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MAKING COMPLEX DECISIONSOutline

➤ Sequential Deision Problems

➤ Value Iteration

➤ Poliy Iteration

➤ Deision-Theoreti AgentsBased on the textbook by Stuart Russell & Peter Norvig:Arti�ial Intelligene, A Modern Approah (2nd Edition)Chapter 17; exluding Setions 17.4, 17.6, and 17.7
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1. SEQUENTIAL DECISION PROBLEMSExample. An agent is situated in a fully observable environment:
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➤ The agent may perform ations North, South, East, and West inorder to move between squares (or states) (1,1), . . . , (4,3).
➤ Moving towards a wall results in no hange in position.
➤ The operation of the agent stops and it reeives a reward/punishment if it reahes a square marked with +1/−1.© 2008 TKK / ICS
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Transition Model

➤ In a deterministi setting the outomes of ations are known, andthe agent may plan a sequene of ations whih moves it to (4,3).
➤ This beomes impossible if ations are nondeterministi/unreliable.
➤ A transition model assigns a probability T (s,a,s′) to the eventthat the agent reahes state s′ when it performs ation a in state

s. Transitions are Markovian in the sense of Chapter 15.Example. (Continued) Eah one of the four ations North, South,

East, and West moves the agent1. to the intended diretion d with a probability of 0.8, and2. at right angles to the diretion d with probabilities 0.1 and 0.1.
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(3,2) the agent reahes states with following probabilities:

P(3,1) = 0.1×0.1 = 0.01

P(3,2) = 0.8×0.1 = 0.08

P(3,3) = 0.8×0.1+0.1×0.1 = 0.09

P(4,2) = 0.1+0.1×0.8 = 0.18

P(4,3) = 0.8×0.8 = 0.64

1.00These are easily inspeted from a (partial) reahability graph:

(3,2)1.0

(4,2)0.1 (3,3)0.8

(3,2)0.1 (4,3)0.8 (3,3)0.1

(3,2)0.1

(3,1)0.1 (4,2)0.8 (3,3)0.1
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Assigning Utility to Sequenes of States

➤ The utility funtion U is based on a sequene of states � anenvironment history � rather than a single state.

➤ For now, we stipulate that in eah state s, the agent reeives areward R(s), whih may be positive or negative.

➤ An additive utility funtion is assumed: the utility of anenvironment history is just the sum of rewards reeived.Example. In our example, the reward R(s) = − 1
25 is for all states sexept terminal states whih have rewards +1 and −1, respetively.If the agent reahes the +1 state after 10 steps, its total utility is 0.6.The reward of − 1

25 gives the agent an inentive to reah (4,3) soon.
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Markov Deision Proesses

➤ The spei�ation of a deision problem for a fully observableenvironment with a Markovian transition model and additiverewards is alled a Markov deision proess (MDP).

➤ An MDP is de�ned by the following three omponents:1. Initial state: s02. Transition model: T (s,a,s′) for all states s, s′, and ations a.3. Reward funtion: R(s) for all states s.

➤ A solution is a poliy π, i.e. a mapping from states to ations.
➤ In the sequel, we will study two basi tehniques for omputingpoliies, namely value iteration and poliy iteration.
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Optimal Poliies

➤ We write π(s) for the ation reommended by π in a state s.
➤ The quality of a poliy π is measured by the expeted utility of thepossible environment histories generated by that poliy.
➤ An optimal poliy π∗ is a poliy that yields the highest expetedutility, as determined by the MEU priniple.
➤ Given an optimal poliy π∗, the agent determines the urrent state

s using its perept and hooses π∗(s) as the next ation.

➤ An optimal poliy an be viewed as a desription of a simple re�exagent extrated from the spei�ation of a utility-based agent.
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Example. An optimal poliy for the square world appears on the left.
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The expeted utilities for individual states are given on the right.

➤ The poliy is very onservative (tries to avoid punishment).

➤ If the ost of moves is inreased, then the optimal poliy beomesdi�erent for the state (3,1): West is replaed by North.

