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PROBABILISTIC REASONINGOutline

➤ Representing Knowledge in an unertain domain

➤ Semantis of Bayesian networks

➤ E�ient representation of onditional distributions

➤ Exat/Approximate inferene in Bayesian networks

➤ Other approahes to unertain reasoningBased on the textbook by Stuart Russell & Peter Norvig:Arti�ial Intelligene, A Modern Approah (2nd Edition)Chapter 14; exluding Setion 14.6
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1. REPRESENTING KNOWLEDGEIN AN UNCERTAIN DOMAIN

➤ Conditional independene relations provide means to simplifyprobabilisti representations of the world.

➤ A Bayesian network is a data struture representing thedependenies among variables X1, . . . ,Xn of a given domain.
➤ As a result, a ompat spei�ation of the full joint probabilitydistribution P(X1, . . . ,Xn) is obtained.
➤ Bayesian networks are also alled belief networks, probabilistinetworks, ausal networks, or knowledge maps.
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Bayesian Networks: Syntax

De�nition. A belief network is a direted ayli graph (DAG)
G = 〈{X1, . . . ,Xn},E〉 where1. nodes X1, . . . ,Xn are disrete/ontinuous random variables,2. the set of arrows (or links)

E ⊆ {X1, . . . ,Xn}
2 = {〈Xi ,Xj〉 | 1≤ i ≤ n and 1≤ j ≤ n},3. an arrow 〈X,Y〉 ∈ E of G represents a diret in�uene relationshipbetween the variables X and Y, and4. eah node X is assigned a ompletely spei�ed probabilitydistribution P(X|Parents(X)) where

Parents(X) = {Y | 〈Y,X〉 ∈ E}.
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Example. Consider a network based on �ve Boolean random variables:1. Burglary = �a burglar enters our home�.2. Earthquake= �an earthquake ours�.3. Alarm = �our burglar alarm goes o��.The alarm is fairly reliable at deteting a burglary, but mayoasionally respond to minor earthquakes.4. JohnCalls= �Our neighbor John alls and reports an alarm.�He always alls when he hears the alarm, but sometimes onfusestelephone ringing with the alarm.5. MaryCalls= �Our neighbor Mary alls and reports an alarm �.She likes loud musi and sometimes misses the alarm altogether.Shorthands B, E, A, J, and M are also introdued for these variables.
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➤ The relationships of the variables are given as a Bayesian network.

➤ The probability distributions P(X | Parents(X)) assoiated withvariables X are given as onditional probability tables (CPTs).
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2. SEMANTICS OF BAYESIAN NETWORKS

➤ A Bayesian network for the random variables X1, . . . ,Xn is arepresentation of the joint probability distribution P(X1, . . . ,Xn).
➤ As before, a shorthand xi is used for the atomi event Xi = xi .
➤ Arrows enode onditional independene relations and thereforethe probabilities of atomi events are determined by

P(x1, . . . ,xn) = ∏n
i=1 P(xi | Parents(xi))where Parents(xi) refers to the assignments of Y ∈ Parents(Xi).Example. Let us ompute the probability of j ∧m∧a∧¬b∧¬e:

P(j ∧m∧a∧¬b∧¬e)

= P(j|a)P(m|a)P(a|¬b∧¬e)P(¬b)P(¬e)

= 0.9×0.7×0.001×0.999×0.998 = 0.00063.© 2008 TKK / ICS
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Conditional Independene Revisited

De�nition. Let P(ψ) > 0. Sentenes φ1 and φ2 are onditionallyindependent given ψ ⇐⇒ P(φ1∧φ2 | ψ) = P(φ1 | ψ)P(φ2 | ψ).Proposition. If P(ψ) > 0, P(φ1∧ψ) > 0, and P(φ2∧ψ) > 0, then φ1and φ2 are onditionally independent given ψ ⇐⇒

P(φ1 | φ2∧ψ) = P(φ1 | ψ) and P(φ2 | φ1∧ψ) = P(φ2 | ψ) hold.Proof. For the former equation, we note that
P(φ1∧φ2 | ψ) = P(φ1 | ψ)P(φ2 | ψ)

