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PROBABILISTIC REASONING I
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Representing Knowledge in an uncertain domain
Semantics of Bayesian networks

Efficient representation of conditional distributions
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Exact/Approximate inference in Bayesian networks

O Other approaches to uncertain reasoning

Based on the textbook by Stuart Russell & Peter Norvig:
Artificial Intelligence, A Modern Approach (2nd Edition)

Chapter 14; excluding Section 14.6
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Bayesian Networks: SyntaxI

Definition. A belief network is a directed acyclic graph (DAG)
G = ({X1,...,%},E) where

1. nodes X1, ..., Xy are discrete/continuous random variables,
2. the set of arrows (or links)
EC{Xs,....%}>={(%,Xj)|1<i<nand 1< j<n},

3. an arrow (X,Y) € E of G represents a direct influence relationship
between the variables X and Y, and

4. each node X is assigned a completely specified probability
distribution P(X|ParentsX)) where

ParentéX) = {Y | (Y,X) € E}.
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1. REPRESENTING KNOWLEDGE
IN AN UNCERTAIN DOMAIN

O Conditional independence relations provide means to simplify
probabilistic representations of the world.

O A Bayesian network is a data structure representing the
dependencies among variables Xy, ..., X, of a given domain.

O As a result, a compact specification of the full joint probability
distribution P(Xg,...,X,) is obtained.

[0 Bayesian networks are also called belief networks, probabilistic
networks, causal networks, or knowledge maps.
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Example. Consider a network based on five Boolean random variables:
1. Burglary = “a burglar enters our home”.
2. Earthquake= “an earthquake occurs”.

3. Alarm = “our burglar alarm goes off".
The alarm is fairly reliable at detecting a burglary, but may
occasionally respond to minor earthquakes.

4. JohnCalls= “Our neighbor John calls and reports an alarm.”
He always calls when he hears the alarm, but sometimes confuses
telephone ringing with the alarm.

5. MaryCalls = “Our neighbor Mary calls and reports an alarm *.
She likes loud music and sometimes misses the alarm altogether.

Shorthands B, E, A, J, and M are also introduced for these variables.
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O The relationships of the variables are given as a Bayesian network.

O The probability distributions P(X | Parent§X)) associated with
variables X are given as conditional probability tables (CPTs).
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2. SEMANTICS OF BAYESIAN NETWORKS |

O A Bayesian network for the random variables Xg,..., X, is a
representation of the joint probability distribution P(X1,...,Xq).

O As before, a shorthand X; is used for the atomic event X; = X;.

O Arrows encode conditional independence relations and therefore
the probabilities of atomic events are determined by

P(X1,...,X%)) = [Tk, P(x | Parent$x))
where Parentgx;) refers to the assignments of Y € Parent§X;).
Example. Let us compute the probability of j AmAaA—-bA —e:
P(jiAamAaAn—-bA—e)
P(jla)P(mja)P(a]—bA —e)P(—=b)P(—e)
= 0.9%x0.7x0.001x 0.999x 0.998 = 0.00063.
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Conditional Independence Revisited'

Definition. Let P() > 0. Sentences @1 and @ are conditionally
independent given < P(@ A @ | W) =P(@1 | W)P(@ | B).

Proposition. If P(y) >0, P(¢1 AY) >0, and P(@x AY) > 0O, then @
and @ are conditionally independent given | <

P(@L| @A) = P(er | W) and P(@2 [ @1 AY) = P(@z | ) hold.

Proof. For the former equation, we note that

P @[ W) =P | W)P(g2 | )
P@A®AY) _ P(@AY)  P(@AY)

P(W) PW) P
P A@AY)PWY) =P(@AY)P(@AY)

Py | 2 0) = PSR = FEGH =Plow ).

[
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A Method for Constructing Bayesian Networks'

O In a Bayesian network G = ({X1,...,X:},E), a node Xj # X is a
predecessor of X; <= there are nodes Yi,..., Yy such that
Yi=Xj, Ym=X, and Vje {1,..., m—1}: (Y},Yj11) €E.

[0 Because G is a DAG, we may assume that the nodes X,..., X, are
ordered so that the predecessors of X; are among Xq,...,X_1.
Thus also Parent§X) C {Xq,...,Xi_1}.

0 By the definition of conditional probability, we have that
P(X1,...,%n) =
P(Xn | Xn—1,--- ,X]_)P(Xn,]_, cen ,X]_) =
P [ Xn—1, .-, X1)P(Xn—1 | Xn—2, ..., X1) -+ - P(X2 | X1)P(X1) =

M POG | Xi—1, ..+, Xa).
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O A Bayesian network is a correct representation if each variable X is
conditionally independent of its predecessors Y given Parent§X).

