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PROBABILISTIC REASONING OVER TIMEOutline

➤ Time and un
ertainty

➤ Inferen
e in temporal models

➤ Hidden Markov models

➤ Dynami
 Bayesian networksBased on the textbook by Stuart Russell & Peter Norvig:Arti�
ial Intelligen
e, A Modern Approa
h (2nd Edition)Chapter 15; ex
luding Se
tions 15.4 and 15.6
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1. TIME AND UNCERTAINTY

➤ We have previously developed our te
hniques for probabilisti
reasoning in the 
ontext of stati
 worlds.

➤ E.g. when repairing a 
ar, it is assumed that whatever is brokenremains broken during the pro
ess of diagnosis.

➤ However, in 
ertain domains dynami
 aspe
ts be
ome essential.

Example. A do
tor is treating a diabeti
 patient.� Re
ent insulin doses, food intake, blood sugar measurements, andother physi
al signs serve as pie
es of eviden
e.� The do
tor de
ides about food intake and insulin dose.
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States and Observations
➤ The pro
ess of 
hange is viewed as a series of snapshots, ea
h ofwhi
h des
ribes the state of the world at a parti
ular time.
➤ Ea
h time sli
e involves a set of random variables indexed by t:1. the set of unobservable state variables Xt and2. the set of observable eviden
e variables Et .
➤ The observation at time t is Et = et for some set of values et .

➤ The notation Xa:b denotes the sets of variables from Xa to Xb.

➤ The interval between time sli
es depends on the problem!
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Stationary Pro
esses and the Markov Assumption

➤ In a stationary pro
ess, the 
hanges in the world state aregoverned by laws that do not themselves 
hange over time.

➤ A �rst-order Markov pro
ess satis�es an equation

P(Xt | X0:t−1) = P(Xt | Xt−1)where P(Xt | Xt−1) forms the transition model of the pro
ess.

➤ In addition, it is typi
al to assume a sensor model of the form

P(Et | X0:t ,E1:t−1) = P(Et | Xt)so that observations depend on the 
urrent state only.
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urity guard is working at some se
ret undergroundinstallation and would like to know whether it is raining today or not.The only a

ess to the outside world o

urs ea
h morning when thedire
tor 
omes in with, or without, an umbrella.

➤ The set of state variables Xt = {Raint} for t = 0,1, . . . .

➤ The set of eviden
e variables Et = {Umbrellat} for t = 1,2, . . . .

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f
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Resulting Joint Distribution

➤ In addition to transition and sensor models, we need to spe
ify aprior distribution P(X0) over the state at time 0.

➤ Combining this with the pre
eding transition and sensor models,whi
h are independen
e assumptions, implies a distribution
P(X0:t ,E1:t) = P(X0)

t

∏
i=1

P(Xi | Xi−1)P(Ei | Xi).for any point of time t.

➤ If ne
essary, the Markov assumption 
an be re
overed byintrodu
ing suitable state variables.Example. When modelling a battery-powered robot wandering in the
xy-plane, the battery level has to be taken into a

ount.
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Example

Re
all the se
urity guard per
eiving umbrellas.The probability of an event ¬r0,¬r1,¬r2,u1,u2 is 
al
ulated as follows:1. The prior distribution P(R0) = 〈0.5,0.5〉.2. Next, we apply transition and sensor models over all time steps:

P(¬r0,¬r1,¬r2,u1,u2)

= P(¬r0)×P(¬r1 | ¬r0)P(u1 | ¬r1)×P(¬r2 | ¬r1)P(u2 | ¬r2)

= 0.5×0.7×0.2×0.7×0.2

= 9.8×10−3.
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2. INFERENCE IN TEMPORAL MODELSHaving set up the generi
 temporal model, we may formulate the basi
inferen
e tasks that are to be solved.1. Filtering or monitoring: the task is to 
ompute the belief state,i.e. the posterior distribution P(Xt | e1:t) over the 
urrent state.2. Predi
tion: the posterior distribution P(Xt+k | e1:t) over the futurestate is of interest for some k > 0.3. Smoothing or hindsight: the aim is to 
ompute P(Xk | e1:t)where 0≤ k < t for some past state.4. Most likely explanation is a sequen
e of states x1:t thatmaximizes P(x1:t | e1:t) for the observations e1:t to date.
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Filtering

➤ In re
ursive estimation, the idea is to 
ompute P(Xt+1 | e1:t+1)as a fun
tion of et+1 and P(Xt | e1:t).

➤ Using transition and sensor models we obtain by Bayes' rule,
onditioning, and the Markov assumption that

P(Xt+1 | e1:t+1) = αP(et+1 | Xt+1,e1:t)P(Xt+1 | e1:t)

= αP(et+1 | Xt+1)∑xt
P(Xt+1 | xt)P(xt | e1:t).

➤ This 
an be viewed as the propagation of a message

f1:t = P(Xt | e1:t) forward: f1:t+1 = αForward(f1:t ,et+1).