⇐⇒ P(φ1∧φ2∧ψ)
P(ψ) = P(φ1∧ψ)

P(ψ) · P(φ2∧ψ)
P(ψ)

⇐⇒ P(φ1∧φ2∧ψ)P(ψ) = P(φ1∧ψ)P(φ2∧ψ)

⇐⇒ P(φ1 | φ2∧ψ) = P(φ1∧φ2∧ψ)
P(φ2∧ψ) = P(φ1∧ψ)

P(ψ) = P(φ1 | ψ).
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A Method for Construting Bayesian Networks

➤ In a Bayesian network G = 〈{X1, . . . ,Xn},E〉, a node Xj 6= Xi is apredeessor of Xi ⇐⇒ there are nodes Y1, . . . ,Ym suh that

Y1 = Xj , Ym = Xi , and ∀ j ∈ {1, . . . ,m−1}: 〈Yj ,Yj+1〉 ∈ E.

➤ Beause G is a DAG, we may assume that the nodes X1, . . . ,Xn areordered so that the predeessors of Xi are among X1, . . . ,Xi−1.Thus also Parents(Xi) ⊆ {X1, . . . ,Xi−1}.

➤ By the de�nition of onditional probability, we have that

P(x1, . . . ,xn) =

P(xn | xn−1, . . . ,x1)P(xn−1, . . . ,x1) =

P(xn | xn−1, . . . ,x1)P(xn−1 | xn−2, . . . ,x1) · · ·P(x2 | x1)P(x1) =

∏n
i=1 P(xi | xi−1, . . . ,x1).© 2008 TKK / ICS
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➤ A Bayesian network is a orret representation if eah variable X isonditionally independent of its predeessors Y given Parents(X).

➤ Under the assumptions on onditional independene and nodeordering, it an be established that

P(Xi | Xi−1, . . . ,X1) = P(Xi | Parents(Xi)). (1)

➤ The hoie of Parents(X) for a random variable X a�ets how faronditional independene assumptions an be applied.

➤ Parents(X) should ontain all variables that diretly in�uene X.Example. Only Alarm diretly in�uenes MaryCalls. Given Alarm,

MaryCalls is onditionally independent of the other variables:

P(MaryCalls| JohnCalls,Alarm,Earthquake,Burglary)

= P(MaryCalls| Alarm).
© 2008 TKK / ICS
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On Compatness and Node Ordering

➤ A Bayesian network an be a ompat representation of the jointprobability distribution (loally strutured or sparse system).
➤ If eah Boolean variable diretly in�uenes at most k other, thenonly n2k probabilities have to be spei�ed (instead of 2n).Example. When n = 30 and k = 5, we would have to speify

n2k = 960 and 2n = 1073741824probabilities, respetively.
➤ A lear trade-o�: number of arrows (auray of probabilities)versus ost of speifying extra information (extending CPTs).
➤ Choosing a good node ordering is a non-trivial task.
➤ Heuristis: the root auses of the domain should be added �rst,then the variables in�uened by them, and so forth.
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MaryCalls, JohnCalls, Alarm, Burglary, Earthquake1. As the �rst node, MaryCalls gets no parents.2. When JohnCallsis added, MaryCalls beomes a parent of

JohnCalls, as P(JohnCalls| MaryCalls) 6= P(JohnCalls).3. Similarly, Alarm depends on both MaryCalls and JohnCalls.4. Sine

P(Burglary | Alarm,JohnCalls,MaryCalls) = P(Burglary | Alarm),the only parent of Burglary is Alarm.5. Nodes Burglary and Alarm beome parents of Earthquake, as

P(Earthquake| Burglary,Alarm,JohnCalls,MaryCalls) =

P(Earthquake| Burglary,Alarm).© 2008 TKK / ICS
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➤ The resulting Bayesian network is given below on the left:
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➤ The one on the right is obtained with another ordering and it asomplex (31 probabilities) as the full joint distribution!
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Conditional Independene Relations

Two (equivalent) topoloial riteria an be utilized:1. A node X is onditionally independent of its non-desendants(e.g., Zi j s below), given its parents (i.e., Uis below).
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Example. In the burglary example, one may onlude that:

