PROBABILISTIC REASONING

Outline

> Representing Knowledge in an uncertain domain
> Semantics of Bayesian networks

- Efficient representation of conditional distributions
- Exact/Approximate inference in Bayesian networks
> Other approaches to uncertain reasoning
Based on the textbook by Stuart Russell \& Peter Norvig:
Artificial Intelligence, A Modern Approach (2nd Edition)
Chapter 14; excluding Section 14.6
(c) 2008 TKK / ICS

1. REPRESENTING KNOWLEDGE

 IN AN UNCERTAIN DOMAIN- Conditional independence relations provide means to simplify probabilistic representations of the world.
- A Bayesian network is a data structure representing the dependencies among variables X_{1}, \ldots, X_{n} of a given domain.
- As a result, a compact specification of the full joint probability distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$ is obtained.
- Bayesian networks are also called belief networks, probabilistic networks, causal networks, or knowledge maps.

Bayesian Networks: Syntax

Definition. A belief network is a directed acyclic graph (DAG) $G=\left\langle\left\{X_{1}, \ldots, X_{n}\right\}, E\right\rangle$ where

1. nodes X_{1}, \ldots, X_{n} are discrete/continuous random variables,
2. the set of arrows (or links)

$$
E \subseteq\left\{X_{1}, \ldots, X_{n}\right\}^{2}=\left\{\left\langle X_{i}, X_{j}\right\rangle \mid 1 \leq i \leq n \text { and } 1 \leq j \leq n\right\}
$$

3. an arrow $\langle X, Y\rangle \in E$ of G represents a direct influence relationship between the variables X and Y, and
4. each node X is assigned a completely specified probability distribution $\mathbf{P}(X \mid \operatorname{Parents}(X))$ where

$$
\operatorname{Parents}(X)=\{Y \mid\langle Y, X\rangle \in E\} .
$$

(C) 2008 TKK / ICS

The relationships of the variables are given as a Bayesian network.
> The probability distributions $\mathbf{P}(X \mid \operatorname{Parents}(X))$ associated with variables X are given as conditional probability tables (CPTs).

Conditional Independence Revisited

Definition. Let $P(\psi)>0$. Sentences ϕ_{1} and ϕ_{2} are conditionally
independent given $\psi \Longleftrightarrow P\left(\phi_{1} \wedge \phi_{2} \mid \psi\right)=P\left(\phi_{1} \mid \psi\right) P\left(\phi_{2} \mid \psi\right)$.
Proposition. If $P(\psi)>0, P\left(\phi_{1} \wedge \psi\right)>0$, and $P\left(\phi_{2} \wedge \psi\right)>0$, then ϕ_{1} and ϕ_{2} are conditionally independent given $\psi \Longleftrightarrow$
$P\left(\phi_{1} \mid \phi_{2} \wedge \psi\right)=P\left(\phi_{1} \mid \psi\right)$ and $P\left(\phi_{2} \mid \phi_{1} \wedge \psi\right)=P\left(\phi_{2} \mid \psi\right)$ hold.
Proof. For the former equation, we note that

$$
\begin{aligned}
& P\left(\phi_{1} \wedge \phi_{2} \mid \psi\right)=P\left(\phi_{1} \mid \psi\right) P\left(\phi_{2} \mid \psi\right) \\
\Longleftrightarrow & \frac{P\left(\phi_{1} \wedge \phi_{2} \wedge \psi\right)}{P(\psi)}=\frac{P\left(\phi_{1} \wedge \psi\right)}{P(\psi)} \cdot \frac{P\left(\phi_{2} \wedge \psi\right)}{P(\psi)} \\
\Longleftrightarrow & P\left(\phi_{1} \wedge \phi_{2} \wedge \psi\right) P(\psi)=P\left(\phi_{1} \wedge \psi\right) P\left(\phi_{2} \wedge \psi\right) \\
\Longleftrightarrow & P\left(\phi_{1} \mid \phi_{2} \wedge \psi\right)=\frac{P\left(\phi_{1} \wedge \phi_{2} \wedge \psi\right)}{P\left(\phi_{2} \wedge \psi\right)}=\frac{P\left(\phi_{1} \wedge \psi\right)}{P(\psi)}=P\left(\phi_{1} \mid \psi\right) .
\end{aligned}
$$

(C) 2008 TKK / ICS

2. SEMANTICS OF BAYESIAN NETWORKS

> A Bayesian network for the random variables X_{1}, \ldots, X_{n} is a representation of the joint probability distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$.

