2

LOGICAL LEARNING

Outline

- ► Logical Formulation of Learning
- Current-Best-Hypothesis Search
- ► Least-Commitment Search

T-79.5102 / Autumn 2008

Based on the textbook by Stuart Russell & Peter Norvig:

Artificial Intelligence, A Modern Approach (2nd Edition)

Section 19.1

© 2008 TKK / ICS

Logical Learning

1. LOGICAL FORMULATION OF LEARNING

- Inductive learning was previously defined as a process of searching for a hypothesis that agrees with the observed examples.
- ➤ For now we concentrate on the case where hypotheses, examples, classifications are represented in terms of *logical sentences*.
- This form of learning is more general and complex compared to learning decision trees or decision lists.
- This approach allows for *incremental construction* of hypotheses, one sentence at a time—allowing for **prior knowledge**, too.
- > The full power of logical inference can be utilized in learning.

Examples and Hypotheses

- > In the logical representation, attributes become unary predicates.
- > The i^{th} example is denoted by X_i and its description by $D_i(X_i)$.
- The generic notations $Q(X_i)$ and $\neg Q(X_i)$ are used for *positive* and *negative* examples, respectively.
- ➤ The complete training set corresponds to the conjunction of the respective description and classification sentences.

Example. The first example in the restaurant domain is described by the following logical sentence:

 $Alternate(X_1) \land \neg Bar(X_1) \land \neg Fri/Sat(X_1) \land Hungry(X_1) \land \dots$

The classification of X_1 is given by $WillWait(X_1)$.

 \odot 2008 TKK / ICS

T-79.5102 / Autumn 2008

```
Logical Learning
```

3

Restaurant Domain Revisited

➤ Recall the 12 examples generated from Mr. Russell's decision tree:

Example	Attributes									Goal	
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	Yes
X_4	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10-30	Yes
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	Yes
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	Yes
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	No
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	Yes

Hypothesis Space

- ► Logically equivalent hypotheses have equal extensions.
- > Two hypotheses with different extensions are logically inconsistent with each other, as they differ on at least one example X_i .
- > The hypothesis space $\{H_1, H_2, \ldots, H_n\}$ is denoted by **H**.
- \blacktriangleright It is usually believed that one of the hypotheses in **H** is correct. i.e. the disjunction $H_1 \vee H_2 \vee \ldots \vee H_n$ evaluates to true.
- \blacktriangleright In decision tree learning, the hypothesis space consists of all decision trees definable in terms of the attributes provided.

Example. The conjunction of $H_2 = \forall r(WillWait(r) \leftrightarrow Hungry(r))$ and $H_3 = \forall r(WillWait(r) \leftrightarrow \neg Hungry(r))$ implies a contradiction.

© 2008 TKK / ICS

T-79.5102 / Autumn 2008

```
Logical Learning
```

8

7

Candidate Definitions

- > The aim is to find an equivalent logical expression for the goal predicate O that can be used to classify examples correctly.
- \blacktriangleright Each hypothesis H_i proposes a **candidate definition** $C_i(x)$ for the goal predicate O_i i.e. H_i takes the form $\forall x(O(x) \leftrightarrow C_i(x))$.
- ▶ The extension of a hypothesis $H_i = \forall x(Q(x) \leftrightarrow C_i(x))$ is the set of examples X for which O(X) evaluates to true.

Example. In the restaurant domain, the extension of the hypothesis $\forall r(WillWait(r) \leftrightarrow Patrons(r, Some))$ includes, e.g., X_1, X_3, X_6 , and X_8 . But this does not match with the intended meaning of WillWait(X)!

© 2008 TKK / ICS

Classifying Examples with Hypotheses

- ► Given a hypothesis $H_i = \forall x(Q(x) \leftrightarrow C_i(x))$, an example X is **positive**/negative if $Q(X)/\neg Q(X)$ evaluates to true.
- \blacktriangleright A false positive/negative example X for a hypothesis $H_i = \forall x(Q(x) \leftrightarrow C_i(x))$ gets an incorrect classification by H_i .
- > Inductive learning can be seen as a process of gradually eliminating hypotheses that are inconsistent with examples.

Example. For H_1 in the restaurant domain, the first example X_1 is a positive one, as $WillWait(X_1)$ evaluates to true.