O Under the assumptions on conditional independence and node
ordering, it can be established that

POX [ Xie1,..., X1) = P(X | ParentgX;)). (1)

O The choice of Parent§X) for a random variable X affects how far
conditional independence assumptions can be applied.

O ParentsX) should contain all variables that directly influence X.

Example. Only Alarm directly influences MaryCalls. Given Alarm,
MaryCallsis conditionally independent of the other variables:

P(MaryCalls| JohnCallsAlarm, EarthquakeBurglary)
= P(MaryCalls| Alarm).

- J
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On Compactness and Node Ordering'

0 A Bayesian network can be a compact representation of the joint

probability distribution (locally structured or sparse system).

[0 If each Boolean variable directly influences at most k other, then
only n2X probabilities have to be specified (instead of 2").
Example. When n= 30 and k=5, we would have to specify
n2k = 960 and 2" = 107374182%robabilities, respectively.

O A clear trade-off: number of arrows (accuracy of probabilities)
versus cost of specifying extra information (extending CPTs).

O Choosing a good node ordering is a non-trivial task.

O Heuristics: the root causes of the domain should be added first,
then the variables influenced by them, and so forth.

- J
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Example. Let us reconstruct the Bayesian network for the alarm
domain using a different node ordering:

MaryCalls, JohnCalls Alarm, Burglary, Earthquake
1. As the first node, MaryCalls gets no parents.

2. When JohnCallsis added, MaryCalls becomes a parent of
JohnCalls as P(JohnCalls| MaryCalls) # P(JohnCallg.

3. Similarly, Alarm depends on both MaryCalls and JohnCalls

4. Since
P(Burglary | Alarm,JohnCallsMaryCalls) = P(Burglary | Alarm),
the only parent of Burglary is Alarm.

5. Nodes Burglary and Alarm become parents of Earthquake as
P(Earthquake Burglary, Alarm, JohnCallsMaryCalls) =
P(Earthquake Burglary, Alarm).
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O The resulting Bayesian network is given below on the left:

MaryCalls

[0 The one on the right is obtained with another ordering and it as

Burglary

complex (31 probabilities) as the full joint distribution!

J
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Conditional Independence Relations

Two (equivalent) topolocial criteria can be utilized:

1. A node X is conditionally independent of its non-descendants
(e.g., Zjs below), given its parents (i.e., Ujs below).

Burglary Earthquake

nm-o
n—m=fm
©
?
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Example. In the burglary example, one may conclude that:

JohnCallsis independent of Burglary and Earthquakegiven Alarm.
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2. A node X is conditionally independent of all other nodes in the
network, given its Markov blanket mh(X), i.e.,

its parents, children, and children’s parents.

Burglary

- ol
BRI L
i
f

Example. Burglary is independent of JohnCallsand MaryCalls given

Alarm and Earthquake

There is yet another criterion called d-separation, but unlike the first
edition of the textbook it is not covered by the second.
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3. EFFICIENT REPRESENTATION OF
CONDITIONAL DISTRIBUTIONS

O Specifying conditional probability tables means often a lot of work.

[0 To ease this process, some canonical distributions such as
deterministic and noisy logical relationships have been proposed.

0 When using a canonical distribution it is often enough to supply
certain parameters rather than a complete CPT.

O There are also canonical continuous distributions such as Gaussian
distributions and probit/logit distributions.

- J
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Deterministic Nodes I

O In the deterministic case, there is no uncertainty and the value of
X is obtained as a (logical) function from those of ParentéX).

Probabilistic Reasoning

00 Deterministic nodes can also encode other fixed numerical
functions depending on the variables involved.

Example. Define NorthAmerican— Canadianv USV Mexican
This corresponds to specifying a CPT as follows:

Canadian| US | Mexican | NorthAmerican
F F F 0.0
T F F 1.0

© 2008 TKK / ICS
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Noisy Logical Relationships'

O Noisy logical relationships add some uncertainty to the scenario.

Probabilistic Reasoning

O A noisy OR relationship comprises the following principles:
1. Each cause has an independent chance of causing the effect.
2. All possible causes are listed.

3. Whatever inhibits some cause from causing an effect is
independent of whatever inhibits other causes from causing the
effect. Inhibitors are summarized as noise parameters.

O A noisy OR relationship in which a variable depends on k parents
can be described using k parameters.