- As before, a shorthand x_{i} is used for the atomic event $X_{i}=x_{i}$.
> Arrows encode conditional independence relations and therefore the probabilities of atomic events are determined by

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(x_{i}\right)\right)
$$

where Parents $\left(x_{i}\right)$ refers to the assignments of $Y \in \operatorname{Parents}\left(X_{i}\right)$.
Example. Let us compute the probability of $j \wedge m \wedge a \wedge \neg b \wedge \neg e$:

$$
P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)
$$

$=P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e)$
$=0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998=0.00063$.

A Method for Constructing Bayesian Networks

$>$ In a Bayesian network $G=\left\langle\left\{X_{1}, \ldots, X_{n}\right\}, E\right\rangle$, a node $X_{j} \neq X_{i}$ is a predecessor of $X_{i} \Longleftrightarrow$ there are nodes Y_{1}, \ldots, Y_{m} such that $Y_{1}=X_{j}, Y_{m}=X_{i}$, and $\forall j \in\{1, \ldots, m-1\}:\left\langle Y_{j}, Y_{j+1}\right\rangle \in E$.

- Because G is a DAG, we may assume that the nodes X_{1}, \ldots, X_{n} are ordered so that the predecessors of X_{i} are among X_{1}, \ldots, X_{i-1}. Thus also Parents $\left(X_{i}\right) \subseteq\left\{X_{1}, \ldots, X_{i-1}\right\}$.
- By the definition of conditional probability, we have that
$P\left(x_{1}, \ldots, x_{n}\right)=$
$P\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) P\left(x_{n-1}, \ldots, x_{1}\right)=$
$P\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) P\left(x_{n-1} \mid x_{n-2}, \ldots, x_{1}\right) \cdots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right)=$
$\prod_{i=1}^{n} P\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)$.

A Bayesian network is a correct representation if each variable X is conditionally independent of its predecessors Y given Parents (X).

- Under the assumptions on conditional independence and node ordering, it can be established that

$$
\begin{equation*}
\mathbf{P}\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)=\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) . \tag{1}
\end{equation*}
$$

The choice of Parents (X) for a random variable X affects how far conditional independence assumptions can be applied.

- Parents (X) should contain all variables that directly influence X.

Example. Only Alarm directly influences MaryCalls. Given Alarm, MaryCalls is conditionally independent of the other variables:
\mathbf{P} (MaryCalls \mid JohnCalls, Alarm, Earthquake, Burglary)
$=\mathbf{P}($ MaryCalls \mid Alarm $)$.

Example. Let us reconstruct the Bayesian network for the alarm domain using a different node ordering:

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake

1. As the first node, MaryCalls gets no parents.
2. When JohnCalls is added, MaryCalls becomes a parent of JohnCalls, as $\mathbf{P}($ JohnCalls \mid MaryCalls $) \neq \mathbf{P}($ JohnCalls $)$.
3. Similarly, Alarm depends on both MaryCalls and JohnCalls.
4. Since
$\mathbf{P}($ Burglary \mid Alarm, JohnCalls, MaryCalls $)=\mathbf{P}($ Burglary \mid Alarm $)$, the only parent of Burglary is Alarm.
5. Nodes Burglary and Alarm become parents of Earthquake, as $\mathbf{P}($ Earthquake \mid Burglary, Alarm, JohnCalls, MaryCalls $)=$ \mathbf{P} (Earthquake \mid Burglary, Alarm).
(C) 2008 TKK / ICS

T-79.5102 / Autumn 2008
Probabilistic Reasoning

On Compactness and Node Ordering

- A Bayesian network can be a compact representation of the joint probability distribution (locally structured or sparse system).
- If each Boolean variable directly influences at most k other, then only $n 2^{k}$ probabilities have to be specified (instead of 2^{n}).

Example. When $n=30$ and $k=5$, we would have to specify $n 2^{k}=960$ and $2^{n}=1073741824$ probabilities, respectively.

- A clear trade-off: number of arrows (accuracy of probabilities) versus cost of specifying extra information (extending CPTs).
> Choosing a good node ordering is a non-trivial task.
> Heuristics: the root causes of the domain should be added first, then the variables influenced by them, and so forth.

T-79.5102 / Autumn 2008
Probabilistic Reasoning

The resulting Bayesian network is given below on the left:

The one on the right is obtained with another ordering and it as complex (31 probabilities) as the full joint distribution!