➤ If the ost of moves is dereased to 1
100 , then West is hoseninstead of North in state (3,2).© 2008 TKK / ICS
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Optimality in Sequential Deision Problems

➤ We are interested in the possible hoies for the utility funtion Uhon environment histories [s0,s1, . . . ,sn].

➤ The �rst question is to answer whether there is a �nite horizon,i.e. Uh([s0,s1, . . . ,sN+k]) = Uh([s0,s1, . . . ,sN ]) for some �xed time Nand every k > 0.

➤ If not, then we have an in�nite horizon.

➤ The optimal poliy for a �nite horizon is nonstationary, i.e.optimal ations in partiular states may hange over time.

➤ With no �xed time limit, the optimal ation depends only on theurrent state, and the optimal poliy beomes stationary.

© 2008 TKK / ICS

AB

T-79.5102 / Autumn 2008 Making omplex deisions 10

Calulating the Utility of State Sequenes

➤ A preferene-independene assumption: the agent's preferenesare stationary: if state sequenes [s0,s1, . . .] and [r0,r1, . . .] beginwith equally preferred s0 and r0, then these sequenes should bepreferene ordered like [s1,s2, . . .] and [r1,r2, . . .].

➤ Given stationarity, there are basially two ways to assign utilities:Additive rewards: Uh([s0,s1, . . .]) = R(s0)+R(s1)+R(s2)+ . . . .Disounted rewards, whih generalize additive rewards:
Uh([s0,s1, . . .]) = R(s0)+ γR(s1)+ γ2R(s2)+ . . .where 0 ≤ γ ≤ 1 is a disount fator.

➤ In disounting, future rewards R(si) ≤ Rmax where i > 0 areonsidered less valuable than the urrent reward R(s0).
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➤ There are three ways to deal with in�nite state sequenes:1. With disounted rewards bounded by Rmax, the utility of anin�nite sequene beomes �nite:

Uh([s0,s1, . . .]) =
∞

∑
t=0

γtR(st) ≤
∞

∑
t=0

γtRmax =
Rmax

1− γ
.2. Given a proper poliy, whih is guaranteed to reah a terminalstate, the disount fator γ = 1 an be used.3. Yet another possibility is to ompare in�nite sequenes interms of the average reward obtained per time step.

➤ An optimal poliy π∗ is obtained as
argmax

π ∑
[s0,s1,...]

P([s0,s1, . . .] | π)Uh([s0,s1, . . .])where P([s0,s1, . . .] | π) is determined by the transition model.
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2. VALUE ITERATION

➤ In value iteration, the basi idea is to ompute the utility U(s) foreah state s and to use these utilities for seleting optimal ations.

➤ It is di�ult to determine U(s) beause of unertain ations.

➤ Given a transition model, the agent is supposed to hoose theation that maximizes the expeted utility of the subsequent state:

π∗(s) = argmax
a ∑

s′
T (s,a,s′)U(s′).

➤ The utility of a state s is the immediate reward for that state plusthe disounted MEU of the next states [Bellman, 1957℄:

U(s) = R(s)+ γmax
a ∑

s′
T (s,a,s′)U(s′).
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The Value Iteration Algorithm

➤ Given n states, the Bellman equation leads to a set of n non-linearequations for utilities that an be approximated by iteration.

➤ We write Ui(s) for the utility of state s at the ith iteration.

➤ The initial value Ui(s) = 0 for eah state s.

➤ One iteration step, alled a Bellman update, is de�ned by

Ui+1(s) = R(s)+ γmax
a ∑

s′
T (s,a,s′)Ui(s

′)for eah i ≥ 0 and for eah state s.

➤ The following termination ondition is used by the algorithm:

max
s

|Ui+1(s)−Ui(s)| <
ε(1− γ)

γ

.
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Convergene of Value Iteration

➤ Value iteration eventually onverges to a unique set of solutions ofthe Bellman equations.

