airport on time, but also the likelihood of a long wait.

© 2008 TKK / ICS

T-79.5102 / Autumn 2008

```
Uncertainty
```

4

3

Handling Uncertain Knowledge

Example. Consider formalizing some diagnostic principles:
∀p(Symptom(p,Toothache) → Disease(p,Cavity))
∀p(Symptom(p,Toothache) → Disease(p,Cavity)
∨Disease(p,ImpactedWisdom)
∨Disease(p,GumDisease) ∨···)
∀p(Disease(p,Cavity) ∧··· → Symptom(p,Toothache))
Difficulties with formalizations using sentences of first-order logic:

Laziness: completing antecedents/consequents is very laborious.
Theoretical ignorance: the domain lacks a comprehensive theory.
Practical ignorance: applicability to a patient is not guaranteed.

T-79.5102 / Autumn 2008

5

6

- Agent's knowledge on the environment can at best provide only a degree of belief in relevant sentences.
- Probability theory assigns a degree of belief P(φ)
 (a real number from the interval [0,1]) to a sentence φ.
- > Individual sentences ϕ are considered to be either true or false.
 - $P(\phi) = 0$ means that ϕ is false in all circumstances
 - $P(\phi) = 1$ means that ϕ is true in all circumstances.
- > Probabilities provide a way of summarizing the uncertainty.

Example. A patient has a cavity with a probability of 0.8 if (s)he has a toothache. The remaining probability mass (0.2) summarizes all other explanations for toothache.

© 2008 TKK / ICS

Uncertainty

Probability Theory vs. Fuzzy Logic

Degrees of belief (as in probability theory) are different from degrees of truth (as in fuzzy logic).

Example. Consider an atomic sentence A stating "the door is closed".

- P(A) = 0.99 means that the door is closed almost for sure.
- In contrast to this, a degree of truth V(A) = 0.99 would mean that the door is almost completely closed.

On The Role of Evidence

- The probability that an agent assigns to a sentence ϕ depends of the percepts ϕ_1, \dots, ϕ_n (evidence) obtained so far.
- ► Analogous to logical consequence $\{\phi_1, \ldots, \phi_n\} \models \phi$.
- Prior/unconditional probability P(φ) is the probability of φ without evidence.
- Posterior/conditional probability P(φ | φ₁ ∧··· ∧ φ_n) is the probability of φ after obtaining pieces of evidence φ₁,...,φ_n.

© 2008 TKK / ICS

T-79.5102 / Autumn 2008

Uncertainty

8

Example. Consider a shuffled standard pack of 52 playing cards. Let *A* mean "the card drawn from the pack is the ace of spades".

Prior probabilities before looking the card:

$$P(A) = \frac{1}{52}$$
 and $P(\neg A) = \frac{51}{52}$.

- Posterior probabilities after looking the card:

 $P(A \mid A) = rac{P(A \wedge A)}{P(A)} = rac{P(A)}{P(A)} = 1$ and

$$P(A \mid \neg A) = \frac{P(A \land \neg A)}{P(\neg A)} = \frac{0}{P(\neg A)} = 0.$$

Note: all pieces of evidence have to be taken into account when the posterior probabilities of sentences are determined.

T-79.5102 / Autumn 2008

14

Random Variables

- ► Random variables are typically divided into three kinds:
 - 1. Boolean random variables having the domain $\langle true, false \rangle$. Notational abbreviations: $Cavity = true \quad \rightsquigarrow \quad cavity$

 $Cavity = false \quad \rightsquigarrow \quad \neg cavity$

- 2. Discrete random variables take on values from a *finite* or at most *countable* domain $\langle x_1, x_2, \ldots \rangle$.
- 3. Continuous random variables range over real numbers.
- > We will mostly concentrate on the discrete case.
- > Atomic propositions can be viewed as Boolean random variables.
- An expression $X = x_i$ (which denotes that the random variable X has the value x_i) is interpreted as an atomic proposition.

 \odot 2008 TKK / ICS

Uncertainty

Example. Consider a random variable *Weather* that ranges over

weather conditions sunny, rain, cloudy, and snow.

Then we may assign probabilities to particular values of Weather:

- P(Weather = sunny) = 0.7P(Weather = rain) = 0.2P(Weather = cloudy) = 0.08P(Weather = snow) = 0.02
- ➤ A probability distribution P assigns probabilities to all value combinations of the random variables involved.

Example. In the example above, $\mathbf{P}(Weather) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$.

The probability distribution $\mathbf{P}(Weather, Cavity)$ is two-dimensional.

Prior/Unconditional Probabilities

 Unconditional probabilities are applied when no other information (evidence) is available.

Example. Let *Cavity* be a Boolean random variable meaning that "a patient has a cavity". Then the prior probability

P(Cavity = true) = 0.1, or P(cavity) = 0.1 for short,

means that in the absence of any other information the patient has a cavity with a probability of 0.1.

This probability may change if new information becomes available.

Example. A prior **probability distribution** for the random variable *Weather* is easily defined by setting $\mathbf{P}(Weather) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$.