In contrast to this, 2X entries are needed if a full CPT is specified.

- J
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Example. Let us consider a medical domain including the variables
Fever (a symptom), Cold, Flu, and Malaria (diseases). Using noise
parameters P(—fever| cold, —flu,—~malaria) = 0.6,

P(—fever| —cold, flu,—malaria) = 0.2, and

P(—fever| —cold, —flu, malaria) = 0.1, we get the following CPT:

Cold Flu Malaria | P(Fever | P(—Fever

F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=02x0.1

T F F 0.4 0.6

T F T 0.94 0.06=0.6x0.1

T T F 0.88 0.12=06x0.2

T T T 0.988 0.012=0.6x0.2x0.1

© 2008 TKK / ICS
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Bayesian networks with Continuous Variables'

O Many real-world problems involve continuous quantities/variables.

O Continuous variables can be discretized but as a side-effect the
resulting CPTs can become very large.

0 Another possibility is to use standard probability density functions
over the domains of continuous variables.

O A hybrid Bayesian network involves both discrete and
continuous variables.

© 2008 TKK / ICS
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Example. Consider a system two Boolean random variables Subsidy
and Buys and two continuous random variables Harvestand Cost

For Cost we need to specify P(Cost| Harvest Subsidy.

0 The discrete parent is handled by explicitly enumerating both
P(Cost| Harvestsubsidy and P(Cost| Harvest —subsidy.

O The parameters of the cost distribution (e.g. linear Gaussian
distribution) are given as a function of the variable Harvest

O The distribution P(Buys| Cost can be determined by a soft
threshold function, e.g., based on a probit distribution.

© 2008 TKK / ICS
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4. EXACT INFERENCE IN

BAYESIAN NETWORKS

O An agent gets values for evidence variables from its percepts and
asks about the possible values of other variables so that it can
decide what action to take (recall the decision theoretic design).

0 The basic task of a probabilistic reasoning system is to compute
P(X |Ex=eu,...,Em=€en) given a query variable X and exact
values eq,...,en of some evidence variables E;, ..., En.

O The remaining variables Yi,...,Y, act as hidden variables.

Examples. Recalling the alarm example, the problem is to calculate
distributions such as P(Burglary| JohnCallsMaryCalls) and
P(Alarm | JohnCallsEarthquakg?

© 2008 TKK / ICS
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Inference by Enumeration'

0 We introduce shorthands E and Y for E1,...,En and Y1,.... Yy,
respectively, and similarly e and y for their values.

O A query P(X | €) can be answered by exhaustive enumeration:

P(X|e)=aP(X,e)=a z P(X,ey)
y

where o is a normalizing constant.

O If a Bayesian network is used, this leads to the computation of
sums of products of conditional probabilities from the network.

O The time complexity for a network of n variables is of order 2".

© 2008 TKK / ICS
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Example. Consider the query P(B|j,m) in the burglary example.

For this query, E and A are hidden variables and enumeration amounts
to computing the following distribution (in a depth first fashion):

P(BIj,m)

aP(B,j,m)

= 0YeYaP(B,eaj,m

= 03e3aP(B)P(e)P(a|B,e)P(j|a)P(m|a)
— aP(B)3.P(e)5.P(@|B.eP(j | P(m|a)
= 0(0.000592240.0014919

(0.284,0.716)

%

The details of computing P(b|j,m) are analyzed next.

- J
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Probabilistic Reasoning

P(e)
.002

Pe)
998

P& albm e)

P(alb.e)
.95 .06

P alb.e) P(albm e) S
.05 94

|:| Certain subexpressions are computed repeatedly.
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Variable Elimination AIgorithmI

0 The enumeration algorithm can be improved substantially by
doing calculations in a bottom-up fashion using factors which are
matrices of probabilities.

O The pointwise product of two factors f1(X,Y) and fo(Y,Z) is
defined by (f1 X fz)(X,Y,Z) = fl(X,Y)fz(Y,Z).

O A variable X can be summed out from a product of factors
fi(X,Y) by computing 3, (f1(X,Y) x ... xfa(X,Y)).

O Multiplication takes place only when summing out variables.

O Every variable that is not an ancestor of a query variable or
evidence variable is irrelevant to the query and thus removable.

