T-79.5102 / Autumn 2008 Making complex decisions

-

MAKING COMPLEX DECISIONS I

Outline

O Sequential Decision Problems

O Value Iteration

O Policy Iteration

O Decision-Theoretic Agents

Based on the textbook by Stuart Russell & Peter Norvig:
Artificial Intelligence, A Modern Approach (2nd Edition)

Chapter 17; excluding Sections 17.4, 17.6, and 17.7

_

T-79.5102 / Autumn 2008 Making complex decisions

4)

Transition Model I

O In a deterministic setting the outcomes of actions are known, and

the agent may plan a sequence of actions which moves it to (4,3).
O This becomes impossible if actions are nondeterministic/unreliable.

O A transition model assigns a probability T(s,a,5) to the event
that the agent reaches state S when it performs action a in state
s. Transitions are Markovian in the sense of Chapter 15.

Example. (Continued) Each one of the four actions North, South,
East, and West moves the agent

1. to the intended direction d with a probability of 0.8, and

2. at right angles to the direction d with probabilities 0.1 and 0.1.

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

1. SEQUENTIAL DECISION PROBLEMSI

Example. An agent is situated in a fully observable environment:

3 038
0.1 0.1
2
1 START
1 2 3 4
@ ®)

0 The agent may perform actions North, South, East, and West in
order to move between squares (or states) (1,1), ..., (4,3).

O Moving towards a wall results in no change in position.

O The operation of the agent stops and it receives a reward/

punishment if it reaches a square marked with +1/—1.

© 2008 TKK / ICS

- J

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

Example. If an action sequence S= [North, East] is performed in state
(3,2) the agent reaches states with following probabilities:

Py =01x01= 0.01
P2 =08x01= 0.08
Pg3 = 0.8x0.1+0.1x0.1=0.09
P2 =01+01x08= 0.18
P(4,3> =0.8x0.8= 0.64

1.00

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

-

Assigning Utility to Sequences of States'

O The utility function U is based on a sequence of states — an
environment history — rather than a single state.

O For now, we stipulate that in each state S, the agent receives a
reward R(s), which may be positive or negative.

O An additive utility function is assumed: the utility of an
environment history is just the sum of rewards received.

Example. In our example, the reward R(S) = —2—15 is for all states s
except terminal states which have rewards +1 and —1, respectively.

If the agent reaches the +1 state after 10 steps, its total utility is 0.6.

The reward of —2—15 gives the agent an incentive to reach (4,3) soon.

_

J

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

-

Markov Decision Processes.

0 The specification of a decision problem for a fully observable
environment with a Markovian transition model and additive
rewards is called a Markov decision process (MDP).

O An MDP is defined by the following three components:

1. Initial state:
2. Transition model: T(s,a,s) for all states s, S, and actions a.

3. Reward function: R(s) for all states s.
O A solution is a policy T, i.e. a mapping from states to actions.

O In the sequel, we will study two basic techniques for computing
policies, namely value iteration and policy iteration.

T-79.5102 / Autumn 2008

4)

Optimal Policies'

O We write 11(S) for the action recommended by TTin a state s.

Making complex decisions

0 The quality of a policy Ttis measured by the expected utility of the
possible environment histories generated by that policy.

O An optimal policy Tt is a policy that yields the highest expected
utility, as determined by the MEU principle.

O Given an optimal policy 1T, the agent determines the current state
S using its percept and chooses Tt*(S) as the next action.

O An optimal policy can be viewed as a description of a simple reflex
agent extracted from the specification of a utility-based agent.

© 2008 TKK / ICS

- J

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

Example. An optimal policy for the square world appears on the left.

== 3 | os12 | oses [0.018

2 ? f [-1] 2 | 0762 0660 | [-1]

1 f - - - 1 0.705 0.655 0.611 0.388
1 2 3 4 1 2 3 4

The expected utilities for individual states are given on the right.
O The policy is very conservative (tries to avoid punishment).

