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PROBABILISTIC REASONINGOutline

➤ Representing Knowledge in an un
ertain domain

➤ Semanti
s of Bayesian networks

➤ E�
ient representation of 
onditional distributions

➤ Exa
t/Approximate inferen
e in Bayesian networks

➤ Other approa
hes to un
ertain reasoningBased on the textbook by Stuart Russell & Peter Norvig:Arti�
ial Intelligen
e, A Modern Approa
h (2nd Edition)Chapter 14; ex
luding Se
tion 14.6
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1. REPRESENTING KNOWLEDGEIN AN UNCERTAIN DOMAIN

➤ Conditional independen
e relations provide means to simplifyprobabilisti
 representations of the world.

➤ A Bayesian network is a data stru
ture representing thedependen
ies among variables X1, . . . ,Xn of a given domain.
➤ As a result, a 
ompa
t spe
i�
ation of the full joint probabilitydistribution P(X1, . . . ,Xn) is obtained.
➤ Bayesian networks are also 
alled belief networks, probabilisti
networks, 
ausal networks, or knowledge maps.
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Bayesian Networks: Syntax

De�nition. A belief network is a dire
ted a
y
li
 graph (DAG)
G = 〈{X1, . . . ,Xn},E〉 where1. nodes X1, . . . ,Xn are dis
rete/
ontinuous random variables,2. the set of arrows (or links)

E ⊆ {X1, . . . ,Xn}
2 = {〈Xi ,Xj〉 | 1≤ i ≤ n and 1≤ j ≤ n},3. an arrow 〈X,Y〉 ∈ E of G represents a dire
t in�uen
e relationshipbetween the variables X and Y, and4. ea
h node X is assigned a 
ompletely spe
i�ed probabilitydistribution P(X|Parents(X)) where

Parents(X) = {Y | 〈Y,X〉 ∈ E}.
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Example. Consider a network based on �ve Boolean random variables:1. Burglary = �a burglar enters our home�.2. Earthquake= �an earthquake o

urs�.3. Alarm = �our burglar alarm goes o��.The alarm is fairly reliable at dete
ting a burglary, but mayo

asionally respond to minor earthquakes.4. JohnCalls= �Our neighbor John 
alls and reports an alarm.�He always 
alls when he hears the alarm, but sometimes 
onfusestelephone ringing with the alarm.5. MaryCalls= �Our neighbor Mary 
alls and reports an alarm �.She likes loud musi
 and sometimes misses the alarm altogether.Shorthands B, E, A, J, and M are also introdu
ed for these variables.
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➤ The relationships of the variables are given as a Bayesian network.

➤ The probability distributions P(X | Parents(X)) asso
iated withvariables X are given as 
onditional probability tables (CPTs).
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2. SEMANTICS OF BAYESIAN NETWORKS

➤ A Bayesian network for the random variables X1, . . . ,Xn is arepresentation of the joint probability distribution P(X1, . . . ,Xn).
➤ As before, a shorthand xi is used for the atomi
 event Xi = xi .
➤ Arrows en
ode 
onditional independen
e relations and thereforethe probabilities of atomi
 events are determined by

P(x1, . . . ,xn) = ∏n
i=1 P(xi | Parents(xi))where Parents(xi) refers to the assignments of Y ∈ Parents(Xi).Example. Let us 
ompute the probability of j ∧m∧a∧¬b∧¬e:

P(j ∧m∧a∧¬b∧¬e)

= P(j|a)P(m|a)P(a|¬b∧¬e)P(¬b)P(¬e)

= 0.9×0.7×0.001×0.999×0.998 = 0.00063.
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Conditional Independen
e Revisited

De�nition. Let P(ψ) > 0. Senten
es φ1 and φ2 are 
onditionallyindependent given ψ ⇐⇒ P(φ1∧φ2 | ψ) = P(φ1 | ψ)P(φ2 | ψ).Proposition. If P(ψ) > 0, P(φ1∧ψ) > 0, and P(φ2∧ψ) > 0, then φ1and φ2 are 
onditionally independent given ψ ⇐⇒

P(φ1 | φ2∧ψ) = P(φ1 | ψ) and P(φ2 | φ1∧ψ) = P(φ2 | ψ) hold.Proof. For the former equation, we note that
P(φ1∧φ2 | ψ) = P(φ1 | ψ)P(φ2 | ψ)

⇐⇒ P(φ1∧φ2∧ψ)
P(ψ) = P(φ1∧ψ)