J
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Example. The computation of the previous distribution

P(B[j,m) =aP(B)} P(e) ) P(a|B,e)P(j |a)P(m]a)

takes place bottom-up using factors as follows:
L fu(A) = (P(m|a),P(m| -a));
2. f3(A) = (P(j|a),P(j | —a)) is defined analogously;
3. fa(A,B,E) = P(A|B,E) is three-dimensional;

4. the variable A is summed out from the product of these three:

f‘]_’M(B,E) = Z(fA(a, B,E) X fJ(a) X fM (a));

a

5. E is summed out similarly and P(B |j,m) = afg(B) x fjm(B).

© 2008 TKK / ICS
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The Complexity of Exact Inference'

O A polytree is a singly connected graph: there is at most one
undirected path between any two nodes.

O If a belief network forms a polytree, the probability distribution
P(X | €) can be computed very efficiently (in linear time).

0 For multiply connected networks, in which at least two variables
are connected by several paths, variable elimination can have
exponential time and space complexity in the worst case.

O In general, exact inference in Bayesian networks is NP-hard (even
#P-hard) as it includes propositional inference as a special case.

J
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Clustering AIgorithmsI

O Multiply connected Bayesian networks can be transformed into
polytrees by combining some nodes into cluster nodes.

Example. Consider clustering the nodes Sprinklerand Rainin the
following multiply connected network:

P(C)=5

C | P(R)
F .20

PW)
.99
.90
.90
.00

(e}

P(s)

F .50

nTmA Al
naTmHlD
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O The following polytree network is obtained:

@ P(S+R=x)

C TT TF FT FF

@ T| .08 .02 72 .18
F| .40 .10 .40 .10

S+R | P(W)
TT .99

re | e | ()
FT .90

FF .00

O Linear time algorithms can be used for query answering, but the
size of the network grows exponentially in the worst case.

O Typically, there are several ways to compose cluster nodes and it is
non-trivial to choose the best way to perform clustering.

4 )
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5. APPROXIMATE INFERENCE
IN BAYESIAN NETWORKS

0 Randomized sampling algorithms provide approximate answers
whose accuracy depends on the number of samples generated.

O Here sampling is applied to the computation of posterior
probabilities given a prior distribution (a Bayesian network).
0 There are several approximation methods including
— Direct sampling
— Rejection sampling
— Likelihood weighting

— Markov chain Monte Carlo algorithm

4 N
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Direct Sampling Methods I

O In direct sampling, the world described by a Bayesian network
(without evidence) is simulated stochastically.

0 Atomic events are randomly generated in topological order by
selecting definite values for random variables.

0 The value for a random variable X is chosen according to the
conditional probability table associated with X.

O Prior sampling produces the event Xi,...,X, with probability

n

Sps(X1, .-+, %n) = |'|P(>q | Parent$X;)) = P(x1,...,Xn).

© 2008 TKK / ICS
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00 The posterior distribution P(X | €) = Pé,i(éf) is estimated by

counting the frequencies with which events occur.

O The number of samples N affects accuracy:

. N
im PS(X1;- - -5 X%n)

Jim N :S:S(Xl,...,Xn):P(Xl7--~axn)'

O Direct sampling is not very useful if the event e occurs very rarely.

Example. Let us produce one sample for the lawn watering domain:

P(Cloudy) = (0.5,0.5) = return true
P(Sprinkler| cloudy) = (0.1,0.9) = return false
P(Rain| cloudy) = (0.8,0.2) =>  return true
P(WetGrasg —sprinkler,rain) = (0.9,0.1) = return true

Example. E.g., P(WetGrasg sprinklerArain) converges slowly.

\_
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Rejection Sampling in Bayesian Networks'

O In its simplest form, rejection sampling can be used to compute
conditional probabilities such as P(X | e).

Probabilistic Reasoning

0 Samples are generated from the prior distribution, but samples
which do not match the evidence are rejected.

NPS(X#e)

O The estimated distribution P(X | €) = aNps(X,e) = T2

O With sufficiently many samples P(X | ) ~ Pé)(((;)e) =P(X]| e).

O Rejection sampling tends to reject too many samples.
Example. Suppose that out of 100samples, 73 are rejected as

Sprinkler=false Out of the remaining 27 samples, 8 satisfy
Rain=true. Thus P(Rain| sprinkler) ~ a(8,19) = (0.296,0.704).

- J
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Likelihood Weighting'

O Likelihood weighting is similar to rejection sampling, but the

Probabilistic Reasoning

values of evidence variables E are kept fixed while sampling others.

O The CPTs of the Bayesian network are consulted to to see how
likely the event eis.

O In this way, the conditional probability P(e| x,y) is interpreted as a
likelihood weight for that particular run.

O An estimate of P(X=X|€) is obtained as a weighted proportion of
runs with X =X among the runs accumulated so far.