On the other hand, X_1 is a false negative example for $H_3 = \forall r(WillWait(r) \leftrightarrow \neg Hungry(r)), \text{ as } Hungry(X_1) \text{ holds.}$

2. CURRENT-BEST-HYPOTHESIS SEARCH

- The idea is to maintain a single hypothesis H, and to adjust it as new examples arrive in order to maintain consistency.
- > The current hypothesis H is illustrated in the figure (a) below.
- A false negative example (b) can be removed by a generalization
 (c) that extends the extension of the current hypothesis H_i.
- A false positive example (d) can be removed by a specialization
 (e) that narrows the extension of the current hypothesis H_i.

© 2008 TKK / ICS

- > A way to generalist is to **drop conditions** from hypotheses.
- ► E.g., the hypothesis $\forall x(WillWait(x) \leftrightarrow Patrons(x, Some))$ generalizes $\forall x(WillWait(x) \leftrightarrow Alternate(x) \wedge Patrons(x, Some))$.

Example	Attributes										Goal
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	Yes
X_4	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10-30	Yes
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	Yes
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	Yes
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	No
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

© 2008 TKK / ICS

Boundary Sets

- The algorithm finds a subset of the version space V that is consistent with all examples in an *incremental* way.
- Candidate elimination is an example of a least-commitment algorithm, as no arbitrary choices are made among hypotheses.
- Since the hypothesis space V is possibly enormous, it cannot be represented directly as a set of hypotheses or a disjunction.
- ➤ The problem can be alleviated by **boundary sets** {S₁,...,S_n} (S-set) and {G₁,...,G_m} (G-set) and a partial ordering among hypotheses induced by specialization/generalization.
- ➤ Any hypothesis H between a most specific boundary S_i and a most general boundary G_i is consistent with the examples seen.

 \odot 2008 TKK / ICS

Discussion

- The CURRENT-BEST-LEARNING algorithm is non-deterministic: there may be several possible specializations or generalizations that can be applied at any point.
- > The choices made might not lead to the simplest hypothesis.
- If a dead-end (unrecoverable inconsistency) is encountered, the algorithm must backtrack to a previous choice point.
- Checking the consistency of all the previous examples over again for each choice is very expensive.

© 2008 TKK / ICS

T-79.5102 / Autumn 2008

Logical Learning

3. LEAST-COMMITMENT SEARCH

 \blacktriangleright The original hypothesis space can be seen as a huge disjunction

 $H_1 \vee H_2 \vee \ldots \vee H_n$.

- ➤ Hypotheses which are consistent with all examples encountered so far form a set of hypotheses called the version space V.
- ► Version space is shrunk by the **candidate elimination** algorithm:

<pre>function VERSION-SPACE-LEARNING(examples) returns a version space local variables: V, the version space: the set of all hypotheses</pre>
$V \leftarrow$ the set of all hypotheses for each example <i>e</i> in <i>examples</i> do if <i>V</i> is not empty then $V \leftarrow$ VERSION-SPACE-UPDATE(<i>V</i> , <i>e</i>) end return <i>V</i>
function VERSION-SPACE-UPDATE(V, e) returns an updated version space $V \leftarrow \{h \in V : h \text{ is consistent with } e\}$

Updating Version Space

- Upon a false negative/positive example, a most specific boundary S is replaced by all its immediate generalizations / deleted.
- Upon a false positive/negative example, a most general boundary G is replaced by all its immediate specializations / deleted.

These operations on S-sets and G-sets are continued until:

- 1. There is exactly one hypothesis left in the version space.
- 2. The version space *collapses* (i.e., the S-set or G-set becomes empty): there are no consistent hypotheses for the training set.
- 3. We run out of examples with several hypotheses remaining in the version space: a solution is to take the majority vote.

© 2008 TKK / ICS

Logical Learning

T-79.5102 / Autumn 2008

18

Discussion

- ➤ If the domain contains noise or insufficient attributes for exact classification, the version space will always collapse.
- If unlimited disjunction is allowed in the hypothesis space, the S-set will always contain a single most-specific hypothesis (disjunction of positive examples seen to date).
- ► Analogously for the G-set and negative examples.
- ► A solution is to allow only limited forms of disjunction.
- ➤ For certain hypothesis spaces, the number of elements in the S-set and G-set may grow exponentially in the number of attributes.

> Learning is essential for dealing with unknown environments.

SUMMARY

- ➤ In cumulative learning, a learning agent improves its ability to learn as it acquires more knowledge.
- Prior knowledge helps learning by eliminating otherwise consistent hypotheses and by "filling in" the explanation of examples, thereby allowing for shorter hypotheses.

© 2008 TKK / ICS