P(ψ) · P(φ2∧ψ)
P(ψ)

⇐⇒ P(φ1∧φ2∧ψ)P(ψ) = P(φ1∧ψ)P(φ2∧ψ)

⇐⇒ P(φ1 | φ2∧ψ) = P(φ1∧φ2∧ψ)
P(φ2∧ψ) = P(φ1∧ψ)

P(ψ) = P(φ1 | ψ).
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A Method for Constru
ting Bayesian Networks

➤ In a Bayesian network G = 〈{X1, . . . ,Xn},E〉, a node Xj 6= Xi is aprede
essor of Xi ⇐⇒ there are nodes Y1, . . . ,Ym su
h that

Y1 = Xj , Ym = Xi , and ∀ j ∈ {1, . . . ,m−1}: 〈Yj ,Yj+1〉 ∈ E.

➤ Be
ause G is a DAG, we may assume that the nodes X1, . . . ,Xn areordered so that the prede
essors of Xi are among X1, . . . ,Xi−1.Thus also Parents(Xi) ⊆ {X1, . . . ,Xi−1}.

➤ By the de�nition of 
onditional probability, we have that

P(x1, . . . ,xn) =

P(xn | xn−1, . . . ,x1)P(xn−1, . . . ,x1) =

P(xn | xn−1, . . . ,x1)P(xn−1 | xn−2, . . . ,x1) · · ·P(x2 | x1)P(x1) =

∏n
i=1 P(xi | xi−1, . . . ,x1).
© 2008 TKK / ICS
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➤ A Bayesian network is a 
orre
t representation if ea
h variable X is
onditionally independent of its prede
essors Y given Parents(X).

➤ Under the assumptions on 
onditional independen
e and nodeordering, it 
an be established that

P(Xi | Xi−1, . . . ,X1) = P(Xi | Parents(Xi)). (1)

➤ The 
hoi
e of Parents(X) for a random variable X a�e
ts how far
onditional independen
e assumptions 
an be applied.

➤ Parents(X) should 
ontain all variables that dire
tly in�uen
e X.Example. Only Alarm dire
tly in�uen
es MaryCalls. Given Alarm,

MaryCalls is 
onditionally independent of the other variables:

P(MaryCalls| JohnCalls,Alarm,Earthquake,Burglary)

= P(MaryCalls| Alarm).
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On Compa
tness and Node Ordering

➤ A Bayesian network 
an be a 
ompa
t representation of the jointprobability distribution (lo
ally stru
tured or sparse system).
➤ If ea
h Boolean variable dire
tly in�uen
es at most k other, thenonly n2k probabilities have to be spe
i�ed (instead of 2n).Example. When n = 30 and k = 5, we would have to spe
ify

n2k = 960 and 2n = 1073741824probabilities, respe
tively.
➤ A 
lear trade-o�: number of arrows (a

ura
y of probabilities)versus 
ost of spe
ifying extra information (extending CPTs).
➤ Choosing a good node ordering is a non-trivial task.
➤ Heuristi
s: the root 
auses of the domain should be added �rst,then the variables in�uen
ed by them, and so forth.


© 2008 TKK / ICS

AB

T-79.5102 / Autumn 2008 Probabilisti
 Reasoning 11Example. Let us re
onstru
t the Bayesian network for the alarmdomain using a di�erent node ordering:
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake1. As the �rst node, MaryCalls gets no parents.2. When JohnCallsis added, MaryCalls be
omes a parent of

JohnCalls, as P(JohnCalls| MaryCalls) 6= P(JohnCalls).3. Similarly, Alarm depends on both MaryCalls and JohnCalls.4. Sin
e

P(Burglary | Alarm,JohnCalls,MaryCalls) = P(Burglary | Alarm),the only parent of Burglary is Alarm.5. Nodes Burglary and Alarm be
ome parents of Earthquake, as

P(Earthquake| Burglary,Alarm,JohnCalls,MaryCalls) =

P(Earthquake| Burglary,Alarm).
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AB

T-79.5102 / Autumn 2008 Probabilisti
 Reasoning 12

➤ The resulting Bayesian network is given below on the left:

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

➤ The one on the right is obtained with another ordering and it as
omplex (31 probabilities) as the full joint distribution!
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Conditional Independen
e Relations

Two (equivalent) topolo
ial 
riteria 
an be utilized:1. A node X is 
onditionally independent of its non-des
endants(e.g., Zi j s below), given its parents (i.e., Uis below).

