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MAKING COMPLEX DECISIONSOutline

➤ Sequential De
ision Problems

➤ Value Iteration

➤ Poli
y Iteration

➤ De
ision-Theoreti
 AgentsBased on the textbook by Stuart Russell & Peter Norvig:Arti�
ial Intelligen
e, A Modern Approa
h (2nd Edition)Chapter 17; ex
luding Se
tions 17.4, 17.6, and 17.7
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1. SEQUENTIAL DECISION PROBLEMSExample. An agent is situated in a fully observable environment:
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➤ The agent may perform a
tions North, South, East, and West inorder to move between squares (or states) (1,1), . . . , (4,3).
➤ Moving towards a wall results in no 
hange in position.
➤ The operation of the agent stops and it re
eives a reward/punishment if it rea
hes a square marked with +1/−1.
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Transition Model

➤ In a deterministi
 setting the out
omes of a
tions are known, andthe agent may plan a sequen
e of a
tions whi
h moves it to (4,3).
➤ This be
omes impossible if a
tions are nondeterministi
/unreliable.
➤ A transition model assigns a probability T (s,a,s′) to the eventthat the agent rea
hes state s′ when it performs a
tion a in state

s. Transitions are Markovian in the sense of Chapter 15.Example. (Continued) Ea
h one of the four a
tions North, South,

East, and West moves the agent1. to the intended dire
tion d with a probability of 0.8, and2. at right angles to the dire
tion d with probabilities 0.1 and 0.1.


© 2008 TKK / ICS

AB
T-79.5102 / Autumn 2008 Making 
omplex de
isions 4Example. If an a
tion sequen
e S = [North,East] is performed in state

(3,2) the agent rea
hes states with following probabilities:

P(3,1) = 0.1×0.1 = 0.01

P(3,2) = 0.8×0.1 = 0.08

P(3,3) = 0.8×0.1+0.1×0.1 = 0.09

P(4,2) = 0.1+0.1×0.8 = 0.18

P(4,3) = 0.8×0.8 = 0.64

1.00These are easily inspe
ted from a (partial) rea
hability graph:

(3,2)1.0

(4,2)0.1 (3,3)0.8

(3,2)0.1 (4,3)0.8 (3,3)0.1

(3,2)0.1

(3,1)0.1 (4,2)0.8 (3,3)0.1
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Assigning Utility to Sequen
es of States

➤ The utility fun
tion U is based on a sequen
e of states � anenvironment history � rather than a single state.

➤ For now, we stipulate that in ea
h state s, the agent re
eives areward R(s), whi
h may be positive or negative.

➤ An additive utility fun
tion is assumed: the utility of anenvironment history is just the sum of rewards re
eived.Example. In our example, the reward R(s) = − 1
25 is for all states sex
ept terminal states whi
h have rewards +1 and −1, respe
tively.If the agent rea
hes the +1 state after 10 steps, its total utility is 0.6.The reward of − 1

25 gives the agent an in
entive to rea
h (4,3) soon.
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Markov De
ision Pro
esses

➤ The spe
i�
ation of a de
ision problem for a fully observableenvironment with a Markovian transition model and additiverewards is 
alled a Markov de
ision pro
ess (MDP).

➤ An MDP is de�ned by the following three 
omponents:1. Initial state: s02. Transition model: T (s,a,s′) for all states s, s′, and a
tions a.3. Reward fun
tion: R(s) for all states s.

➤ A solution is a poli
y π, i.e. a mapping from states to a
tions.
➤ In the sequel, we will study two basi
 te
hniques for 
omputingpoli
ies, namely value iteration and poli
y iteration.
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Optimal Poli
ies

➤ We write π(s) for the a
tion re
ommended by π in a state s.
➤ The quality of a poli
y π is measured by the expe
ted utility of thepossible environment histories generated by that poli
y.
➤ An optimal poli
y π∗ is a poli
y that yields the highest expe
tedutility, as determined by the MEU prin
iple.
➤ Given an optimal poli
y π∗, the agent determines the 
urrent state

s using its per
ept and 
hooses π∗(s) as the next a
tion.

➤ An optimal poli
y 
an be viewed as a des
ription of a simple re�exagent extra
ted from the spe
i�
ation of a utility-based agent.
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Example. An optimal poli
y for the square world appears on the left.
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0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

The expe
ted utilities for individual states are given on the right.