JohnCallsis independent of Burglary and Earthquakegiven Alarm.© 2008 TKK / ICS
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2. A node X is onditionally independent of all other nodes in thenetwork, given its Markov blanket mb(X), i.e.,its parents, hildren, and hildren's parents.
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Example. Burglary is independent of JohnCallsand MaryCalls given
Alarm and Earthquake.There is yet another riterion alled d-separation, but unlike the �rstedition of the textbook it is not overed by the seond.
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3. EFFICIENT REPRESENTATION OFCONDITIONAL DISTRIBUTIONS
➤ Speifying onditional probability tables means often a lot of work.

➤ To ease this proess, some anonial distributions suh asdeterministi and noisy logial relationships have been proposed.

➤ When using a anonial distribution it is often enough to supplyertain parameters rather than a omplete CPT.

➤ There are also anonial ontinuous distributions suh as Gaussiandistributions and probit/logit distributions.

© 2008 TKK / ICS
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Deterministi Nodes

➤ In the deterministi ase, there is no unertainty and the value of

X is obtained as a (logial) funtion from those of Parents(X).

➤ Deterministi nodes an also enode other �xed numerialfuntions depending on the variables involved.Example. De�ne NorthAmerican↔ Canadian∨US∨Mexican.This orresponds to speifying a CPT as follows:

Canadian US Mexican NorthAmericanF F F 0.0T F F 1.0... ... ... ...

© 2008 TKK / ICS
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Noisy Logial Relationships

➤ Noisy logial relationships add some unertainty to the senario.

➤ A noisy OR relationship omprises the following priniples:1. Eah ause has an independent hane of ausing the e�et.2. All possible auses are listed.3. Whatever inhibits some ause from ausing an e�et isindependent of whatever inhibits other auses from ausing thee�et. Inhibitors are summarized as noise parameters.

➤ A noisy OR relationship in whih a variable depends on k parentsan be desribed using k parameters.In ontrast to this, 2k entries are needed if a full CPT is spei�ed.

© 2008 TKK / ICS
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Fever (a symptom), Cold, Flu, and Malaria (diseases). Using noiseparameters P(¬fever| cold,¬flu,¬malaria) = 0.6,

P(¬fever| ¬cold,flu,¬malaria) = 0.2, and

P(¬fever| ¬cold,¬flu,malaria) = 0.1, we get the following CPT:
Cold Flu Malaria P(Fever) P(¬Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02= 0.2×0.1

T F F 0.4 0.6

T F T 0.94 0.06= 0.6×0.1

T T F 0.88 0.12= 0.6×0.2

T T T 0.988 0.012= 0.6×0.2×0.1
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Bayesian networks with Continuous Variables
➤ Many real-world problems involve ontinuous quantities/variables.

➤ Continuous variables an be disretized but as a side-e�et theresulting CPTs an beome very large.
➤ Another possibility is to use standard probability density funtionsover the domains of ontinuous variables.

➤ A hybrid Bayesian network involves both disrete andontinuous variables.
© 2008 TKK / ICS
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HarvestSubsidy

Buys

Cost

For Cost, we need to speify P(Cost| Harvest,Subsidy).

➤ The disrete parent is handled by expliitly enumerating both

P(Cost| Harvest,subsidy) and P(Cost| Harvest,¬subsidy).

➤ The parameters of the ost distribution (e.g. linear Gaussiandistribution) are given as a funtion of the variable Harvest.

➤ The distribution P(Buys| Cost) an be determined by a softthreshold funtion, e.g., based on a probit distribution.© 2008 TKK / ICS
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4. EXACT INFERENCE INBAYESIAN NETWORKS

➤ An agent gets values for evidene variables from its perepts andasks about the possible values of other variables so that it andeide what ation to take (reall the deision theoreti design).

➤ The basi task of a probabilisti reasoning system is to ompute

P(X | E1 = e1, . . . ,Em = em) given a query variable X and exatvalues e1, . . . ,em of some evidene variables E1, . . . ,Em.

