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BAYESIAN LEARNINGI

Bayesian Learning

Outline

O Statistical Learning

O Learning with Complete Data

O Learning with Hidden Variables: The EM Algorithm

Based on the textbook by Stuart Russell & Peter Norvig:
Artificial Intelligence, A Modern Approach (2nd Edition)

Sections 20.1-20.3
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1. STATISTICAL LEARNINGI

O The data, i.e. instantiations of some or all random variables

describing the domain, serve as evidence.
0 Hypotheses are probabilistic theories of how the domain works.

O The aim is to make a prediction concerning an unknown quantity
X given some data and hypotheses.

O In Bayesian learning, the probability of each hypothesis is
calculated, given the data, and predictions are made on that basis.

O Predictions are made by using all the hypotheses, weighted by
their probabilities, rather than by using a single “best” hypothesis.
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Example. Our favorite Surprise candy comes in two flavors, cherry
and lime, but they are wrapped in an indistinguishable way.

The candy is sold in large (indistinguishable) bags containing various
mixtures of the two flavors:

1. 100% cherry

2. 75% cherry and 25% lime
3. 50% cherry and 50% lime
4. 25% cherry and 75% lime
5. 100% lime

Given a new bag of candy, the random variable H (for hypothesis)
denotes the type of the bag, with possible values h; through hs.

|:| The agent needs to infer a probabilistic model of the world.
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Bayesian Learning I

O Let D represent all the data with observed value d.
O The probability of each hypothesis h; is obtained by Bayes’ rule:
P(hi [ d) =aP(d | h)P(h).

0 Assuming that each h;j specifies a complete distribution for an
unknown quantity X, Bayesian learning is characterized by

POX| )= POX )P [d) = 3 PX | WP( ).
O The key quantities are the hypothesis prior P(h;) and the
likelihood of the data under each hypothesis P(d | hy).

O If the observations are independently and identically distributed
(i.i.d. for short), then P(d | hy) |_| P(d;j | hi).
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Example. For the candy example, the prior distribution over hy, ..., hs
is given by (0.1,0.2,0.4,0.2,0.1), as advertised by the manufacturer.

Bayesian Learning

O If the bag is really an all-lime bag (hs) and the first 10 candies are
consequently all lime, then P(d | h3) = 0.5%.

0 The posterior probabilities of the five hypotheses change as the
sequence of 10 lime candies is observed:
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Example. The probability that the next candy is lime becomes
5

P(dny1 =Ilime) = ZlP(dNJrl =lime| h)P(h; | dy =lime,... dy =lime).
i<

When N = 0, we obtain P(d; = lime) = $>_; P(dy = lime| hy)P(h)
=0.0x0.1+0.25x0.24+0.5x0.4+0.75x 0.2+ 1.0x 0.1 = 0.5,
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|:| The true hypothesis eventually dominates Bayesian prediction.
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MAP and ML Hypotheses'

Unfortunately, the hypothesis space is usually very large or infinite
which makes the Bayesian approach intractable.

A common approximation is to use maximum a posteriori (MAP)
hypothesis hyap — a hypothesis hj that maximizes P(h; | d):

P(X | d) ~ P(X | hyap).

To determine hyap, it is sufficient to maximize P(d | hy)P(h;), or
alternatively, to minimize —log, P(d | hy) —log, P(hy).

In some cases (recall the subjective nature of priors), the prior
probabilities P(hj) can be assumed to be uniformly distributed.

Then maximizing P(d | h;) produces a maximum-likelihood (ML)

hypothesis hyy — a special case of hyap.
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2. LEARNING WITH COMPLETE DATAI

A parameter learning task is about finding the numerical
parameters for a probability model having a fixed structure.

Data are complete when each data point contains values for
every variable in the probability model being learned.

Complete data greatly simplifies parameter learning.

We will consider parameter learning in two simple settings:
1. Maximum-likelihood parameter learning
2. Naive Bayes models

See the course book for further examples such as continuous
models and strategies to learn Bayes network structure.

© 2008 TKK / ICS



T-79.5102 / Autumn 2008 Bayesian Learning

-

~

Maximum Likelihood Parameter Learning'

Suppose arbitrary cherry—lime proportions in the candy example.
The parameter 0 is the proportion of cherry candies.

Out of N candies, the likelihood of ¢ cherries and | = N —c limes is
N
P(d | hg) = Hp(dj | hg) = 6°(1—9)".
=

This can be maximized by maximizing
L(d | hg) =logP(d | hg) = clogB+1log(1—6).

c

0, one obtains a ML hypothesis 6 = o1

By setting % = e,
As a shortcoming, the ML hypothesis assigns zero probability to
events (e.g., no cherry candies) that have not yet been observed.
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Naive Bayes ModelsI

The naive Bayes model consists of a class/root node C and a

number of attribute variables X1, ..., X as leaves.

