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PROBABILISTIC REASONING OVER TIMEOutline

➤ Time and unertainty

➤ Inferene in temporal models

➤ Hidden Markov models

➤ Dynami Bayesian networksBased on the textbook by Stuart Russell & Peter Norvig:Arti�ial Intelligene, A Modern Approah (2nd Edition)Chapter 15; exluding Setions 15.4 and 15.6
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1. TIME AND UNCERTAINTY

➤ We have previously developed our tehniques for probabilistireasoning in the ontext of stati worlds.

➤ E.g. when repairing a ar, it is assumed that whatever is brokenremains broken during the proess of diagnosis.

➤ However, in ertain domains dynami aspets beome essential.

Example. A dotor is treating a diabeti patient.� Reent insulin doses, food intake, blood sugar measurements, andother physial signs serve as piees of evidene.� The dotor deides about food intake and insulin dose.
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States and Observations
➤ The proess of hange is viewed as a series of snapshots, eah ofwhih desribes the state of the world at a partiular time.
➤ Eah time slie involves a set of random variables indexed by t:1. the set of unobservable state variables Xt and2. the set of observable evidene variables Et .
➤ The observation at time t is Et = et for some set of values et .

➤ The notation Xa:b denotes the sets of variables from Xa to Xb.

➤ The interval between time slies depends on the problem!
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Stationary Proesses and the Markov Assumption

➤ In a stationary proess, the hanges in the world state aregoverned by laws that do not themselves hange over time.

➤ A �rst-order Markov proess satis�es an equation

P(Xt | X0:t−1) = P(Xt | Xt−1)where P(Xt | Xt−1) forms the transition model of the proess.

➤ In addition, it is typial to assume a sensor model of the form

P(Et | X0:t ,E1:t−1) = P(Et | Xt)so that observations depend on the urrent state only.
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➤ The set of state variables Xt = {Raint} for t = 0,1, . . . .

➤ The set of evidene variables Et = {Umbrellat} for t = 1,2, . . . .
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Resulting Joint Distribution

➤ In addition to transition and sensor models, we need to speify aprior distribution P(X0) over the state at time 0.

➤ Combining this with the preeding transition and sensor models,whih are independene assumptions, implies a distribution
P(X0:t ,E1:t) = P(X0)

t

∏
i=1

P(Xi | Xi−1)P(Ei | Xi).for any point of time t.

➤ If neessary, the Markov assumption an be reovered byintroduing suitable state variables.Example. When modelling a battery-powered robot wandering in the
xy-plane, the battery level has to be taken into aount.© 2008 TKK / ICS
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Example

Reall the seurity guard pereiving umbrellas.The probability of an event ¬r0,¬r1,¬r2,u1,u2 is alulated as follows:1. The prior distribution P(R0) = 〈0.5,0.5〉.2. Next, we apply transition and sensor models over all time steps:

P(¬r0,¬r1,¬r2,u1,u2)

= P(¬r0)×P(¬r1 | ¬r0)P(u1 | ¬r1)×P(¬r2 | ¬r1)P(u2 | ¬r2)

= 0.5×0.7×0.2×0.7×0.2

= 9.8×10−3.
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2. INFERENCE IN TEMPORAL MODELSHaving set up the generi temporal model, we may formulate the basiinferene tasks that are to be solved.1. Filtering or monitoring: the task is to ompute the belief state,i.e. the posterior distribution P(Xt | e1:t) over the urrent state.2. Predition: the posterior distribution P(Xt+k | e1:t) over the futurestate is of interest for some k > 0.3. Smoothing or hindsight: the aim is to ompute P(Xk | e1:t)where 0≤ k < t for some past state.4. Most likely explanation is a sequene of states x1:t thatmaximizes P(x1:t | e1:t) for the observations e1:t to date.
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Filtering

➤ In reursive estimation, the idea is to ompute P(Xt+1 | e1:t+1)as a funtion of et+1 and P(Xt | e1:t).

➤ Using transition and sensor models we obtain by Bayes' rule,onditioning, and the Markov assumption that

P(Xt+1 | e1:t+1) = αP(et+1 | Xt+1,e1:t)P(Xt+1 | e1:t)

= αP(et+1 | Xt+1)∑xt
P(Xt+1 | xt)P(xt | e1:t).

➤ This an be viewed as the propagation of a message

f1:t = P(Xt | e1:t) forward: f1:t+1 = αForward(f1:t ,et+1).