➤ The remaining variables Y1, . . . ,Yn at as hidden variables.Examples. Realling the alarm example, the problem is to alulatedistributions suh as P(Burglary | JohnCalls,MaryCalls) and

P(Alarm | JohnCalls,Earthquake)?© 2008 TKK / ICS
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Inferene by Enumeration

➤ We introdue shorthands E and Y for E1, . . . ,Em and Y1, . . . ,Yn,respetively, and similarly e and y for their values.

➤ A query P(X | e) an be answered by exhaustive enumeration:
P(X | e) = αP(X,e) = α∑

y
P(X,e,y)where α is a normalizing onstant.

➤ If a Bayesian network is used, this leads to the omputation ofsums of produts of onditional probabilities from the network.

➤ The time omplexity for a network of n variables is of order 2n.

© 2008 TKK / ICS
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Example. Consider the query P(B | j,m) in the burglary example.For this query, E and A are hidden variables and enumeration amountsto omputing the following distribution (in a depth �rst fashion):

P(B | j,m) = αP(B, j,m)

= α∑e∑a P(B,e,a, j,m)

= α∑e∑a P(B)P(e)P(a | B,e)P(j | a)P(m | a)

= αP(B)∑eP(e)∑a P(a | B,e)P(j | a)P(m | a)

= α〈0.00059224,0.0014919〉

≈ 〈0.284,0.716〉The details of omputing P(b | j,m) are analyzed next.

© 2008 TKK / ICS
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☞ Certain subexpressions are omputed repeatedly.
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Variable Elimination Algorithm

➤ The enumeration algorithm an be improved substantially bydoing alulations in a bottom-up fashion using fators whih arematries of probabilities.

➤ The pointwise produt of two fators f1(X,Y) and f2(Y,Z) isde�ned by (f1× f2)(X,Y,Z) = f1(X,Y)f2(Y,Z).

➤ A variable X an be summed out from a produt of fators

fi(X,Y) by omputing ∑x(f1(x,Y)× . . .× fn(x,Y)).

➤ Multipliation takes plae only when summing out variables.

➤ Every variable that is not an anestor of a query variable orevidene variable is irrelevant to the query and thus removable.

© 2008 TKK / ICS
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Example. The omputation of the previous distribution

P(B | j,m) = αP(B)∑
e

P(e)∑
a

P(a | B,e)P(j | a)P(m | a)takes plae bottom-up using fators as follows:1. fM(A) = 〈P(m | a),P(m | ¬a)〉;2. fJ(A) = 〈P(j | a),P(j | ¬a)〉 is de�ned analogously;3. fA(A,B,E) = P(A|B,E) is three-dimensional;4. the variable A is summed out from the produt of these three:
fJ,M(B,E) = ∑

a
(fA(a,B,E)× fJ(a)× fM(a));

5. E is summed out similarly and P(B | j,m) = α fB(B)× fJ,M(B).

© 2008 TKK / ICS
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The Complexity of Exat Inferene
➤ A polytree is a singly onneted graph: there is at most oneundireted path between any two nodes.
➤ If a belief network forms a polytree, the probability distribution

P(X | e) an be omputed very e�iently (in linear time).

➤ For multiply onneted networks, in whih at least two variablesare onneted by several paths, variable elimination an haveexponential time and spae omplexity in the worst ase.

➤ In general, exat inferene in Bayesian networks is NP-hard (even#P-hard) as it inludes propositional inferene as a speial ase.

© 2008 TKK / ICS
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Clustering Algorithms

➤ Multiply onneted Bayesian networks an be transformed intopolytrees by ombining some nodes into luster nodes.Example. Consider lustering the nodes Sprinklerand Rain in thefollowing multiply onneted network:

P(C) = .5
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➤ The following polytree network is obtained:

P(C) = .5

C TT TF FT FF

T

F

.08

.40

.02

.10

.72

.40
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.10

P(S+R=x)

S+R P(W)

T T

T F

F T

F F

.90

.90

.00

.99

Cloudy

Spr+Rain

 Wet
Grass

➤ Linear time algorithms an be used for query answering, but thesize of the network grows exponentially in the worst ase.