➤ The time and spa
e requirements for updating are 
onstant!
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Example

The se
urity guard has a prior belief P(R0) = 〈0.5,0.5〉 about the state.1. The predi
tion from t = 0 to t = 1 gives

P(R1) = ∑r0
P(R1 | r0)P(r0) = P(R1 | r0)P(r0)+P(R1 | ¬r0)P(¬r0)

= 〈0.7,0.3〉×0.5+ 〈0.3,0.7〉×0.5 = 〈0.5,0.5〉.2. Updating this distribution with the eviden
e u1 for t = 1 gives
P(R1 | u1) = αP(u1 | R1)P(R1) = α〈0.9,0.2〉〈0.5,0.5〉

= α〈0.45,0.1〉 ≈ 〈0.818,0.182〉.3. In 
ase of repeated eviden
e, the probability of rain in
reases, sin
e
P(R2 | u1) ≈ 〈0.627,0.373〉 and

P(R2 | u1,u2) = α〈0.565,0.075〉 ≈ 〈0.883,0.117〉.
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Predi
tion

➤ Predi
tion is �ltering without the addition of new eviden
e
P(Xt+k | e1:t) = ∑xt+k−1

P(Xt+k | xt+k−1)P(xt+k−1 | e1:t).where the parameter k > 0 (and hen
e t + k−1≥ t).
➤ The distribution P(Xt | e1:t) is obtained by �ltering.Example. Let us predi
t the 
han
es for rain given u1 and u2:

P(R3 | u1,u2) = ∑r2
P(R3 | r2)P(r2 | u1,u2)

= P(R3 | r2)P(r2 | u1,u2)+P(R3 | ¬r2)P(¬r2 | u1,u2)

= 〈0.7,0.3〉× p+ 〈0.3,0.7〉× (1− p)

= 〈0.3+0.4p, 0.7−0.4p〉.where P(R2 | u1,u2) = 〈p,1− p〉.
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Example (
ontinued)

What happens if we make even further predi
tions into future?1. For k = 2, we obtain

P(R4 | u1,u2) = ∑r3
P(R4 | r3)P(r3 | u1,u2)

= P(R4 | r3)P(r3 | u1,u2)+P(R4 | ¬r3)P(¬r3 | u1,u2)

= 〈0.7,0.3〉× (0.3+0.4p)+ 〈0.3,0.7〉× (0.7−0.4p)

= 〈0.42+0.16p, 0.58−0.16p〉.2. In general, we have for any k ≥ 0,

P(R2+k | u1,u2) = 〈0.5+(p−0.5)×0.4k, 0.5+(1− p−0.5)×0.4k〉whi
h 
onverges towards the stationary distribution 〈0.5,0.5〉.
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Smoothing

➤ The task is to 
ompute P(Xk | e1:t) for 0≤ k < t referring to past.

➤ Using a ba
kward message bk+1:t = P(ek+1:t | Xk), we obtain

P(Xk | e1:t) = α f1:kbk+1:t .

➤ The ba
kward message bk+1:t 
an be 
omputed using

bk+1:t = ∑
xk+1

P(ek+1 | xk+1)P(ek+2:t | xk+1)P(xk+1 | Xk).

➤ Whenever k +1 = t, the sequen
e ek+2:t be
omes empty and

P(ek+2:t | xk+1) = P(⊤ | xk+1) = 1 where ⊤ stands for truth.

➤ This leads to a re
ursive de�nition, or algorithm

bk+1:t = αBa
kward(bk+2:t ,ek+1:t).
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Example

Let us demonstrate smoothing with the umbrella example:1. P(R1 | u1,u2) = α f1:1b2:2 = αP(R1 | u1)P(u2 | R1) where we alreadyknow the distribution f1:1 = P(R1 | u1) = 〈0.818,0.182〉.2. The distribution b2:2 = P(u2 | R1) = ∑r2
P(u2 | r2)P(r2 | R1) =

0.9×〈0.7,0.3〉+0.2×〈0.3,0.7〉 = 〈0.69,0.41〉.3. By substituting these distributions and normalizing, we obtain
P(R1 | u1,u2) = α〈0.818,0.182〉〈0.69,0.41〉

≈ α〈0.564,0.075〉 ≈ 〈0.883,0.117〉.so that the smoothed estimate P(r1 | u1,u2) > P(r1 | u1).
☞ The additional pie
e of eviden
e u2 in
reases the probability ofrain on the �rst day, as the rain tends to persist.
© 2008 TKK / ICS

AB

T-79.5102 / Autumn 2008 Probabilisti
 Reasoning over Time 15

Finding the Most Likely Sequen
e

Example. Suppose that the se
urity guard makes the followingobservations during the �rst �ve days: u1,u2,¬u3,u4,u5.What is the weather sequen
e most likely to explain this?
➤ For ea
h pair of states xt+1 and xt , there is a re
ursive relationshipbetween the most likely paths to xt+1 and xt :

maxx1...xt P(x1, . . . ,xt ,Xt+1 | e1:t+1)

= αP(et+1 | Xt+1)×

maxxt

(

P(Xt+1|xt)maxx1,...,xt−1 P(x1, . . . ,xt−1,xt | e1:t)
)

.