Conditional Independence Relations

Two (equivalent) topolocial criteria can be utilized:

1. A node X is conditionally independent of its non-descendants (e.g., $Z_{i j} \mathrm{~s}$ below), given its parents (i.e., $U_{i} \mathrm{~s}$ below).

Example. In the burglary example, one may conclude that:
JohnCalls is independent of Burglary and Earthquake given Alarm.
(c) 2008 TKK / ICS

T-79.5102 / Autumn 2008
Probabilistic Reasoning
14
2. A node X is conditionally independent of all other nodes in the network, given its Markov blanket $m b(X)$, i.e.,
its parents, children, and children's parents.

Example. Burglary is independent of JohnCalls and MaryCalls given Alarm and Earthquake.
There is yet another criterion called \mathbf{d}-separation, but unlike the first edition of the textbook it is not covered by the second.

3. EFFICIENT REPRESENTATION OF CONDITIONAL DISTRIBUTIONS

- Specifying conditional probability tables means often a lot of work.
> To ease this process, some canonical distributions such as deterministic and noisy logical relationships have been proposed.
- When using a canonical distribution it is often enough to supply certain parameters rather than a complete CPT.
- There are also canonical continuous distributions such as Gaussian distributions and probit/logit distributions.
(C) 2008 TKK / ICS

- In the deterministic case, there is no uncertainty and the value of X is obtained as a (logical) function from those of $\operatorname{Parents}(X)$.
- Deterministic nodes can also encode other fixed numerical functions depending on the variables involved.

Example. Define NorthAmerican \leftrightarrow Canadian $\vee U S \vee$ Mexican This corresponds to specifying a CPT as follows:

Canadian	US	Mexican	NorthAmerican
F	F	F	0.0
T	F	F	1.0
\vdots	\vdots	\vdots	\vdots

Noisy Logical Relationships

- Noisy logical relationships add some uncertainty to the scenario.

Bayesian networks with Continuous Variables

- A noisy OR relationship comprises the following principles:

1. Each cause has an independent chance of causing the effect
2. All possible causes are listed.
3. Whatever inhibits some cause from causing an effect is independent of whatever inhibits other causes from causing the effect. Inhibitors are summarized as noise parameters.

- A noisy OR relationship in which a variable depends on k parents can be described using k parameters.
In contrast to this, 2^{k} entries are needed if a full CPT is specified.
© 2008 TKK / ICS

T-79.5102 / Autumn 2008
Probabilistic Reasoning
18
Example. Let us consider a medical domain including the variables Fever (a symptom), Cold, Flu, and Malaria (diseases). Using noise parameters $P(\neg$ fever \mid cold $, \neg f l u, \neg$ malaria $)=0.6$,
$P(\neg$ fever $\mid \neg$ cold $, f l u, \neg$ malaria $)=0.2$, and
$P(\neg$ fever $\mid \neg$ cold,\neg flu, malaria $)=0.1$, we get the following CPT:

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

(C) 2008 TKK / ICS

T-79.5102 / Autumn $2008 \quad$ Probabilistic Reasoning
Example. Consider a system two Boolean random variables Subsidy and Buys, and two continuous random variables Harvest and Cost.

For Cost, we need to specify $\mathbf{P}($ Cost \mid Harvest, Subsidy $)$.
> The discrete parent is handled by explicitly enumerating both $\mathbf{P}($ Cost \mid Harvest, subsidy $)$ and $\mathbf{P}($ Cost \mid Harvest,$~ \neg$ subsidy $)$.
> The parameters of the cost distribution (e.g. linear Gaussian distribution) are given as a function of the variable Harvest.

- The distribution $\mathbf{P}($ Buys \mid Cost $)$ can be determined by a soft threshold function, e.g., based on a probit distribution.

4. EXACT INFERENCE IN BAYESIAN NETWORKS

- An agent gets values for evidence variables from its percepts and asks about the possible values of other variables so that it can decide what action to take (recall the decision theoretic design).
- The basic task of a probabilistic reasoning system is to compute $\mathbf{P}\left(X \mid E_{1}=e_{1}, \ldots, E_{m}=e_{m}\right)$ given a query variable X and exact values e_{1}, \ldots, e_{m} of some evidence variables E_{1}, \ldots, E_{m}.
> The remaining variables Y_{1}, \ldots, Y_{n} act as hidden variables.
Examples. Recalling the alarm example, the problem is to calculate distributions such as \mathbf{P} (Burglary \mid JohnCalls, MaryCalls) and $\mathbf{P}($ Alarm \mid JohnCalls, Earthquake)?
(c) 2008 TKK / ICS
(C) 2008 TKK / ICS

T-79.5102 / Autumn 2008
Probabilistic Reasoning
22

Inference by Enumeration

$>$ We introduce shorthands \mathbf{E} and \mathbf{Y} for E_{1}, \ldots, E_{m} and Y_{1}, \ldots, Y_{n}, respectively, and similarly \mathbf{e} and \mathbf{y} for their values.