➤ Typially, there are several ways to ompose luster nodes and it isnon-trivial to hoose the best way to perform lustering.
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5. APPROXIMATE INFERENCEIN BAYESIAN NETWORKS

➤ Randomized sampling algorithms provide approximate answerswhose auray depends on the number of samples generated.
➤ Here sampling is applied to the omputation of posteriorprobabilities given a prior distribution (a Bayesian network).
➤ There are several approximation methods inluding� Diret sampling� Rejetion sampling� Likelihood weighting� Markov hain Monte Carlo algorithm

© 2008 TKK / ICS
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Diret Sampling Methods
➤ In diret sampling, the world desribed by a Bayesian network(without evidene) is simulated stohastially.
➤ Atomi events are randomly generated in topologial order byseleting de�nite values for random variables.
➤ The value for a random variable X is hosen aording to theonditional probability table assoiated with X.

➤ Prior sampling produes the event x1, . . . ,xn with probability

SPS(x1, . . . ,xn) =
n

∏
i=1

P(xi | Parents(Xi)) = P(x1, . . . ,xn).

© 2008 TKK / ICS
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➤ The posterior distribution P(X | e) = P(X,e)
P(e) is estimated byounting the frequenies with whih events our.

➤ The number of samples N a�ets auray:

lim
N→∞

NPS(x1, . . . ,xn)

N
= SPS(x1, . . . ,xn) = P(x1, . . . ,xn).

➤ Diret sampling is not very useful if the event e ours very rarely.Example. Let us produe one sample for the lawn watering domain:

P(Cloudy) = 〈0.5,0.5〉 =⇒ return true

P(Sprinkler| cloudy) = 〈0.1,0.9〉 =⇒ return false

P(Rain| cloudy) = 〈0.8,0.2〉 =⇒ return true

P(WetGrass| ¬sprinkler, rain) = 〈0.9,0.1〉 =⇒ return trueExample. E.g., P(WetGrass| sprinkler∧ rain) onverges slowly.

© 2008 TKK / ICS
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Rejetion Sampling in Bayesian Networks

➤ In its simplest form, rejetion sampling an be used to omputeonditional probabilities suh as P(X | e).

➤ Samples are generated from the prior distribution, but sampleswhih do not math the evidene are rejeted.

➤ The estimated distribution P̂(X | e) = αNPS(X,e) = NPS(X,e)
NPS(e)

.

➤ With su�iently many samples P̂(X | e) ≈ P(X,e)
P(e) = P(X | e).

➤ Rejetion sampling tends to rejet too many samples.Example. Suppose that out of 100 samples, 73 are rejeted as

Sprinkler= false. Out of the remaining 27 samples, 8 satisfy

Rain= true. Thus P(Rain| sprinkler) ≈ α〈8,19〉 = 〈0.296,0.704〉.
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Likelihood Weighting

➤ Likelihood weighting is similar to rejetion sampling, but thevalues of evidene variables E are kept �xed while sampling others.
➤ The CPTs of the Bayesian network are onsulted to to see howlikely the event e is.

➤ In this way, the onditional probability P(e | x,y) is interpreted as alikelihood weight for that partiular run.
➤ An estimate of P(X = x | e) is obtained as a weighted proportion ofruns with X = x among the runs aumulated so far.
➤ Likelihood weighting onverges faster than rejetion sampling.

➤ Getting aurate probabilities for unlikely events is still a problem.
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Example. Let us estimate P(Rain| sprinkler,wetgrass) by likelihoodweighting. Initially, the weight w is set to 1.0.The values of variables are hosen randomly as follows:1. P(Cloudy) = 〈0.5,0.5〉 =⇒ cloudy is randomly hosen.2. Sprinkler is an evidene variable that has been set to true:

w is revised to w×P(sprinkler| cloudy) = 0.1.3. P(Rain| cloudy) = 〈0.8,0.2〉 =⇒ rain is randomly hosen.4. WetGrassis an evidene variable with value true:

w is revised to w×P(wetgrass| sprinkler, rain) = 0.099.