➤ The time and spae requirements for updating are onstant!
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Example

The seurity guard has a prior belief P(R0) = 〈0.5,0.5〉 about the state.1. The predition from t = 0 to t = 1 gives

P(R1) = ∑r0
P(R1 | r0)P(r0) = P(R1 | r0)P(r0)+P(R1 | ¬r0)P(¬r0)

= 〈0.7,0.3〉×0.5+ 〈0.3,0.7〉×0.5 = 〈0.5,0.5〉.2. Updating this distribution with the evidene u1 for t = 1 gives
P(R1 | u1) = αP(u1 | R1)P(R1) = α〈0.9,0.2〉〈0.5,0.5〉

= α〈0.45,0.1〉 ≈ 〈0.818,0.182〉.3. In ase of repeated evidene, the probability of rain inreases, sine
P(R2 | u1) ≈ 〈0.627,0.373〉 and

P(R2 | u1,u2) = α〈0.565,0.075〉 ≈ 〈0.883,0.117〉.
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Predition

➤ Predition is �ltering without the addition of new evidene
P(Xt+k | e1:t) = ∑xt+k−1

P(Xt+k | xt+k−1)P(xt+k−1 | e1:t).where the parameter k > 0 (and hene t + k−1≥ t).
➤ The distribution P(Xt | e1:t) is obtained by �ltering.Example. Let us predit the hanes for rain given u1 and u2:

P(R3 | u1,u2) = ∑r2
P(R3 | r2)P(r2 | u1,u2)

= P(R3 | r2)P(r2 | u1,u2)+P(R3 | ¬r2)P(¬r2 | u1,u2)

= 〈0.7,0.3〉× p+ 〈0.3,0.7〉× (1− p)

= 〈0.3+0.4p, 0.7−0.4p〉.where P(R2 | u1,u2) = 〈p,1− p〉.© 2008 TKK / ICS
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Example (ontinued)

What happens if we make even further preditions into future?1. For k = 2, we obtain

P(R4 | u1,u2) = ∑r3
P(R4 | r3)P(r3 | u1,u2)

= P(R4 | r3)P(r3 | u1,u2)+P(R4 | ¬r3)P(¬r3 | u1,u2)

= 〈0.7,0.3〉× (0.3+0.4p)+ 〈0.3,0.7〉× (0.7−0.4p)

= 〈0.42+0.16p, 0.58−0.16p〉.2. In general, we have for any k ≥ 0,

P(R2+k | u1,u2) = 〈0.5+(p−0.5)×0.4k, 0.5+(1− p−0.5)×0.4k〉whih onverges towards the stationary distribution 〈0.5,0.5〉.
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Smoothing

➤ The task is to ompute P(Xk | e1:t) for 0≤ k < t referring to past.

➤ Using a bakward message bk+1:t = P(ek+1:t | Xk), we obtain

P(Xk | e1:t) = α f1:kbk+1:t .

➤ The bakward message bk+1:t an be omputed using

bk+1:t = ∑
xk+1

P(ek+1 | xk+1)P(ek+2:t | xk+1)P(xk+1 | Xk).

➤ Whenever k +1 = t, the sequene ek+2:t beomes empty and

P(ek+2:t | xk+1) = P(⊤ | xk+1) = 1 where ⊤ stands for truth.

➤ This leads to a reursive de�nition, or algorithm

bk+1:t = αBakward(bk+2:t ,ek+1:t).
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Example

Let us demonstrate smoothing with the umbrella example:1. P(R1 | u1,u2) = α f1:1b2:2 = αP(R1 | u1)P(u2 | R1) where we alreadyknow the distribution f1:1 = P(R1 | u1) = 〈0.818,0.182〉.2. The distribution b2:2 = P(u2 | R1) = ∑r2
P(u2 | r2)P(r2 | R1) =

0.9×〈0.7,0.3〉+0.2×〈0.3,0.7〉 = 〈0.69,0.41〉.3. By substituting these distributions and normalizing, we obtain
P(R1 | u1,u2) = α〈0.818,0.182〉〈0.69,0.41〉

≈ α〈0.564,0.075〉 ≈ 〈0.883,0.117〉.so that the smoothed estimate P(r1 | u1,u2) > P(r1 | u1).
☞ The additional piee of evidene u2 inreases the probability ofrain on the �rst day, as the rain tends to persist.© 2008 TKK / ICS
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Finding the Most Likely Sequene

Example. Suppose that the seurity guard makes the followingobservations during the �rst �ve days: u1,u2,¬u3,u4,u5.What is the weather sequene most likely to explain this?
➤ For eah pair of states xt+1 and xt , there is a reursive relationshipbetween the most likely paths to xt+1 and xt :

maxx1...xt P(x1, . . . ,xt ,Xt+1 | e1:t+1)

= αP(et+1 | Xt+1)×

maxxt

(

P(Xt+1|xt)maxx1,...,xt−1 P(x1, . . . ,xt−1,xt | e1:t)
)

.