- A query $\mathbf{P}(X \mid \mathbf{e})$ can be answered by exhaustive enumeration:

$$
\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})
$$

where α is a normalizing constant.

- If a Bayesian network is used, this leads to the computation of sums of products of conditional probabilities from the network.The time complexity for a network of n variables is of order 2^{n}.
Example. Consider the query $\mathbf{P}(B \mid j, m)$ in the burglary example.
For this query, E and A are hidden variables and enumeration amounts to computing the following distribution (in a depth first fashion):

$$
\begin{aligned}
\mathbf{P}(B \mid j, m) & =\alpha \mathbf{P}(B, j, m) \\
& =\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m) \\
& =\alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\alpha\langle 0.00059224,0.0014919\rangle \\
& \approx\langle 0.284,0.716\rangle
\end{aligned}
$$

The details of computing $P(b \mid j, m)$ are analyzed next.

Variable Elimination Algorithm

- The enumeration algorithm can be improved substantially by doing calculations in a bottom-up fashion using factors which are matrices of probabilities.
> The pointwise product of two factors $\mathbf{f}_{1}(\mathbf{X}, \mathbf{Y})$ and $\mathbf{f}_{2}(\mathbf{Y}, \mathbf{Z})$ is defined by $\left(\mathbf{f}_{1} \times \mathbf{f}_{2}\right)(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\mathbf{f}_{1}(\mathbf{X}, \mathbf{Y}) \mathbf{f}_{2}(\mathbf{Y}, \mathbf{Z})$.
- A variable X can be summed out from a product of factors $\mathbf{f}_{i}(X, \mathbf{Y})$ by computing $\sum_{x}\left(\mathbf{f}_{1}(x, \mathbf{Y}) \times \ldots \times \mathbf{f}_{n}(x, \mathbf{Y})\right)$.
- Multiplication takes place only when summing out variables.
- Every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query and thus removable.

T-79.5102 / Autumn 2008
Probabilistic Reasoning

Example. The computation of the previous distribution

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)
$$

takes place bottom-up using factors as follows:

1. $\mathbf{f}_{M}(A)=\langle P(m \mid a), P(m \mid \neg a)\rangle$;
2. $\mathbf{f}_{J}(A)=\langle P(j \mid a), P(j \mid \neg a)\rangle$ is defined analogously;
3. $\mathbf{f}_{A}(A, B, E)=\mathbf{P}(A \mid B, E)$ is three-dimensional;
4. the variable A is summed out from the product of these three:

$$
\mathbf{f}_{J, M}(B, E)=\sum_{a}\left(\mathbf{f}_{A}(a, B, E) \times \mathbf{f}_{J}(a) \times \mathbf{f}_{M}(a)\right) ;
$$

5. E is summed out similarly and $\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{B}(B) \times \mathbf{f}_{J, M}(B)$.

The Complexity of Exact Inference

- A polytree is a singly connected graph: there is at most one undirected path between any two nodes.
- If a belief network forms a polytree, the probability distribution $\mathbf{P}(X \mid \mathbf{e})$ can be computed very efficiently (in linear time).
- For multiply connected networks, in which at least two variables are connected by several paths, variable elimination can have exponential time and space complexity in the worst case.
- In general, exact inference in Bayesian networks is NP-hard (even \#P-hard) as it includes propositional inference as a special case.
(C) 2008 TKK / ICS

- Multiply connected Bayesian networks can be transformed into polytrees by combining some nodes into cluster nodes.

Example. Consider clustering the nodes Sprinkler and Rain in the following multiply connected network:

The following polytree network is obtained:

Direct Sampling Methods

> In direct sampling, the world described by a Bayesian network (without evidence) is simulated stochastically.