☞ We have ompleted a run saying that Rain= true given

sprinkler and wetgrasswith a likelihood weight 0.099.
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AB

T-79.5102 / Autumn 2008 Probabilisti Reasoning 36

Why Likelihood Weighting Works

➤ The algorithm samples eah non-evidene variable in Z = {X}∪Ygiven the values of its parents:

SWS(z,e) = ∏l
i=1 P(zi | Parents(Zi)).

➤ The weight for a given sample is w(z,e) = ∏m
i=1 P(ei | Parents(Ei)).

➤ The weighted probability SWS(z,e)w(z,e) = P(y,e).

➤ Likelihood weighting estimates are shown onsistent as follows:

P̂(x | e) = α∑y NWS(x,y,e)w(x,y,e)

≈ α′ ∑y SWS(x,y,e)w(x,y,e) (for large N)

= α′ ∑y P(x,y,e)

= α′P(x,e) = P(x | e).
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Inferene by Markov Chain Simulation

➤ A Markov hain Monte Carlo (MCMC) algorithm generates thenext state by sampling a value for a nonevidene variable Xionditioned by the urrent values of the variables in mb(Xi).

➤ The simulation starts from a random state x for X = {X}∪Z.

➤ Eah round of the simulation onsists of the following steps:1. Inrease the ount N[x] by one for the urrent value x of X.2. Sample the value of eah Xi in X using P(Xi | mb(Xi)).

➤ The estimate for the distribution P(X | e) is obtained bynormalizing the ounts in N[X].
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Why MCMC Works

➤ The sampling proess settles into a �dynami equilibrium� in whihthe long-run fration of time spent in eah state is exatlyproportional to its posterior probability.

➤ A Markov hain is de�ned by transition probabilities q(x → x′)from a state x to a state x′.

➤ Let πt(x) denote the probability of a state x after t steps.
➤ For the next step, we have πt+1(x′) = ∑x πt(x)q(x → x′).De�nition. The hain has reahed its stationary distribution π if

πt+1 = πt , i.e., π is de�ned by π(x′) = ∑x π(x)q(x → x′) for all x′.
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Detailed Balane
➤ One interpretatation of the equation π(x′) = ∑x π(x)q(x → x′)is that the expeted out�ow from eah state (population)is equal to the expeted in�ow from all the states.
➤ Assuming the equality of �ows in both diretions leads to theproperty of detailed balane: for all x and x′:

π(x)q(x → x′) = π(x′)q(x′ → x).

➤ Stationarity is implied by detailed balane:

∑x π(x)q(x → x′) = ∑x π(x′)q(x′ → x)

= π(x′)∑x q(x′ → x)

= π(x′).
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Gibbs sampler

➤ Let Xi be the variable to be sampled and Xi all the hiddenvariables other than Xi .

➤ The Gibbs sampler is based on transition probabilites

q(x → x′) = q((xi ,xi) → (x′i ,xi)) = P(x′i | xi ,e) = P(x′i | mb(Xi)).

➤ Gibbs sampler is in detailed balane with the true posterior:

π(x)q(x → x′) = P(x | e)P(x′i | xi ,e)

= P(xi ,xi ,e)P(x′i | xi ,e)

= P(xi | xi ,e)P(xi | e)P(x′i | xi ,e)

= P(x′i ,xi ,e)P(xi | xi ,e)

= π(x′)q(x′ → x).
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SUMMARY

➤ Conditional independene information an be used forstruturing and simplifying knowledge about an unertain domain.

➤ Bayesian networks provide a natural way to represent onditionalindependene information.

➤ A Bayesian network is a omplete (and often also very ompat)representation of the joint probability distribution.

➤ E�ient algorithms exist for Bayesian networks that aretopologially polytrees, but reasoning with Bayesian networks isNP-hard in general.

➤ Probabilities an be estimated by sampling methods.
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QUESTIONS

➤ Build a Bayesian network for the soer domain.1. Choose appropriate variables for the desription of the domain.2. Choose an ordering for the variables.3. Construt the atual belief network by(i) analyzing dependenies among variables and(ii) de�ning CPTs for eah variable.
➤ Make both ausal and diagnosti inferenes using the network.
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