➤ This equation is analogous to the one used in �ltering.

➤ Maximization is performed for eah value xt+1 of Xt+1 in turn.

© 2008 TKK / ICS

AB
T-79.5102 / Autumn 2008 Probabilisti Reasoning over Time 16

➤ In the �ltering sheme, we have to replae f1:t = P(Xt | e1:t) by

m1:t = max
x1,...,xt−1

P(x1, . . . ,xt−1,Xt | e1:t)and summation over xt by maximization over xt .

➤ This gives the essential ontent of the Viterbi algorithm whihhas both linear time and spae requirements.Example. Consider the most likely explanation for u1,u2,¬u3,u4,u5:
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true

Rain3

m 1:3

false

Rain2

m 1:2

trueUmbrella t

(a)

(b)

.8182

.1818

.0210

.0024

.0334

.0173

.0361

.1237

.5155

.0491

true

false

true

false

true

false

true

false

true

false
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3. HIDDEN MARKOV MODELS

➤ In a hidden Markov Model, or HMM, the world is desribed bya single disrete random variable Xt taking values 1, . . . ,S whihorrespond to the states of the world.

➤ The transition model P(Xt | Xt−1) beomes an S×S matrix T suhthat Ti j = P(Xt = j | Xt−1 = i).

➤ Forward and bakward reasoning are simpli�ed as follows:

f1:t+1 = αOt+1TT f1:t

bk+1:t = αTOk+1bk+2:twhere Ot is a diagonal matrix having P(et | Xt = i) as the ith value.

➤ For HMMs, the time and spae omplexities of forward-bakwardtype reasoning are of the orders of S2× t and S× t, respetively.© 2008 TKK / ICS
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4. DYNAMIC BAYESIAN NETWORKS

➤ A dynami Bayesian network (DBN) represents how the state ofthe environment evolves over time.

➤ Eah time slie of a DBN may have any number of state variables
Xt and evidene variables Et .

➤ Every HMM an be transformed into a DBN and vie versa.
➤ By deomposing the state of a omplex system into its onstituentvariables, the DBN is able to take advantage of the sparseness inthe temporal probability model.Example. The transition model of a DBN with 20 Boolean statevariables, eah of whih has three parents in the preeding slide, has

20×23 = 160 probabilities while its HMM ounterpart has 240.
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Construting Dynami Bayesian Networks
➤ To onstrut a DBN, one must speify three distributions: P(X0),the transition model P(Xt+1 | Xt), and the sensor model P(Et | Xt).
➤ For eah time step t, there is one node for eah state variable Xtand eah evidene variable Et plus relevant links between nodes.Example. For the seurity guard example, it is su�ient to speify
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Example

A robot is desribed with state variables Xt = 〈Xt ,Yt〉 for position and

Ẋt = 〈Ẋt , Ẏt〉 for veloity and Batteryt for atual battery harge level.

Z1

X1

X1tXX 0

X 0

1BatteryBattery 0

1BMeter

Both position (evidene variables Zt) and the battery harge level(evidene variable BMetert) are measured.© 2008 TKK / ICS
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Exat Inferene in DBNs

➤ The previous algorithms for inferene in Bayesian networks an beapplied to dynami Bayesian networks.

➤ Given a sequene of observations, one an unroll a DBN until thenetwork is large enough to aommodate the observations.

➤ Unrolling an also be done on a slie-by-slie basis.

➤ In the general ase, the omplexity of reasoning is exponential.
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SUMMARY

➤ A dynami world an be handled using a set of random variablesto represent the state of the world at eah point in time.

➤ Representations an be designed to satisfy the Markov property,so that the future is independent of the past given the present.
➤ With the stationarity assumption, i.e., the dynamis of the systemdoes not hange, muh simpler probabilisti models are obtained.
➤ A temporal probability model onsists of a transition model anda sensor model.
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