- Atomic events are randomly generated in topological order by selecting definite values for random variables.
- The value for a random variable X is chosen according to the conditional probability table associated with X.
> Prior sampling produces the event x_{1}, \ldots, x_{n} with probability size of the network grows exponentially in the worst case.
- Typically, there are several ways to compose cluster nodes and it is non-trivial to choose the best way to perform clustering.
(c) 2008 TKK / ICS

T-79.5102 / Autumn 2008
Probabilistic Reasoning

5. APPROXIMATE INFERENCE IN BAYESIAN NETWORKS

- Randomized sampling algorithms provide approximate answers whose accuracy depends on the number of samples generated.
> Here sampling is applied to the computation of posterior probabilities given a prior distribution (a Bayesian network).
- There are several approximation methods including
- Direct sampling
- Rejection sampling
- Likelihood weighting
- Markov chain Monte Carlo algorithm

$$
S_{P S}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=P\left(x_{1}, \ldots, x_{n}\right)
$$

(C) 2008 TKK / ICS
The posterior distribution $\mathbf{P}(X \mid \mathbf{e})=\frac{\mathbf{P}(X, \mathbf{e})}{\mathbf{P}(\mathbf{e})}$ is estimated by counting the frequencies with which events occur.
> The number of samples N affects accuracy:

$$
\lim _{N \rightarrow \infty} \frac{N_{P S}\left(x_{1}, \ldots, x_{n}\right)}{N}=S_{P S}\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{1}, \ldots, x_{n}\right)
$$

Direct sampling is not very useful if the event e occurs very rarely.
Example. Let us produce one sample for the lawn watering domain:

$\mathbf{P}($ Cloudy $)=\langle 0.5,0.5\rangle$	\Longrightarrow	return true
$\mathbf{P}($ Sprinkler \mid cloudy $)=\langle 0.1,0.9\rangle$	\Longrightarrow	return false
$\mathbf{P}($ Rain \mid cloudy $)=\langle 0.8,0.2\rangle$	\Longrightarrow	return true
$\mathbf{P}($ WetGrass $\mid \neg$ sprinkler, rain $)=\langle 0.9,0.1\rangle$	\Longrightarrow	return true

Example. E.g., $\mathbf{P}($ WetGrass \mid sprinkler \wedge rain $)$ converges slowly.

Rejection Sampling in Bayesian Networks

- In its simplest form, rejection sampling can be used to compute conditional probabilities such as $P(X \mid \mathbf{e})$.
- Samples are generated from the prior distribution, but samples which do not match the evidence are rejected.
- The estimated distribution $\hat{\mathbf{P}}(X \mid \mathbf{e})=\alpha \mathbf{N}_{P S}(X, \mathbf{e})=\frac{\mathbf{N}_{P S}(X, \mathbf{e})}{N_{P S}(\mathbf{e})}$.
- With sufficiently many samples $\hat{\mathbf{P}}(X \mid \mathbf{e}) \approx \frac{\mathbf{P}(X, \mathbf{e})}{P(\mathbf{e})}=\mathbf{P}(X \mid \mathbf{e})$.
- Rejection sampling tends to reject too many samples.

Example. Suppose that out of 100 samples, 73 are rejected as Sprinkler $=$ false. Out of the remaining 27 samples, 8 satisfy Rain $=$ true. Thus $\mathbf{P}($ Rain \mid sprinkler $) \approx \alpha\langle 8,19\rangle=\langle 0.296,0.704\rangle$.
(c) 2008 TKK / ICS

T-79.5102 / Autumn 2008
Probabilistic Reasoning

Likelihood Weighting

- Likelihood weighting is similar to rejection sampling, but the values of evidence variables \mathbf{E} are kept fixed while sampling others.
> The CPTs of the Bayesian network are consulted to to see how likely the event \mathbf{e} is.
> In this way, the conditional probability $P(\mathbf{e} \mid x, \mathbf{y})$ is interpreted as a likelihood weight for that particular run
- An estimate of $P(X=x \mid \mathbf{e})$ is obtained as a weighted proportion of runs with $X=x$ among the runs accumulated so far.
> Likelihood weighting converges faster than rejection sampling.
- Getting accurate probabilities for unlikely events is still a problem.