. . .

. . .U1
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Example. In the burglary example, one may 
on
lude that:

JohnCallsis independent of Burglary and Earthquakegiven Alarm.
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2. A node X is 
onditionally independent of all other nodes in thenetwork, given its Markov blanket mb(X), i.e.,its parents, 
hildren, and 
hildren's parents.

. . .
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Example. Burglary is independent of JohnCallsand MaryCalls given
Alarm and Earthquake.There is yet another 
riterion 
alled d-separation, but unlike the �rstedition of the textbook it is not 
overed by the se
ond.
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3. EFFICIENT REPRESENTATION OFCONDITIONAL DISTRIBUTIONS
➤ Spe
ifying 
onditional probability tables means often a lot of work.

➤ To ease this pro
ess, some 
anoni
al distributions su
h asdeterministi
 and noisy logi
al relationships have been proposed.

➤ When using a 
anoni
al distribution it is often enough to supply
ertain parameters rather than a 
omplete CPT.

➤ There are also 
anoni
al 
ontinuous distributions su
h as Gaussiandistributions and probit/logit distributions.
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Deterministi
 Nodes

➤ In the deterministi
 
ase, there is no un
ertainty and the value of

X is obtained as a (logi
al) fun
tion from those of Parents(X).

➤ Deterministi
 nodes 
an also en
ode other �xed numeri
alfun
tions depending on the variables involved.Example. De�ne NorthAmerican↔ Canadian∨US∨Mexican.This 
orresponds to spe
ifying a CPT as follows:

Canadian US Mexican NorthAmericanF F F 0.0T F F 1.0... ... ... ...
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Noisy Logi
al Relationships

➤ Noisy logi
al relationships add some un
ertainty to the s
enario.

➤ A noisy OR relationship 
omprises the following prin
iples:1. Ea
h 
ause has an independent 
han
e of 
ausing the e�e
t.2. All possible 
auses are listed.3. Whatever inhibits some 
ause from 
ausing an e�e
t isindependent of whatever inhibits other 
auses from 
ausing thee�e
t. Inhibitors are summarized as noise parameters.

➤ A noisy OR relationship in whi
h a variable depends on k parents
an be des
ribed using k parameters.In 
ontrast to this, 2k entries are needed if a full CPT is spe
i�ed.
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onsider a medi
al domain in
luding the variables

Fever (a symptom), Cold, Flu, and Malaria (diseases). Using noiseparameters P(¬fever| cold,¬flu,¬malaria) = 0.6,

P(¬fever| ¬cold,flu,¬malaria) = 0.2, and

P(¬fever| ¬cold,¬flu,malaria) = 0.1, we get the following CPT:
Cold Flu Malaria P(Fever) P(¬Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02= 0.2×0.1

T F F 0.4 0.6

T F T 0.94 0.06= 0.6×0.1

T T F 0.88 0.12= 0.6×0.2

T T T 0.988 0.012= 0.6×0.2×0.1
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Bayesian networks with Continuous Variables
➤ Many real-world problems involve 
ontinuous quantities/variables.

➤ Continuous variables 
an be dis
retized but as a side-e�e
t theresulting CPTs 
an be
ome very large.
➤ Another possibility is to use standard probability density fun
tionsover the domains of 
ontinuous variables.

➤ A hybrid Bayesian network involves both dis
rete and
ontinuous variables.
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ontinuous random variables Harvestand Cost.

HarvestSubsidy

Buys

Cost

For Cost, we need to spe
ify P(Cost| Harvest,Subsidy).

➤ The dis
rete parent is handled by expli
itly enumerating both

P(Cost| Harvest,subsidy) and P(Cost| Harvest,¬subsidy).

➤ The parameters of the 
ost distribution (e.g. linear Gaussiandistribution) are given as a fun
tion of the variable Harvest.

➤ The distribution P(Buys| Cost) 
an be determined by a softthreshold fun
tion, e.g., based on a probit distribution.
© 2008 TKK / ICS
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4. EXACT INFERENCE INBAYESIAN NETWORKS

➤ An agent gets values for eviden
e variables from its per
epts andasks about the possible values of other variables so that it 
ande
ide what a
tion to take (re
all the de
ision theoreti
 design).

➤ The basi
 task of a probabilisti
 reasoning system is to 
ompute

P(X | E1 = e1, . . . ,Em = em) given a query variable X and exa
tvalues e1, . . . ,em of some eviden
e variables E1, . . . ,Em.