➤ The poli
y is very 
onservative (tries to avoid punishment).

➤ If the 
ost of moves is in
reased, then the optimal poli
y be
omesdi�erent for the state (3,1): West is repla
ed by North.

➤ If the 
ost of moves is de
reased to 1
100 , then West is 
hoseninstead of North in state (3,2).
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Optimality in Sequential De
ision Problems

➤ We are interested in the possible 
hoi
es for the utility fun
tion Uhon environment histories [s0,s1, . . . ,sn].

➤ The �rst question is to answer whether there is a �nite horizon,i.e. Uh([s0,s1, . . . ,sN+k]) = Uh([s0,s1, . . . ,sN ]) for some �xed time Nand every k > 0.

➤ If not, then we have an in�nite horizon.

➤ The optimal poli
y for a �nite horizon is nonstationary, i.e.optimal a
tions in parti
ular states may 
hange over time.

➤ With no �xed time limit, the optimal a
tion depends only on the
urrent state, and the optimal poli
y be
omes stationary.
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Cal
ulating the Utility of State Sequen
es

➤ A preferen
e-independen
e assumption: the agent's preferen
esare stationary: if state sequen
es [s0,s1, . . .] and [r0,r1, . . .] beginwith equally preferred s0 and r0, then these sequen
es should bepreferen
e ordered like [s1,s2, . . .] and [r1,r2, . . .].

➤ Given stationarity, there are basi
ally two ways to assign utilities:Additive rewards: Uh([s0,s1, . . .]) = R(s0)+R(s1)+R(s2)+ . . . .Dis
ounted rewards, whi
h generalize additive rewards:
Uh([s0,s1, . . .]) = R(s0)+ γR(s1)+ γ2R(s2)+ . . .where 0 ≤ γ ≤ 1 is a dis
ount fa
tor.

➤ In dis
ounting, future rewards R(si) ≤ Rmax where i > 0 are
onsidered less valuable than the 
urrent reward R(s0).
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➤ There are three ways to deal with in�nite state sequen
es:1. With dis
ounted rewards bounded by Rmax, the utility of anin�nite sequen
e be
omes �nite:

Uh([s0,s1, . . .]) =
∞

∑
t=0

γtR(st) ≤
∞

∑
t=0

γtRmax =
Rmax

1− γ
.2. Given a proper poli
y, whi
h is guaranteed to rea
h a terminalstate, the dis
ount fa
tor γ = 1 
an be used.3. Yet another possibility is to 
ompare in�nite sequen
es interms of the average reward obtained per time step.

➤ An optimal poli
y π∗ is obtained as
argmax

π ∑
[s0,s1,...]

P([s0,s1, . . .] | π)Uh([s0,s1, . . .])where P([s0,s1, . . .] | π) is determined by the transition model.
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2. VALUE ITERATION

➤ In value iteration, the basi
 idea is to 
ompute the utility U(s) forea
h state s and to use these utilities for sele
ting optimal a
tions.

➤ It is di�
ult to determine U(s) be
ause of un
ertain a
tions.

➤ Given a transition model, the agent is supposed to 
hoose thea
tion that maximizes the expe
ted utility of the subsequent state:

π∗(s) = argmax
a ∑

s′
T (s,a,s′)U(s′).

➤ The utility of a state s is the immediate reward for that state plusthe dis
ounted MEU of the next states [Bellman, 1957℄:

U(s) = R(s)+ γmax
a ∑

s′
T (s,a,s′)U(s′).
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The Value Iteration Algorithm

➤ Given n states, the Bellman equation leads to a set of n non-linearequations for utilities that 
an be approximated by iteration.

➤ We write Ui(s) for the utility of state s at the ith iteration.

➤ The initial value Ui(s) = 0 for ea
h state s.

➤ One iteration step, 
alled a Bellman update, is de�ned by

Ui+1(s) = R(s)+ γmax
a ∑

s′
T (s,a,s′)Ui(s

′)for ea
h i ≥ 0 and for ea
h state s.

➤ The following termination 
ondition is used by the algorithm:

max
s

|Ui+1(s)−Ui(s)| <
ε(1− γ)

γ

.
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Convergen
e of Value Iteration

➤ Value iteration eventually 
onverges to a unique set of solutions ofthe Bellman equations.