➤ The Bellman update is a ontration by a fator of γ on utilityvetors: max
s

|Ui+1(s)−U(s)| ≤ γmax
s

|Ui(s)−U(s)| for all i ≥ 0.Example. For the square world, value iteration onverges as follows:
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➤ Given stabilized utility values Ui+1(s) = Ui(s), the orrespondingoptimal poliy π∗ an be determined.

➤ Unfortunately, it is di�ult to estimate how long the valueiteration algorithm should be run to get an optimal poliy.
➤ Alternatively, poliies an be evaluated using poliy loss, i.e., thedi�erene of expeted utility with respet to the optimal poliy.
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☞ An optimal poliy is reahed long before utilities onverge.© 2008 TKK / ICS
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3. POLICY ITERATION

➤ The optimal poliy is often not very sensitive to the utility values.

➤ The basi idea in poliy iteration is to hoose an initial poliy π0,alulate utilities using π0 as poliy and update π0 (repeatedly).1. Poliy evaluation: the utilities of states are determined using πiand the simpli�ed Bellman update for j ≥ 0:

U j+1(s) = R(s)+ γ∑
s′

T (s,πi(s),s
′)U j(s

′).Another possibility is to solve utilities diretly from the simpli�edBellman equation by setting U j+1(s) = U j(s).2. Poliy improvement: a new MEU poliy πi+1 is alulated(until πi+1 = πi) using the utility values based on πi.
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u(3,2) = −0.04+0.8u(3,3) +0.1u(3,2)−0.1

u(3,3) = −0.04+0.8+0.1u(3,3) +0.1u(3,2)

=⇒







−0.8u(3,3) = −0.9u(3,2)−0.14

8.1u(3,3) = 0.9u(3,2) +6.84

=⇒ u(3,3) = 6.7
7.3 ≈ 0.918 and u(3,2) =

0.8u(3,3)−0.14
0.9 ≈ 0.660.

1 2 3

1

2

3

− 1

+ 1

4 1 2 3

1

2

3

− 1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

© 2008 TKK / ICS

AB

T-79.5102 / Autumn 2008 Making omplex deisions 18

4. DECISION-THEORETIC AGENT DESIGNA omprehensive approah to agent design for partially observable,stohasti environments is based on the following elements:

➤ The transition and observation models are represented as adynami Bayesian network (DBN).

➤ This model is extended with deision and utility nodes, as indeision networks, to form a dynami deision network (DDN).
➤ A �ltering algorithm is used to inorporate eah new perept andation, and to update the agent's estimate on the urrent state.
➤ Deisions are made by projeting forward possible ationsequenes and hoosing the best one.

© 2008 TKK / ICS

AB

T-79.5102 / Autumn 2008 Making omplex deisions 19

Dynami Deision Networks

The generi struture of a dynami deision network is as follows:
AtAt−1
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➤ The transition model T (st ,a,s′) is the same as P(Xt+1 | Xt ,At)where At denotes the ation at time t.
➤ The observation model O(s,o), whih de�nes the probability ofpereiving the observation o in state s, is the same as P(Et | Xt).
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SUMMARY

➤ A optimal poliy assoiates an optimal deision with every statethat the agent might reah.

➤ Value iteration and poliy iteration are two methods foralulating optimal poliies.

➤ Unbounded ation sequenes an be dealt with disounting.

➤ Dynami Bayesian networks an handle sensing and updatingover time, and provide a diret implementation of the updateyle.

➤ Dynami deision networks an solve sequential deisionproblems arising for agents in omplex, unertain domains.
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QUESTIONS

1. Reall the belief network that you designed for representing theball traking mehanism of a soer playing agent.

➤ Is it possible to identify a state evolution model and a sensormodel from your network?

➤ If not, reonstrut the network by keeping these in mind.2. Continue the analysis of soer playing agents.

➤ Can you identify other problems in this domain that an beonsidered as real sequential deision problems?

➤ Try to formalize suh a problem as a dynami deision network.
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