O If the cost of moves is increased, then the optimal policy becomes
different for the state (3,1): West is replaced by North.

O If the cost of moves is decreased to %o then West is chosen
instead of North in state (3,2).

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

-

~

Optimality in Sequential Decision Problems'

0 We are interested in the possible choices for the utility function Uy,
on environment histories [, S1, - - -, Snl-

O The first question is to answer whether there is a finite horizon,

i.e. Un([S0,81; - -, Sn+k]) = Un([S0,S1, - -, SN
and every k> 0.

]) for some fixed time N

O If not, then we have an infinite horizon.

O The optimal policy for a finite horizon is nonstationary, i.e.
optimal actions in particular states may change over time.

O With no fixed time limit, the optimal action depends only on the
current state, and the optimal policy becomes stationary.

J

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

-

~

Calculating the Utility of State Sequences'

O A preference-independence assumption: the agent's preferences
] and [ro,rl, ..
with equally preferred o and rg, then these sequences should be
Jand [ri,rz,...].

are stationary: if state sequences [%, Sy, .. .] begin

preference ordered like [s1,%, ..

O Given stationarity, there are basically two ways to assign utilities:

R(so) +R(s1) +R(s2) +
Discounted rewards, which generalize additive rewards:

Un([S0,51,--]) = R(S0) + YR(s1) + YR(82) +
where 0 <y<1is a discount factor.

Additive rewards: Un([,S1,...]) =

O In discounting, future rewards R(S) < Ryax where i > 0 are
considered less valuable than the current reward R(p).

© 2008 TKK / ICS

10

T-79.5102 / Autumn 2008 Making complex decisions

4)

0 There are three ways to deal with infinite state sequences:

1. With discounted rewards bounded by Rmax, the utility of an
infinite sequence becomes finite:
Rimax

%VR %mnax— Toy

2. Given a proper policy, which is guaranteed to reach a terminal

Un([so, st -

state, the discount factor y=1 can be used.
3. Yet another possibility is to compare infinite sequences in

terms of the average reward obtained per time step.

O An optimal policy TT* is obtained as
argmax z P([s0,S1,---] | Un([%0,S1,---])
[s0,51.--]

where P([s0,S1,...] | 1) is determined by the transition model.

- J

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

4 N

2. VALUE ITERATIONI

O In value iteration, the basic idea is to compute the utility U(s) for

each state s and to use these utilities for selecting optimal actions.
O It is difficult to determine U (S) because of uncertain actions.

O Given a transition model, the agent is supposed to choose the
action that maximizes the expected utility of the subsequent state:

' (S) :argmgng(sa,s’)U(s').

O The utility of a state Sis the immediate reward for that state plus
the discounted MEU of the next states [Bellman, 1957]:

U(s) =R(s) +ym§x§T(s,a,s’)U(s’).

© 2008 TKK / ICS

11

12

T-79.5102 / Autumn 2008

4)

The Value Iteration AIgorithmI

O Given n states, the Bellman equation leads to a set of n non-linear

Making complex decisions

equations for utilities that can be approximated by iteration.
O We write Ui(s) for the utility of state s at the i iteration.
O The initial value Uj(s) = O for each state s.
0 One iteration step, called a Bellman update, is defined by
Uit1(s) = R(s) +ym§x§T(s, a,s)Ui(9)
for each i > 0 and for each state s.
O The following termination condition is used by the algorithm:
e(1-y)

max |Uir1(s) —Ui(9)| < —

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

4 N

Convergence of Value Iteration'

0 Value iteration eventually converges to a unique set of solutions of

the Bellman equations.

O The Bellman update is a contraction by a factor of y on utility
vectors: m§x|Ui+1(s) —-U(s)| < ym?x|Ui (s) —U(s)| for alli > 0.

Example. For the square world, value iteration converges as follows:

Utility estimates.

0 5 10 15 20
Number of iterations

© 2008 TKK / ICS

13

14

T-79.5102 / Autumn 2008 Making complex decisions

_

|:| An optimal policy is reached long before utilities converge.

