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BAYESIAN LEARNINGOutline

➤ Statistial Learning

➤ Learning with Complete Data

➤ Learning with Hidden Variables: The EM AlgorithmBased on the textbook by Stuart Russell & Peter Norvig:Arti�ial Intelligene, A Modern Approah (2nd Edition)Setions 20.1�20.3
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1. STATISTICAL LEARNING

➤ The data, i.e. instantiations of some or all random variablesdesribing the domain, serve as evidene.

➤ Hypotheses are probabilisti theories of how the domain works.
➤ The aim is to make a predition onerning an unknown quantity

X given some data and hypotheses.

➤ In Bayesian learning, the probability of eah hypothesis isalulated, given the data, and preditions are made on that basis.
➤ Preditions are made by using all the hypotheses, weighted bytheir probabilities, rather than by using a single �best� hypothesis.
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Example. Our favorite Surprise andy omes in two �avors, herryand lime, but they are wrapped in an indistinguishable way.The andy is sold in large (indistinguishable) bags ontaining variousmixtures of the two �avors:1. 100% herry2. 75% herry and 25% lime3. 50% herry and 50% lime4. 25% herry and 75% lime5. 100% limeGiven a new bag of andy, the random variable H (for hypothesis)denotes the type of the bag, with possible values h1 through h5.

☞ The agent needs to infer a probabilisti model of the world.
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Bayesian Learning

➤ Let D represent all the data with observed value d.

➤ The probability of eah hypothesis hi is obtained by Bayes' rule:

P(hi | d) = αP(d | hi)P(hi).

➤ Assuming that eah hi spei�es a omplete distribution for anunknown quantity X , Bayesian learning is haraterized by

P(X | d) = ∑
i

P(X | d,hi)P(hi | d) = ∑
i

P(X | hi)P(hi | d).

➤ The key quantities are the hypothesis prior P(hi) and thelikelihood of the data under eah hypothesis P(d | hi).

➤ If the observations are independently and identially distributed(i.i.d. for short), then P(d | hi) = ∏
j

P(d j | hi).
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Example. For the andy example, the prior distribution over h1, . . . ,h5is given by 〈0.1,0.2,0.4,0.2,0.1〉, as advertised by the manufaturer.

➤ If the bag is really an all-lime bag (h5) and the �rst 10 andies areonsequently all lime, then P(d | h3) = 0.510.

➤ The posterior probabilities of the �ve hypotheses hange as thesequene of 10 lime andies is observed:
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Example. The probability that the next andy is lime beomes

P(dN+1 = lime) =
5

∑
i=1

P(dN+1 = lime | hi)P(hi | d1 = lime, . . . ,dN = lime).When N = 0, we obtain P(d1 = lime) = ∑5
i=1 P(d1 = lime | hi)P(hi)

= 0.0×0.1+0.25×0.2+0.5×0.4+0.75×0.2+1.0×0.1 = 0.5.
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☞ The true hypothesis eventually dominates Bayesian predition.
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MAP and ML Hypotheses
➤ Unfortunately, the hypothesis spae is usually very large or in�nitewhih makes the Bayesian approah intratable.
➤ A ommon approximation is to use maximum a posteriori (MAP)hypothesis hMAP � a hypothesis hi that maximizes P(hi | d):

P(X | d) ≈ P(X | hMAP).
➤ To determine hMAP, it is su�ient to maximize P(d | hi)P(hi), oralternatively, to minimize − log2 P(d | hi)− log2 P(hi).

➤ In some ases (reall the subjetive nature of priors), the priorprobabilities P(hi) an be assumed to be uniformly distributed.

➤ Then maximizing P(d | hi) produes a maximum-likelihood (ML)hypothesis hML � a speial ase of hMAP.© 2008 TKK / ICS
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2. LEARNING WITH COMPLETE DATA

➤ A parameter learning task is about �nding the numerialparameters for a probability model having a �xed struture.

➤ Data are omplete when eah data point ontains values forevery variable in the probability model being learned.

➤ Complete data greatly simpli�es parameter learning.

➤ We will onsider parameter learning in two simple settings:1. Maximum-likelihood parameter learning2. Naive Bayes models

➤ See the ourse book for further examples suh as ontinuousmodels and strategies to learn Bayes network struture.
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Maximum Likelihood Parameter Learning

➤ Suppose arbitrary herry�lime proportions in the andy example.

➤ The parameter θ is the proportion of herry andies.

➤ Out of N andies, the likelihood of c herries and l = N−c limes is

P(d | hθ) =
N

∏
j=1

P(d j | hθ) = θc(1−θ)l.

➤ This an be maximized by maximizing

L(d | hθ) = logP(d | hθ) = c logθ+ l log(1−θ).

➤ By setting dL(d|hθ)
dθ = 0, one obtains a ML hypothesis θ = c

c+l = c
N .

➤ As a shortoming, the ML hypothesis assigns zero probability toevents (e.g., no herry andies) that have not yet been observed.
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Naive Bayes Models

➤ The naive Bayes model onsists of a lass/root node C and anumber of attribute variables X1, . . . , Xn as leaves.

➤ In the Boolean ase, there are only 2n+1 parameters in themodel: P(C = true) = θ and for eah 1≤ i ≤ n,

P(Xi = true|C = true) = θ(i,1) and P(Xi = true|C = false) = θ(i,2).
➤ Attributes are assumed onditionally independent given the lass.
➤ For observed attribute values x1, . . . , xn and a lass C,

P(C | x1, . . . ,xn) = αP(C)∏n
i=1 P(xi |C).