Example. Let us estimate \mathbf{P} (Rain \mid sprinkler, wetgrass) by likelihood weighting. Initially, the weight w is set to 1.0 .
The values of variables are chosen randomly as follows:

1. $\mathbf{P}($ Cloudy $)=\langle 0.5,0.5\rangle \Longrightarrow$ cloudy is randomly chosen.
2. Sprinkler is an evidence variable that has been set to true: w is revised to $w \times P($ sprinkler \mid cloudy $)=0.1$.
3. $\mathbf{P}($ Rain \mid cloudy $)=\langle 0.8,0.2\rangle \Longrightarrow$ rain is randomly chosen
4. WetGrass is an evidence variable with value true: w is revised to $w \times P($ wetgrass \mid sprinkler, rain $)=0.099$.
[的 We have completed a run saying that Rain = true given sprinkler and wetgrass with a likelihood weight 0.099 .
(C) 2008 TKK / ICS

- The algorithm samples each non-evidence variable in $\mathbf{Z}=\{X\} \cup \mathbf{Y}$ given the values of its parents:

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(Z_{i}\right)\right)
$$

- The weight for a given sample is $w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(E_{i}\right)\right)$.
- The weighted probability $S_{W S}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e})=P(\mathbf{y}, \mathbf{e})$.
- Likelihood weighting estimates are shown consistent as follows:

$$
\begin{aligned}
\hat{P}(x \mid \mathbf{e}) & =\alpha \sum_{\mathbf{y}} N_{W S}(x, \mathbf{y}, \mathbf{e}) w(x, \mathbf{y}, \mathbf{e}) \\
& \approx \alpha^{\prime} \sum_{\mathbf{y}} S_{W S}(x, \mathbf{y}, \mathbf{e}) w(x, \mathbf{y}, \mathbf{e}) \quad(\text { for large } N) \\
& =\alpha^{\prime} \sum_{\mathbf{y}} P(x, \mathbf{y}, \mathbf{e}) \\
& =\alpha^{\prime} P(x, \mathbf{e})=P(x \mid \mathbf{e})
\end{aligned}
$$

Inference by Markov Chain Simulation

- A Markov chain Monte Carlo (MCMC) algorithm generates the next state by sampling a value for a nonevidence variable X_{i} conditioned by the current values of the variables in $m b\left(X_{i}\right)$
- The simulation starts from a random state \mathbf{x} for $\mathbf{X}=\{X\} \cup \mathbf{Z}$
- Each round of the simulation consists of the following steps:

1. Increase the count $\mathbf{N}[x]$ by one for the current value x of X.
2. Sample the value of each X_{i} in \mathbf{X} using $\mathbf{P}\left(X_{i} \mid m b\left(X_{i}\right)\right)$.
> The estimate for the distribution $\mathbf{P}(X \mid \mathbf{e})$ is obtained by normalizing the counts in $\mathbf{N}[X]$.
(c) 2008 TKK / ICS

T-79.5102 / Autumn 2008
Probabilistic Reasoning

Why MCMC Works

- The sampling process settles into a "dynamic equilibrium" in which the long-run fraction of time spent in each state is exactly proportional to its posterior probability.
- A Markov chain is defined by transition probabilities $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$ from a state \mathbf{x} to a state \mathbf{x}^{\prime}.
$>$ Let $\pi_{t}(\mathbf{x})$ denote the probability of a state \mathbf{x} after t steps.
$>$ For the next step, we have $\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi_{t}(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$.
Definition. The chain has reached its stationary distribution π if $\pi_{t+1}=\pi_{t}$, i.e., π is defined by $\pi\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$ for all \mathbf{x}^{\prime}.

Detailed Balance

$>$ One interpretatation of the equation $\pi\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$ is that the expected outflow from each state (population) is equal to the expected inflow from all the states.

- Assuming the equality of flows in both directions leads to the property of detailed balance: for all \mathbf{x} and \mathbf{x}^{\prime} :

$$
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right)
$$

Stationarity is implied by detailed balance:

$$
\begin{aligned}
\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =\sum_{\mathbf{x}} \pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right) \sum_{\mathbf{x}} q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

SUMMARY

- Conditional independence information can be used for structuring and simplifying knowledge about an uncertain domain.
- Bayesian networks provide a natural way to represent conditional independence information.
- A Bayesian network is a complete (and often also very compact) representation of the joint probability distribution.
- Efficient algorithms exist for Bayesian networks that are topologically polytrees, but reasoning with Bayesian networks is NP-hard in general.
- Probabilities can be estimated by sampling methods.
(c) 2008 TKK / ICS

T-79.5102 / Autumn 2008

QUESTIONS

- Build a Bayesian network for the soccer domain.

1. Choose appropriate variables for the description of the domain.
2. Choose an ordering for the variables.
3. Construct the actual belief network by
(i) analyzing dependencies among variables and
(ii) defining CPTs for each variable.

- Make both causal and diagnostic inferences using the network.