➤ This equation is analogous to the one used in �ltering.

➤ Maximization is performed for ea
h value xt+1 of Xt+1 in turn.
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➤ In the �ltering s
heme, we have to repla
e f1:t = P(Xt | e1:t) by

m1:t = max
x1,...,xt−1

P(x1, . . . ,xt−1,Xt | e1:t)and summation over xt by maximization over xt .

➤ This gives the essential 
ontent of the Viterbi algorithm whi
hhas both linear time and spa
e requirements.Example. Consider the most likely explanation for u1,u2,¬u3,u4,u5:

Rain1

m 1:1

true

Rain5

m 1:5

true

Rain4

m 1:4

true

Rain3

m 1:3

false

Rain2

m 1:2

trueUmbrella t

(a)

(b)

.8182

.1818

.0210

.0024

.0334

.0173

.0361

.1237

.5155

.0491

true

false

true

false

true

false

true

false

true

false


© 2008 TKK / ICS



AB

T-79.5102 / Autumn 2008 Probabilisti
 Reasoning over Time 17

3. HIDDEN MARKOV MODELS

➤ In a hidden Markov Model, or HMM, the world is des
ribed bya single dis
rete random variable Xt taking values 1, . . . ,S whi
h
orrespond to the states of the world.

➤ The transition model P(Xt | Xt−1) be
omes an S×S matrix T su
hthat Ti j = P(Xt = j | Xt−1 = i).

➤ Forward and ba
kward reasoning are simpli�ed as follows:

f1:t+1 = αOt+1TT f1:t

bk+1:t = αTOk+1bk+2:twhere Ot is a diagonal matrix having P(et | Xt = i) as the ith value.

➤ For HMMs, the time and spa
e 
omplexities of forward-ba
kwardtype reasoning are of the orders of S2× t and S× t, respe
tively.
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4. DYNAMIC BAYESIAN NETWORKS

➤ A dynami
 Bayesian network (DBN) represents how the state ofthe environment evolves over time.

➤ Ea
h time sli
e of a DBN may have any number of state variables
Xt and eviden
e variables Et .

➤ Every HMM 
an be transformed into a DBN and vi
e versa.
➤ By de
omposing the state of a 
omplex system into its 
onstituentvariables, the DBN is able to take advantage of the sparseness inthe temporal probability model.Example. The transition model of a DBN with 20 Boolean statevariables, ea
h of whi
h has three parents in the pre
eding slide, has

20×23 = 160 probabilities while its HMM 
ounterpart has 240.
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Constru
ting Dynami
 Bayesian Networks
➤ To 
onstru
t a DBN, one must spe
ify three distributions: P(X0),the transition model P(Xt+1 | Xt), and the sensor model P(Et | Xt).
➤ For ea
h time step t, there is one node for ea
h state variable Xtand ea
h eviden
e variable Et plus relevant links between nodes.Example. For the se
urity guard example, it is su�
ient to spe
ify

0.3f
0.7t

0.9t
0.2f

Rain0 Rain1

Umbrella1

P(U  )1R1

P(R  )1R0

0.7

P(R  )0
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Example

A robot is des
ribed with state variables Xt = 〈Xt ,Yt〉 for position and

Ẋt = 〈Ẋt , Ẏt〉 for velo
ity and Batteryt for a
tual battery 
harge level.

Z1

X1

X1tXX 0

X 0

1BatteryBattery 0

1BMeter

Both position (eviden
e variables Zt) and the battery 
harge level(eviden
e variable BMetert) are measured.
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Exa
t Inferen
e in DBNs

➤ The previous algorithms for inferen
e in Bayesian networks 
an beapplied to dynami
 Bayesian networks.

➤ Given a sequen
e of observations, one 
an unroll a DBN until thenetwork is large enough to a

ommodate the observations.

➤ Unrolling 
an also be done on a sli
e-by-sli
e basis.

➤ In the general 
ase, the 
omplexity of reasoning is exponential.

0.3f
0.7t

0.9t
0.2f

Rain1

Umbrella1

P(U  )1R1

P(R  )1R0

Rain0

0.7

P(R  )0

Rain0

0.7

P(R  )0

0.3f
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0.2f

Rain1

Umbrella1

P(U  )1R1

P(R  )1R0
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0.2f

Rain1

Umbrella1

P(U  )1R1

P(R  )1R0

0.3f
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SUMMARY

➤ A dynami
 world 
an be handled using a set of random variablesto represent the state of the world at ea
h point in time.

➤ Representations 
an be designed to satisfy the Markov property,so that the future is independent of the past given the present.
➤ With the stationarity assumption, i.e., the dynami
s of the systemdoes not 
hange, mu
h simpler probabilisti
 models are obtained.
➤ A temporal probability model 
onsists of a transition model anda sensor model.
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