➤ No searh is required to �nd the ML naive Bayes hypothesis.
➤ Boosting yields a very e�etive general-purpose learning algorithm.
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3. LEARNING WITH HIDDEN VARIABLES
➤ Many real-world problems have hidden or latent variables whihare not observable in the data available for learning.
➤ Latent variables an dramatially redue the number ofparameters required to speify a Bayes network.
➤ This, in turn, an signi�antly derease the amount of dataneeded to learn the parameters.
➤ The expetation-maximization (EM) algorithm enables learningin the presene of hidden variables in a very general way.
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Example

➤ In a Bayes network desribing heart diseases, eah variable hasthree possible values: mone, moderate, and severe.

➤ The removal of the only hidden variable HeartDisease inreasesthe number of parameters from 78 to 708.

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

(a) (b)

HeartDisease

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

2 2 2

54

6 6 6

2 2 2

54 162 486
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Learning Bayesian Networks with Hidden Variables

➤ We will onsider mixture distributions where the data aregenerated from k independent omponent distributions.

➤ The probability of partiular attribute values x is given by

P(x) = ∑k
i=1 P(x|C = i)P(C = i)where variable C, with values 1, . . . , k, denotes the omponent.
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Example

➤ In a generalized andy domain, andies are desribed by threefeatures: Flavor, Wrapper, and Hole.

➤ The distribution of andies in eah bag is desribed by a naiveBayes model : the features are independent given the bag.
(a) (b)

C

XHoles

Bag

P(Bag=1)

θ

WrapperFlavor

Bag

1

2

P(F=cherry | B)

θF2

θF1

➤ Given two bags, the parameters for the nodes of the network are
θ, θF1/θF2, θW1/θW2, and θH1/θH2. See Figure (a) above.© 2008 TKK / ICS

AB

T-79.5102 / Autumn 2008 Bayesian Learning 15

Example (ontinued)

➤ A test data were generated using atual parameters θ = 0.5,
θF1 = θW1 = θH1 = 0.8, and θF2 = θW2 = θH2 = 0.3:

W = red W = green

H = 1 H = 0 H = 1 H = 0

F = cherry 273 93 104 90
F = lime 79 100 94 167

➤ For numerial simpliity, the parameter values are initialized as

θ(0) = 0.6, θ(0)
F1 = θ(0)

W1 = θ(0)
H1 = 0.6, and θ(0)

F2 = θ(0)
W2 = θ(0)

H2 = 0.4:for one iteration of the EM algorithm.© 2008 TKK / ICS

AB
T-79.5102 / Autumn 2008 Bayesian Learning 16

Example (ontinued)

➤ The parameter θ for the bag variable B is revised as follows:

θ(1) = N̂(B = 1)/N = 1
N ∑N

j=1 P(B = 1 | f j,w j,h j)

=
1
N

N

∑
j=1

P(f j | B = 1)P(w j | B = 1)P(h j | B = 1)P(B = 1)

∑i P(f j | B = i)P(w j | B = i)P(h j | B = i)P(B = i)

≈ 0.6124.

➤ Other parameters, suh as θF1, are revised by expeted ounts

∑
j:F j=cherry

P(B = 1 | F j = cherry,wrapper j,holes j)

whih an be alulated using standard Bayes network algorithms.
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Example (�nished)

➤ After ompleting the proess, the new parameter values are:

θ(1) = 0.6124, θ(1)
F1 = 0.6684, θ(1)

W1 = 0.6483, θ(1)
H1 = 0.6558,

θ(1)
F2 = 0.3887, θ(1)

W2 = 0.3817, θ(1)
H2 = 0.3827.

➤ The log likelihood of the data inreases very rapidly:
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➤ The new model soon �ts better than the original (L ≈−1982).© 2008 TKK / ICS
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Learning Hidden Markov Models (HMMs)

➤ The goal is to learn the transition probabilities of HMMs given a(set of) observation sequene as data.

➤ As shown earlier, any HMM an be represented as a dynami BNwith a single disrete state variable.

➤ In HMMs, the transition probability θi jt = P(Xt+1 = j | Xt = i) is�xed, i.e., θi jt = θi j, for all points of time t.

➤ To estimate the probability of a transition from state i to state j,
θi j =

∑t N̂(Xt+1 = j,Xt = i)

∑t N̂(Xt = i)

.
➤ Expeted ounts are omputed by any HMM inferene algorithm.
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General Form of the EM Algorithm
➤ The treatment of hidden variables is based on omputing theirexpeted values for eah example.

➤ Then parameters an be reomputed using the expeted values asif they were observed values.
➤ In general, the EM algorithm an be haraterized by

θ(i+1) = argmax
θ ∑

z
P(Z = z | x,θ(i))L(x,Z = z | θ)where x and Z, respetively, denote observed values and hiddenvariables in all examples, and θ denotes all parameters.

➤ The type of parameters varies from ase to ase.
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SUMMARY

➤ Bayesian learning methods formulate learning as a form ofprobabilisti inferene: observations are used to update a priordistribution over hypotheses.

➤ This approah implements Okham's razor priniple but quiklybeomes intratable for omplex hypothesis spaes.

➤ Maximum a posteriori (MAP) and maximum likelihood (ML)learning are more tratable approximations of Bayesian learning.

➤ Naive Bayes learning sales partiularly well.

➤ When some variables are hidden, loal maximum likelihoodsolutions an be found using the EM algorithm.
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