➤ The remaining variables Y1, . . . ,Yn a
t as hidden variables.Examples. Re
alling the alarm example, the problem is to 
al
ulatedistributions su
h as P(Burglary | JohnCalls,MaryCalls) and

P(Alarm | JohnCalls,Earthquake)?
© 2008 TKK / ICS
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Inferen
e by Enumeration

➤ We introdu
e shorthands E and Y for E1, . . . ,Em and Y1, . . . ,Yn,respe
tively, and similarly e and y for their values.

➤ A query P(X | e) 
an be answered by exhaustive enumeration:
P(X | e) = αP(X,e) = α∑

y
P(X,e,y)where α is a normalizing 
onstant.

➤ If a Bayesian network is used, this leads to the 
omputation ofsums of produ
ts of 
onditional probabilities from the network.

➤ The time 
omplexity for a network of n variables is of order 2n.
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Example. Consider the query P(B | j,m) in the burglary example.For this query, E and A are hidden variables and enumeration amountsto 
omputing the following distribution (in a depth �rst fashion):

P(B | j,m) = αP(B, j,m)

= α∑e∑a P(B,e,a, j,m)

= α∑e∑a P(B)P(e)P(a | B,e)P(j | a)P(m | a)

= αP(B)∑eP(e)∑a P(a | B,e)P(j | a)P(m | a)

= α〈0.00059224,0.0014919〉

≈ 〈0.284,0.716〉The details of 
omputing P(b | j,m) are analyzed next.
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P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

☞ Certain subexpressions are 
omputed repeatedly.
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Variable Elimination Algorithm

➤ The enumeration algorithm 
an be improved substantially bydoing 
al
ulations in a bottom-up fashion using fa
tors whi
h arematri
es of probabilities.

➤ The pointwise produ
t of two fa
tors f1(X,Y) and f2(Y,Z) isde�ned by (f1× f2)(X,Y,Z) = f1(X,Y)f2(Y,Z).

➤ A variable X 
an be summed out from a produ
t of fa
tors

fi(X,Y) by 
omputing ∑x(f1(x,Y)× . . .× fn(x,Y)).

➤ Multipli
ation takes pla
e only when summing out variables.

➤ Every variable that is not an an
estor of a query variable oreviden
e variable is irrelevant to the query and thus removable.
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Example. The 
omputation of the previous distribution

P(B | j,m) = αP(B)∑
e

P(e)∑
a

P(a | B,e)P(j | a)P(m | a)takes pla
e bottom-up using fa
tors as follows:1. fM(A) = 〈P(m | a),P(m | ¬a)〉;2. fJ(A) = 〈P(j | a),P(j | ¬a)〉 is de�ned analogously;3. fA(A,B,E) = P(A|B,E) is three-dimensional;4. the variable A is summed out from the produ
t of these three:
fJ,M(B,E) = ∑

a
(fA(a,B,E)× fJ(a)× fM(a));

5. E is summed out similarly and P(B | j,m) = α fB(B)× fJ,M(B).
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The Complexity of Exa
t Inferen
e
➤ A polytree is a singly 
onne
ted graph: there is at most oneundire
ted path between any two nodes.
➤ If a belief network forms a polytree, the probability distribution

P(X | e) 
an be 
omputed very e�
iently (in linear time).

➤ For multiply 
onne
ted networks, in whi
h at least two variablesare 
onne
ted by several paths, variable elimination 
an haveexponential time and spa
e 
omplexity in the worst 
ase.

➤ In general, exa
t inferen
e in Bayesian networks is NP-hard (even#P-hard) as it in
ludes propositional inferen
e as a spe
ial 
ase.
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Clustering Algorithms

➤ Multiply 
onne
ted Bayesian networks 
an be transformed intopolytrees by 
ombining some nodes into 
luster nodes.Example. Consider 
lustering the nodes Sprinklerand Rain in thefollowing multiply 
onne
ted network:

P(C) = .5

C P(R)

T

F

.80

.20

C P(S)

T

F

.10

.50

S R P(W)

T T

T F

F T

F F

.90

.90

.00

.99

Cloudy

RainSprinkler

 Wet
Grass


© 2008 TKK / ICS



AB

T-79.5102 / Autumn 2008 Probabilisti
 Reasoning 29

➤ The following polytree network is obtained:

P(C) = .5

C TT TF FT FF

T

F

.08

.40

.02

.10

.72

.40

.18

.10

P(S+R=x)

S+R P(W)

T T

T F

F T

F F

.90

.90

.00

.99

Cloudy

Spr+Rain

 Wet
Grass

➤ Linear time algorithms 
an be used for query answering, but thesize of the network grows exponentially in the worst 
ase.