O Likelihood weighting converges faster than rejection sampling.

O Getting accurate probabilities for unlikely events is still a problem.

- J
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Example. Let us estimate P(Rain| sprinkler,wetgras$ by likelihood
weighting. Initially, the weight w is set to 1.0.

The values of variables are chosen randomly as follows:
1. P(Cloudy) = (0.5,0.5) = cloudyis randomly chosen.

2. Sprinkleris an evidence variable that has been set to true:
w is revised to w x P(sprinkler| cloudy) = 0.1.

3. P(Rain| cloudy) = (0.8,0.2) = rain is randomly chosen.

4. WetGrasss an evidence variable with value true:
w is revised to w x P(wetgrasg sprinkler,rain) = 0.099

|:| We have completed a run saying that Rain= true given
sprinkler and wetgrasswith a likelihood weight 0.099

\_

~
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Why Likelihood Weighting Works'

O The algorithm samples each non-evidence variable in Z = {X}UY
given the values of its parents:

Sws(z.€) = [, P(a | ParentéZ,)).

O The weighted probability Syg(z,e)w(z,e) = P(y,e).
O Likelihood weighting estimates are shown consistent as follows:
p(X | e) = a Zy N\/V§X7y7 e)W(X’ y7 e)
a' Ty Sws(X.y,eW(x,y,€)
= a'y,P(xy,e)
= a'P(x,e) = P(x]|e).

(for large N)

O The weight for a given sample is w(z,e) = ", P(e | ParentsE)).

~
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Inference by Markov Chain Simulation'

O A Markov chain Monte Carlo (MCMC) algorithm generates the
next state by sampling a value for a nonevidence variable X;
conditioned by the current values of the variables in mb(X;).

O The simulation starts from a random state X for X = {X} UZ.

O Each round of the simulation consists of the following steps:
1. Increase the count N[X] by one for the current value X of X.
2. Sample the value of each X; in X using P(X; | mb(X)).

O The estimate for the distribution P(X | €) is obtained by
normalizing the counts in N[X].

4 )
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Why MCMC Works I

O The sampling process settles into a “dynamic equilibrium” in which

the long-run fraction of time spent in each state is exactly
proportional to its posterior probability.

0O A Markov chain is defined by transition probabilities q(x — X’)
from a state X to a state X'

O Let T8(X) denote the probability of a state X after t steps.
O For the next step, we have Tg,1(X') = T4 T&(X)q(X — X').

Definition. The chain has reached its stationary distribution Tt if
Th1 =Tk, i.e., TUis defined by Ti(X') = T, T(X)q(Xx — X') for all X".

- J
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Detailed Balance '

O One interpretatation of the equation T(X") = ¥, T(X)q(X — X/)
is that the expected outflow from each state (population)
is equal to the expected inflow from all the states.

O Assuming the equality of flows in both directions leads to the
property of detailed balance: for all x and X':
T(x)g(x — x) = m(X')q(x" — x).
(0 Stationarity is implied by detailed balance:
kX)X —x) = Fx7x)a(X' —X)
= TX) 3xq(x" —X)
= 1(X).

© 2008 TKK / ICS
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Gibbs sampler'

O Let X; be the variable to be sampled and X; all the hidden
variables other than X;.

0 The Gibbs sampler is based on transition probabilites
q(x — X) = a((%, %) — (4, %)) = P(x | %, €) = P(x | mb(X;)).
O Gibbs sampler is in detailed balance with the true posterior:
mx)ax —x) = P(x|e)P(x|Xie)
= P(x.,X,e)P(x|Xe)
= P |xi,e)P(Xi | e)P(x |Xi,€)
= P, X,e)P(x [Xe)
— X)g(X - ).

© 2008 TKK / ICS
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SUMMARYI

O Conditional independence information can be used for

structuring and simplifying knowledge about an uncertain domain.

[0 Bayesian networks provide a natural way to represent conditional
independence information.

O A Bayesian network is a complete (and often also very compact)
representation of the joint probability distribution.

O Efficient algorithms exist for Bayesian networks that are
topologically polytrees, but reasoning with Bayesian networks is
NP-hard in general.

0 Probabilities can be estimated by sampling methods.
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QUESTIONSI

0 Build a Bayesian network for the soccer domain.
1. Choose appropriate variables for the description of the domain.
2. Choose an ordering for the variables.

3. Construct the actual belief network by
(i) analyzing dependencies among variables and
(ii) defining CPTs for each variable.

O Make both causal and diagnostic inferences using the network.

© 2008 TKK / ICS
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