➤ The Bellman update is a 
ontra
tion by a fa
tor of γ on utilityve
tors: max
s

|Ui+1(s)−U(s)| ≤ γmax
s

|Ui(s)−U(s)| for all i ≥ 0.Example. For the square world, value iteration 
onverges as follows:
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➤ Given stabilized utility values Ui+1(s) = Ui(s), the 
orrespondingoptimal poli
y π∗ 
an be determined.

➤ Unfortunately, it is di�
ult to estimate how long the valueiteration algorithm should be run to get an optimal poli
y.
➤ Alternatively, poli
ies 
an be evaluated using poli
y loss, i.e., thedi�eren
e of expe
ted utility with respe
t to the optimal poli
y.
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☞ An optimal poli
y is rea
hed long before utilities 
onverge.
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3. POLICY ITERATION

➤ The optimal poli
y is often not very sensitive to the utility values.

➤ The basi
 idea in poli
y iteration is to 
hoose an initial poli
y π0,
al
ulate utilities using π0 as poli
y and update π0 (repeatedly).1. Poli
y evaluation: the utilities of states are determined using πiand the simpli�ed Bellman update for j ≥ 0:

U j+1(s) = R(s)+ γ∑
s′

T (s,πi(s),s
′)U j(s

′).Another possibility is to solve utilities dire
tly from the simpli�edBellman equation by setting U j+1(s) = U j(s).2. Poli
y improvement: a new MEU poli
y πi+1 is 
al
ulated(until πi+1 = πi) using the utility values based on πi.
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





u(3,2) = −0.04+0.8u(3,3) +0.1u(3,2)−0.1

u(3,3) = −0.04+0.8+0.1u(3,3) +0.1u(3,2)

=⇒







−0.8u(3,3) = −0.9u(3,2)−0.14

8.1u(3,3) = 0.9u(3,2) +6.84

=⇒ u(3,3) = 6.7
7.3 ≈ 0.918 and u(3,2) =

0.8u(3,3)−0.14
0.9 ≈ 0.660.
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4. DECISION-THEORETIC AGENT DESIGNA 
omprehensive approa
h to agent design for partially observable,sto
hasti
 environments is based on the following elements:

➤ The transition and observation models are represented as adynami
 Bayesian network (DBN).

➤ This model is extended with de
ision and utility nodes, as inde
ision networks, to form a dynami
 de
ision network (DDN).
➤ A �ltering algorithm is used to in
orporate ea
h new per
ept anda
tion, and to update the agent's estimate on the 
urrent state.
➤ De
isions are made by proje
ting forward possible a
tionsequen
es and 
hoosing the best one.
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Dynami
 De
ision Networks

The generi
 stru
ture of a dynami
 de
ision network is as follows:
AtAt−1

tR

E t

X t

t−1R

E t−1

X t−1

At−2

X t+1

Rt+1

E t+1

At+1

X t+2

Rt+2

E t+2

At+2

X t+3

E t+3

t+3U

➤ The transition model T (st ,a,s′) is the same as P(Xt+1 | Xt ,At)where At denotes the a
tion at time t.
➤ The observation model O(s,o), whi
h de�nes the probability ofper
eiving the observation o in state s, is the same as P(Et | Xt).
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SUMMARY

➤ A optimal poli
y asso
iates an optimal de
ision with every statethat the agent might rea
h.

➤ Value iteration and poli
y iteration are two methods for
al
ulating optimal poli
ies.

➤ Unbounded a
tion sequen
es 
an be dealt with dis
ounting.

➤ Dynami
 Bayesian networks 
an handle sensing and updatingover time, and provide a dire
t implementation of the update
y
le.

➤ Dynami
 de
ision networks 
an solve sequential de
isionproblems arising for agents in 
omplex, un
ertain domains.
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QUESTIONS

1. Re
all the belief network that you designed for representing theball tra
king me
hanism of a so

er playing agent.

➤ Is it possible to identify a state evolution model and a sensormodel from your network?

➤ If not, re
onstru
t the network by keeping these in mind.2. Continue the analysis of so

er playing agents.

➤ Can you identify other problems in this domain that 
an be
onsidered as real sequential de
ision problems?

➤ Try to formalize su
h a problem as a dynami
 de
ision network.
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