 \odot 2008 TKK / ICS

T-79.5102 / Autumn 2008

Uncertainty

16

Posterior/Conditional Probabilities

- If new evidence is acquired, conditional probabilities have to be used instead of unconditional ones.
- ► Conditional probabilities can be defined in terms of unconditional ones. When $P(\psi) > 0$ we have that

$$P(\phi \mid \psi) = rac{P(\phi \wedge \psi)}{P(\psi)}.$$

Example. Suppose that *Cavity* and *Toothache* mean that "the patient has a cavity" and "the patient has a toothache", respectively.

The prior probability P(cavity) = 0.1 has to be replaced by a conditional one P(cavity | toothache) = 0.8 in case of a toothache.

T-79.5102 / Autumn 2008

17

18

- **>** Note: the conditional probability P(cavity | toothache) = 0.8 does not mean that P(cavity) = 0.8 when *Toothache* is true!
- > The preceding definition can be rewritten as **product rule**:

 $P(\phi \wedge \psi) = P(\phi \mid \psi)P(\psi)$, or alternatively

$$P(\phi \wedge \psi) = P(\psi \mid \phi)P(\phi).$$

> Conditional probabilities and the product rule can be generalized for probability distributions of random variables as follows:

$$\mathbf{P}(X \mid Y) = \frac{\mathbf{P}(X \land Y)}{\mathbf{P}(Y)} \text{ and } \mathbf{P}(X \land Y) = \mathbf{P}(X \mid Y)\mathbf{P}(Y).$$

> These have to be interpreted with respect to particular values of the random variables X and Y involved. For instance,

$$P(X = x_1 \land Y = y_2) = P(X = x_1 \mid Y = y_2)P(Y = y_2).$$

Uncertainty

© 2008 TKK / ICS

Where Do Probabilities Come From?

- **Frequentist view**: probabilities come from experiments. If 10 out of 100 people have a cavity, then P(cavity) = 0.10.
- > Objectivist view: probabilities are real aspects of the universe that are approximated by the probabilities obtained with experiments.
- **Subjectivist view:** an analyst tries to estimate probabilities.
- **Reference class problem:** the more evidence is taken into account, the smaller becomes the reference class from which collect experimental data. This setting suggests the following:
 - 1. Minimizing the number of probabilities that need assessment.
 - 2. Maximizing the number of cases available for each assessment.

4

3

-8

-1

Other propositional connectives are covered as follows	s:
1. $P(\phi \land \psi) = P(\phi) + P(\psi) - P(\phi \lor \psi)$	(A4)
2. $P(\neg \phi) = 1 - P(\phi)$	
3. $P(\phi \rightarrow \psi) = P(\neg \phi \lor \psi) = P(\neg \phi \lor (\phi \land \psi))$	(Lemma)
$= P(\neg \phi) + P(\phi \land \psi) - P(\neg \phi \land \phi \land \psi)$	(A4)
$= 1 - P(\phi) + P(\phi \wedge \psi) - 0$	
$= 1 - P(\phi) + P(\psi \mid \phi)P(\phi) \qquad (Det.$	of $P(\psi \mid \phi))$
4. $P(\phi \leftrightarrow \psi) = P((\neg \phi \lor \psi) \land (\neg \psi \lor \phi))$	(Lemma)
$= 1 - P(\phi) + 1 - P(\psi) + 2 \cdot P(\phi \wedge \psi) - 1$	(A4,A3)
$= 1 - P(\phi) - P(\psi) + 2 \cdot P(\phi \wedge \psi)$	

© 2008 TKK / ICS

4. INFERENCES USING FULL JOINT DISTRIBUTIONS

- \blacktriangleright Consider a system of *n* random variables X_1, \ldots, X_n that may range over different domains.
- > An **atomic event** $X_1 = x_1 \wedge \cdots \wedge X_n = x_n$ is an assignment of particular values x_1, \ldots, x_n to the variables X_1, \ldots, X_n .
- > The full joint probability distribution $\mathbf{P}(X_1,\ldots,X_n)$ assigns probabilities to all possible atomic events.
- > The joint probability distribution grows rapidly with respect to the number of variables (e.g., 2^n entries for *n* Boolean variables).

It is infeasible to specify/store the whole distribution.

© 2008 TKK / ICS

T-79.5102 / Autumn 2008

Uncertainty

24

23

- > For Boolean random variables, atomic events correspond to conjunctions of *literals* (propositional atoms or their negations).
- ► Atomic events are *mutually exclusive*: any conjunction of atomic events is necessarily false.
- > The disjunction of all atomic events is necessarily true: entries in the joint probability distribution sum to 1.
- > Probabilities provided by the joint probability distribution can be used for computing probabilities of arbitrary sentences ϕ :

 $P(\phi)$ is the sum of probabilities assigned to atomic events satisfying ϕ .