In the Boolean case, there are only 2n+ 1 parameters in the
model: P(C =true) =0 and for each 1 <i <n,

P(Xj =trug|C =true) = 8; 1) and P(X; = true|C = false) = 6 ,).
Attributes are assumed conditionally independent given the class.

., Xn and a class C,

P(C| X1,...,%) = aP(C) L1 P(x | C).

For observed attribute values Xy, ..

No search is required to find the ML naive Bayes hypothesis.

Boosting yields a very effective general-purpose learning algorithm.
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3. LEARNING WITH HIDDEN VARIABLESI

0 Many real-world problems have hidden or latent variables which
are not observable in the data available for learning.

0 Latent variables can dramatically reduce the number of
parameters required to specify a Bayes network.

O This, in turn, can significantly decrease the amount of data
needed to learn the parameters.

0 The expectation-maximization (EM) algorithm enables learning
in the presence of hidden variables in a very general way.
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O In a Bayes network describing heart diseases, each variable has
three possible values: mone, moderate, and severe.

0 The removal of the only hidden variable HeartDisease increases
the number of parameters from 78 to 708.

54
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Learning Bayesian Networks with Hidden Variables'

O We will consider mixture distributions where the data are
generated from K independent component distributions.
O The probability of particular attribute values X is given by
P(x) = 5%, P(XIC = )P(C =)

where variable C, with values 1, ..., k, denotes the component.
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O In a generalized candy domain, candies are described by three
features: Flavor, Wrapper, and Hole.

O The distribution of candies in each bag is described by a naive
Bayes model: the features are independent given the bag.

P(Bag=1)]

Bag[ P(F=cherry [ B)
1 OF1

2 6r2

@

O Given two bags, the parameters for the nodes of the network are

6, Br1/6r2, Bw1/6w2, and B1/0H2. See Figure (a) above.
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Example (continued) I

O A test data were generated using actual parameters 8 = 0.5,
Or1 = 06w1 =06H1 =0.8, and B = Byy2 = O42 =0.3:

W = red W = green
H=1|H=0||H=1|H=0

F =cherry || 273 93 104 90

F=lime 79 100 94 167

O For numerical simplicity, the parameter values are initialized as

00 =06, =60 =6 =06, and 6% =6 = 6[%) = 0.4

for one iteration of the EM algorithm.

\_

15

© 2008 TKK / ICS

T-79.5102 / Autumn 2008 Bayesian Learning

-

Example (continued) I

0 The parameter 0 for the bag variable B is revised as follows:

6 = NB=1)/N=g3NPB=1]f;wj,h
1 3 P(fj|B=1)P(w; |[B=1)P(h; | B=1)P(B=1)
- NZ P(fi|B=i)P(wj | B=i)P(h; |[B=i)P(B=1)

0.6124

Q

O Other parameters, such as B3, are revised by expected counts

Zj P(B= 1| Fj = cherry,wrapper, holes;)
j:Fj=cherry

which can be calculated using standard Bayes network algorithms.
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Example (finished) I

O After completing the process, the new parameter values are:
0 =06124 6 =06684 6 =06483 6] =0.6558
oY) —03887 6, =0.3817 6} =03827

O The log likelihood of the data increases very rapidly:
-1975
-1980
-1985
-1990
-1995
-2000
-2005
-2010
-2015
-2020
-2025

Log-likelihood L

0 20 40 60 80 100 120
Iteration number

O The new model soon fits better than the original (L =~ —1982).
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Learning Hidden Markov Models (HMMs)I

O The goal is to learn the transition probabilities of HMMs given a
(set of) observation sequence as data.

O As shown earlier, any HMM can be represented as a dynamic BN
with a single discrete state variable.

O In HMMs, the transition probability 6jjt = P(Xi11=j | X =) is
fixed, i.e., 6jjt = 6j, for all points of time t.

0 To estimate the probability of a transition from state i to state |,

6 — ZtN(Xttlz j, % =1)
! SeN(X =)

O Expected counts are computed by any HMM inference algorithm.

~
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General Form of the EM AIgorithmI

The treatment of hidden variables is based on computing their
expected values for each example.

Then parameters can be recomputed using the expected values as
if they were observed values.

In general, the EM algorithm can be characterized by
80+Y) = arg maxy P(Z =z| x,00)L(x,Z =2 6)
z
where X and Z, respectively, denote observed values and hidden
variables in all examples, and O denotes all parameters.

The type of parameters varies from case to case.
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SUMMARY

Bayesian learning methods formulate learning as a form of
probabilistic inference: observations are used to update a prior
distribution over hypotheses.

This approach implements Ockham's razor principle but quickly
becomes intractable for complex hypothesis spaces.

Maximum a posteriori (MAP) and maximum likelihood (ML)
learning are more tractable approximations of Bayesian learning.

Naive Bayes learning scales particularly well.

When some variables are hidden, local maximum likelihood
solutions can be found using the EM algorithm.
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