➤ Typi
ally, there are several ways to 
ompose 
luster nodes and it isnon-trivial to 
hoose the best way to perform 
lustering.
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5. APPROXIMATE INFERENCEIN BAYESIAN NETWORKS

➤ Randomized sampling algorithms provide approximate answerswhose a

ura
y depends on the number of samples generated.
➤ Here sampling is applied to the 
omputation of posteriorprobabilities given a prior distribution (a Bayesian network).
➤ There are several approximation methods in
luding� Dire
t sampling� Reje
tion sampling� Likelihood weighting� Markov 
hain Monte Carlo algorithm
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Dire
t Sampling Methods
➤ In dire
t sampling, the world des
ribed by a Bayesian network(without eviden
e) is simulated sto
hasti
ally.
➤ Atomi
 events are randomly generated in topologi
al order bysele
ting de�nite values for random variables.
➤ The value for a random variable X is 
hosen a

ording to the
onditional probability table asso
iated with X.

➤ Prior sampling produ
es the event x1, . . . ,xn with probability

SPS(x1, . . . ,xn) =
n

∏
i=1

P(xi | Parents(Xi)) = P(x1, . . . ,xn).
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➤ The posterior distribution P(X | e) = P(X,e)
P(e) is estimated by
ounting the frequen
ies with whi
h events o

ur.

➤ The number of samples N a�e
ts a

ura
y:

lim
N→∞

NPS(x1, . . . ,xn)

N
= SPS(x1, . . . ,xn) = P(x1, . . . ,xn).

➤ Dire
t sampling is not very useful if the event e o

urs very rarely.Example. Let us produ
e one sample for the lawn watering domain:

P(Cloudy) = 〈0.5,0.5〉 =⇒ return true

P(Sprinkler| cloudy) = 〈0.1,0.9〉 =⇒ return false

P(Rain| cloudy) = 〈0.8,0.2〉 =⇒ return true

P(WetGrass| ¬sprinkler, rain) = 〈0.9,0.1〉 =⇒ return trueExample. E.g., P(WetGrass| sprinkler∧ rain) 
onverges slowly.
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Reje
tion Sampling in Bayesian Networks

➤ In its simplest form, reje
tion sampling 
an be used to 
ompute
onditional probabilities su
h as P(X | e).

➤ Samples are generated from the prior distribution, but sampleswhi
h do not mat
h the eviden
e are reje
ted.

➤ The estimated distribution P̂(X | e) = αNPS(X,e) = NPS(X,e)
NPS(e)

.

➤ With su�
iently many samples P̂(X | e) ≈ P(X,e)
P(e) = P(X | e).

➤ Reje
tion sampling tends to reje
t too many samples.Example. Suppose that out of 100 samples, 73 are reje
ted as

Sprinkler= false. Out of the remaining 27 samples, 8 satisfy

Rain= true. Thus P(Rain| sprinkler) ≈ α〈8,19〉 = 〈0.296,0.704〉.


© 2008 TKK / ICS

AB

T-79.5102 / Autumn 2008 Probabilisti
 Reasoning 34

Likelihood Weighting

➤ Likelihood weighting is similar to reje
tion sampling, but thevalues of eviden
e variables E are kept �xed while sampling others.
➤ The CPTs of the Bayesian network are 
onsulted to to see howlikely the event e is.

➤ In this way, the 
onditional probability P(e | x,y) is interpreted as alikelihood weight for that parti
ular run.
➤ An estimate of P(X = x | e) is obtained as a weighted proportion ofruns with X = x among the runs a

umulated so far.
➤ Likelihood weighting 
onverges faster than reje
tion sampling.

➤ Getting a

urate probabilities for unlikely events is still a problem.
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Example. Let us estimate P(Rain| sprinkler,wetgrass) by likelihoodweighting. Initially, the weight w is set to 1.0.The values of variables are 
hosen randomly as follows:1. P(Cloudy) = 〈0.5,0.5〉 =⇒ cloudy is randomly 
hosen.2. Sprinkler is an eviden
e variable that has been set to true:

w is revised to w×P(sprinkler| cloudy) = 0.1.3. P(Rain| cloudy) = 〈0.8,0.2〉 =⇒ rain is randomly 
hosen.4. WetGrassis an eviden
e variable with value true:

w is revised to w×P(wetgrass| sprinkler, rain) = 0.099.

