T-79.5102 / Autumn 2008	Bayesian Learning	1	T-79.5102 / Autumn 2008	Bayesian Learning
 ■ Statistical Learning > Learning with Complete > Learning with Hidden T ■ Based on the textbook by <i>Artificial Intelligence</i> Sections 20.1–20.3 	SIAN LEARNING te Data Variables: The EM Algorithm Stuart Russell & Peter Norvig: e, A Modern Approach (2nd Edition)		 Example. Our favorite Surprand lime, but they are wrapped the candy is sold in large (in mixtures of the two flavors: 1. 100% cherry 2. 75% cherry and 25% lime 3. 50% cherry and 50% lime 4. 25% cherry and 75% lime 5. 100% lime Given a new bag of candy, the denotes the type of the bag, the type of the type of type o	<i>rise</i> candy comes in two flavors, cherry ed in an indistinguishable way. distinguishable) bags containing various e e e e e s with possible values h_1 through h_5 . fer a probabilistic model of the world
T-79.5102 / Autumn 2008	© 2008 TKK / ICS Bayesian Learning		© T-79.5102 / Autumn 2008 Baye	2008 ТКК / ICS Bayesian Learning sian Learning
 1. STATISTICAL LEARNING The data, i.e. instantiations of some or all random variables describing the domain, serve as evidence. Hypotheses are probabilistic theories of how the domain works. The aim is to make a <i>prediction</i> concerning an unknown quantity X given some data and hypotheses. In Bayesian learning, the probability of each hypothesis is calculated, given the data, and predictions are made on that basis. Predictions are made by using <i>all</i> the hypotheses, weighted by their probabilities, rather than by using a single "best" hypothesis. 			 Let D represent all the data The probability of each h P(h_i) Assuming that each h_i sp unknown quantity X, Bay P(X d) = ∑i P(X The key quantities are the likelihood of the data unities 	ata with observed value d . hypothesis h_i is obtained by Bayes' rule: $ \mathbf{d} = \alpha P(\mathbf{d} \mid h_i)P(h_i).$ becifies a complete distribution for an yesian learning is characterized by $\mathbf{d}, h_i)P(h_i \mid \mathbf{d}) = \sum_i \mathbf{P}(X \mid h_i)P(h_i \mid \mathbf{d}).$ he hypothesis prior $P(h_i)$ and the inder each hypothesis $P(\mathbf{d} \mid h_i).$

5

6

Example. For the candy example, the prior distribution over h_1, \ldots, h_5 is given by (0.1, 0.2, 0.4, 0.2, 0.1), as advertised by the manufacturer.

- ▶ If the bag is really an all-lime bag (h_5) and the first 10 candies are consequently all lime, then $P(\mathbf{d} \mid h_3) = 0.5^{10}$.
- The posterior probabilities of the five hypotheses change as the sequence of 10 lime candies is observed:

- ➤ Unfortunately, the hypothesis space is usually very large or infinite which makes the Bayesian approach intractable.
- ► A common approximation is to use **maximum a posteriori** (MAP) **hypothesis** h_{MAP} — a hypothesis h_i that maximizes $P(h_i | \mathbf{d})$:

 $\mathbf{P}(X \mid \mathbf{d}) \approx \mathbf{P}(X \mid h_{\mathrm{MAP}}).$

- ➤ To determine h_{MAP} , it is sufficient to maximize $P(\mathbf{d} \mid h_i)P(h_i)$, or alternatively, to minimize $-\log_2 P(\mathbf{d} \mid h_i) \log_2 P(h_i)$.
- > In some cases (recall the subjective nature of priors), the prior probabilities $P(h_i)$ can be assumed to be **uniformly** distributed.
- ➤ Then maximizing P(d | h_i) produces a maximum-likelihood (ML) hypothesis h_{ML} a special case of h_{MAP}.

 \odot 2008 TKK / ICS

T-79.5102 / Autumn 2008

```
Bayesian Learning
```

8

7

2. LEARNING WITH COMPLETE DATA

- A parameter learning task is about finding the numerical parameters for a probability model having a fixed structure.
- Data are complete when each data point contains values for every variable in the probability model being learned.
- ► Complete data greatly simplifies parameter learning.
- > We will consider parameter learning in two simple settings:
 - 1. Maximum-likelihood parameter learning
 - 2. Naive Bayes models
- See the course book for further examples such as continuous models and strategies to learn Bayes network structure.

9

10

Maximum Likelihood Parameter Learning

- Suppose arbitrary cherry-lime proportions in the candy example.
- > The **parameter** θ is the proportion of cherry candies.
- > Out of N candies, the likelihood of c cherries and l = N c limes is

$$P(\mathbf{d} \mid h_{\theta}) = \prod_{j=1}^{N} P(d_j \mid h_{\theta}) = \theta^c (1-\theta)^l.$$

> This can be maximized by maximizing

$$L(\mathbf{d} \mid h_{\theta}) = \log P(\mathbf{d} \mid h_{\theta}) = c \log \theta + l \log(1 - \theta).$$

- > By setting $\frac{dL(\mathbf{d}|h_{\theta})}{d\theta} = 0$, one obtains a ML hypothesis $\theta = \frac{c}{c+l} = \frac{c}{N}$.
- ➤ As a shortcoming, the ML hypothesis assigns zero probability to events (e.g., no cherry candies) that have not yet been observed.

© 2008 TKK / ICS

3. LEARNING WITH HIDDEN VARIABLES

- Many real-world problems have hidden or latent variables which are not observable in the data available for learning.
- Latent variables can dramatically reduce the number of parameters required to specify a Bayes network.
- This, in turn, can significantly decrease the amount of data needed to learn the parameters.
- The expectation-maximization (EM) algorithm enables learning in the presence of hidden variables in a very general way.

 \odot 2008 TKK / ICS

19

20