> Also, conditional probabilities $P(\phi | \phi_1, \dots, \phi_n)$ can be computed by

$$P(\phi \mid \phi_1, \dots, \phi_n) = \frac{P(\phi \land \phi_1 \land \dots \land \phi_n)}{P(\phi_1 \land \dots \land \phi_n)}$$

	toothache	\neg toothache
cavity	0.04	0.06
¬cavity	0.01	0.89

- 1. $cavity \land \neg toothache$ is one of the atomic events,
- 2. $P(cavity) = P(cavity \land tootache) + P(cavity \land \neg toothache)$ = 0.04 + 0.06 = 0.10,
- 3. $P(cavity \lor toothache) = 1 P(\neg cavity \land \neg toothache)$ = 1 - 0.89 = 0.11.

4. $P(cavity \mid toothache) = \frac{P(cavity \land toothache)}{P(toothache)} = \frac{0.04}{0.04 + 0.01}$ = 0.80.

© 2008 TKK / ICS

5. INDEPENDENCE

Example. Suppose that we build a combined model with variables *Cavity, Toothache,* and *Weather.*

Question: how P(cavity, toothache, Weather = cloudy) is related to P(cavity, toothache)?

> Propositions ϕ and ψ are (absolutely) independent iff

 $P(\phi \land \psi) = P(\phi)P(\psi) \iff P(\phi \mid \psi) = P(\phi) \iff P(\psi \mid \phi) = P(\psi)$

whenever $P(\phi \mid \psi)$ and $P(\psi \mid \phi)$ are defined.

Example. Assuming *Weather* = *cloudy* and *cavity* \land *toothache* independent of each other, we obtain

P(cavity, toothache, Weather = cloudy) = P(cavity, toothache)P(Weather = cloudy).

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 **G. BAYES' RULE AND ITS USE Solution Bayes' rule (or Bayes' theorem) is derived from the product rule:** $P(\phi | \psi)P(\psi) = P(\phi \land \psi) = P(\psi | \phi)P(\phi)$ $\implies P(\psi | \phi) = \frac{P(\phi | \psi)P(\psi)}{P(\phi)}$ given that $P(\phi) > 0$. **Bayes' rule can be used for** *diagnostic inference*, i.e. computing $P(d \mid s)$ on the basis of other three probabilities: P(d) for a disease d, P(s) for a symptom s, and $P(s \mid d)$ for the *causal relationship* of s and d. **A generalization for joint distributions or random variables:** $P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$.

28

32

 $\mathbf{P}(Y \mid X) = \alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)$

where α makes the entries in $\mathbf{P}(Y \mid X)$ sum to 1.

> Diagnostic knowledge is often more fragile than causal one: an epidemic increases P(m) and $P(m \mid s)$ but not $P(s \mid m)$.

Combining Evidence

Example. Recall the dentist example (Boolean random variables *Cavity* and *Toothache*) and a further Boolean random variable *Catch* meaning that "a cavity is detected with a steel probe".

> Suppose that we know the probabilities

 $P(cavity \mid toothache) = 0.8$ and $P(cavity \mid catch) = 0.95$.

- \blacktriangleright What if both *toothache* and *catch* are known?
- \blacktriangleright We know by Bayes' rule that $P(cavity \mid catch \land toothache) =$

 $P(catch \land toothache \mid cavity)P(cavity)$ $P(catch \wedge toothache)$

- > Many (nontrivial) probabilities have to be known!
 - © 2008 TKK / ICS

35

► For instance, Boolean variables *Tootache* and *Catch* are conditionally independent given $Cavity \iff$

> $\mathbf{P}(Catch \mid Toothache, Cavity) = \mathbf{P}(Catch \mid Cavity)$ and $\mathbf{P}(Toothache \mid Catch, Cavity) = \mathbf{P}(Toothache \mid Cavity).$

 \blacktriangleright Using these, we obtain $P(cavity \mid toothache \land catch) =$ $P(cavity) \frac{P(toothache | cavity)}{P(toothache)} \frac{P(catch | cavity)}{P(catch | toothache)}$

 \blacktriangleright Finally, the product $P(toothache)P(catch \mid toothache)$ in the denominator can be eliminated by normalization:

 $\mathbf{P}(Z \mid X, Y) = \alpha \mathbf{P}(Z) \mathbf{P}(X \mid Z) \mathbf{P}(Y \mid Z).$

© 2008 TKK / ICS

SUMMARY

- ► Uncertainty arises because of both laziness and ignorance.
- > Probabilities provide a way of summarizing the agent's beliefs.
- ► **Bayes' rule/theorem** allows unknown probabilities to be computed from known, stable ones.
- ➤ The **full joint probability distribution** specifies the probability of each complete assignment of values to all random variables.
- > The joint distribution is typically far too large to create or use.
- Sometimes it can be factored using **conditional independence** assumptions which make the **naive Bayes** model effective.

© 2008 TKK / ICS

	T-79.5102 / Autumn 2008 Uncertainty	$\overline{}$
	QUESTIONS	
	Reconsider soccer playing agents:	
	Which factors cause uncertainty in this domain?	
	In particular, consider factors that are related with	
	1. the environment of agents,	
	2. perceptual information, and	
	3. outcomes of actions.	
	➤ Is it possible to deal with these factors using probabilities?	
	What are the ways for determining the probabilities involved?	
l		