☞ We have 
ompleted a run saying that Rain= true given

sprinkler and wetgrasswith a likelihood weight 0.099.
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Why Likelihood Weighting Works

➤ The algorithm samples ea
h non-eviden
e variable in Z = {X}∪Ygiven the values of its parents:

SWS(z,e) = ∏l
i=1 P(zi | Parents(Zi)).

➤ The weight for a given sample is w(z,e) = ∏m
i=1 P(ei | Parents(Ei)).

➤ The weighted probability SWS(z,e)w(z,e) = P(y,e).

➤ Likelihood weighting estimates are shown 
onsistent as follows:

P̂(x | e) = α∑y NWS(x,y,e)w(x,y,e)

≈ α′ ∑y SWS(x,y,e)w(x,y,e) (for large N)

= α′ ∑y P(x,y,e)

= α′P(x,e) = P(x | e).
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Inferen
e by Markov Chain Simulation

➤ A Markov 
hain Monte Carlo (MCMC) algorithm generates thenext state by sampling a value for a noneviden
e variable Xi
onditioned by the 
urrent values of the variables in mb(Xi).

➤ The simulation starts from a random state x for X = {X}∪Z.

➤ Ea
h round of the simulation 
onsists of the following steps:1. In
rease the 
ount N[x] by one for the 
urrent value x of X.2. Sample the value of ea
h Xi in X using P(Xi | mb(Xi)).

➤ The estimate for the distribution P(X | e) is obtained bynormalizing the 
ounts in N[X].
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Why MCMC Works

➤ The sampling pro
ess settles into a �dynami
 equilibrium� in whi
hthe long-run fra
tion of time spent in ea
h state is exa
tlyproportional to its posterior probability.

➤ A Markov 
hain is de�ned by transition probabilities q(x → x′)from a state x to a state x′.

➤ Let πt(x) denote the probability of a state x after t steps.
➤ For the next step, we have πt+1(x′) = ∑x πt(x)q(x → x′).De�nition. The 
hain has rea
hed its stationary distribution π if

πt+1 = πt , i.e., π is de�ned by π(x′) = ∑x π(x)q(x → x′) for all x′.
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Detailed Balan
e
➤ One interpretatation of the equation π(x′) = ∑x π(x)q(x → x′)is that the expe
ted out�ow from ea
h state (population)is equal to the expe
ted in�ow from all the states.
➤ Assuming the equality of �ows in both dire
tions leads to theproperty of detailed balan
e: for all x and x′:

π(x)q(x → x′) = π(x′)q(x′ → x).

➤ Stationarity is implied by detailed balan
e:

∑x π(x)q(x → x′) = ∑x π(x′)q(x′ → x)

= π(x′)∑x q(x′ → x)

= π(x′).
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Gibbs sampler

➤ Let Xi be the variable to be sampled and Xi all the hiddenvariables other than Xi .

➤ The Gibbs sampler is based on transition probabilites

q(x → x′) = q((xi ,xi) → (x′i ,xi)) = P(x′i | xi ,e) = P(x′i | mb(Xi)).

➤ Gibbs sampler is in detailed balan
e with the true posterior:

π(x)q(x → x′) = P(x | e)P(x′i | xi ,e)

= P(xi ,xi ,e)P(x′i | xi ,e)

= P(xi | xi ,e)P(xi | e)P(x′i | xi ,e)

= P(x′i ,xi ,e)P(xi | xi ,e)

= π(x′)q(x′ → x).
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SUMMARY

➤ Conditional independen
e information 
an be used forstru
turing and simplifying knowledge about an un
ertain domain.

➤ Bayesian networks provide a natural way to represent 
onditionalindependen
e information.

➤ A Bayesian network is a 
omplete (and often also very 
ompa
t)representation of the joint probability distribution.

➤ E�
ient algorithms exist for Bayesian networks that aretopologi
ally polytrees, but reasoning with Bayesian networks isNP-hard in general.

➤ Probabilities 
an be estimated by sampling methods.
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QUESTIONS

➤ Build a Bayesian network for the so

er domain.1. Choose appropriate variables for the des
ription of the domain.2. Choose an ordering for the variables.3. Constru
t the a
tual belief network by(i) analyzing dependen
ies among variables and(ii) de�ning CPTs for ea
h variable.
➤ Make both 
ausal and diagnosti
 inferen
es using the network.
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