~

O Given stabilized utility values Uj11(S) = U;(s), the corresponding
optimal policy T can be determined.

O Unfortunately, it is difficult to estimate how long the value
iteration algorithm should be run to get an optimal policy.

O Alternatively, policies can be evaluated using policy loss, i.e., the
difference of expected utility with respect to the optimal policy.

08 08

06 06

RMS error
Policy loss

04 04

0.2 0.2

20 0

10 15 10 15
Number of iterations Number of iterations

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

-

~

3. POLICY ITERATIONI

O The optimal policy is often not very sensitive to the utility values.

0 The basic idea in policy iteration is to choose an initial policy T,
calculate utilities using T as policy and update T (repeatedly).

1. Policy evaluation: the utilities of states are determined using Tg
and the simplified Bellman update for j > O:

Uj:1(s) = R(s) +V§T(SaTﬁ(S)7S')UJ (s)-
Another possibility is to solve utilities directly from the simplified
Bellman equation by setting Uj11(s) = Uj(s).

2. Policy improvement: a new MEU policy T§; is calculated
(until 441 = T§) using the utility values based on Tg.

© 2008 TKK / ICS

15

16

T-79.5102 / Autumn 2008 Making complex decisions

Ugo) = —0.04+ O.8U(373) + 0.1U(3’2) —-01
Ugg) = —0.04+0.8+ 0.1U(3y3> + 0.1U(3y2)

N —0.8U(3_’3) = —0.9U(372) -0.14
8.1U(3’3) = 0.9U(3_’2) +6.84
— Ugg = 5%~ 0918 and U, = 322 0,660.
3| = | = | - 3 | os12 | oses | 0918
2 f . ? 2 | o762 . 0.660
1 ? - | -— | - 1 | o705 | 065 | 0611 | 0388
1 2 3 4 1 2 3 4

Example. The utilities of states (3,2) and (3,3) are solved as follows:

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

-

4. DECISION-THEORETIC AGENT DESIGNI

A comprehensive approach to agent design for partially observable,
stochastic environments is based on the following elements:

O The transition and observation models are represented as a
dynamic Bayesian network (DBN).

O This model is extended with decision and utility nodes, as in

O A filtering algorithm is used to incorporate each new percept and
action, and to update the agent’s estimate on the current state.

[0 Decisions are made by projecting forward possible action
sequences and choosing the best one.

decision networks, to form a dynamic decision network (DDN).

~

© 2008 TKK / ICS

17

18

T-79.5102 / Autumn 2008 Making complex decisions

/

Dynamic Decision Networks'

The generic structure of a dynamic decision network is as follows:

SECNGAENGY
TQWT@T@

O The transition model T(s,a,5) is the same as P(Xt+1 | X, A)
where A; denotes the action at time t.

O The observation model O(s,0), which defines the probability of
perceiving the observation 0 in state S, is the same as P(E; | Xt).

_

J

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Making complex decisions

-

SUMMARY

O A optimal policy associates an optimal decision with every state
that the agent might reach.

O Value iteration and policy iteration are two methods for
calculating optimal policies.

O Unbounded action sequences can be dealt with discounting.

0 Dynamic Bayesian networks can handle sensing and updating
over time, and provide a direct implementation of the update
cycle.

0 Dynamic decision networks can solve sequential decision

problems arising for agents in complex, uncertain domains.

© 2008 TKK / ICS

19

20

T-79.5102 / Autumn 2008 Making complex decisions

-

QUESTIONSI

1. Recall the belief network that you designed for representing the
ball tracking mechanism of a soccer playing agent.

O Is it possible to identify a state evolution model and a sensor
model from your network?

O If not, reconstruct the network by keeping these in mind.

2. Continue the analysis of soccer playing agents.

O Can you identify other problems in this domain that can be
considered as real sequential decision problems?

O Try to formalize such a problem as a dynamic decision network.

J

© 2008 TKK / ICS

21

