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BAYESIAN LEARNINGOutline

➤ Statisti
al Learning

➤ Learning with Complete Data

➤ Learning with Hidden Variables: The EM AlgorithmBased on the textbook by Stuart Russell & Peter Norvig:Arti�
ial Intelligen
e, A Modern Approa
h (2nd Edition)Se
tions 20.1�20.3
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1. STATISTICAL LEARNING

➤ The data, i.e. instantiations of some or all random variablesdes
ribing the domain, serve as eviden
e.

➤ Hypotheses are probabilisti
 theories of how the domain works.
➤ The aim is to make a predi
tion 
on
erning an unknown quantity

X given some data and hypotheses.

➤ In Bayesian learning, the probability of ea
h hypothesis is
al
ulated, given the data, and predi
tions are made on that basis.
➤ Predi
tions are made by using all the hypotheses, weighted bytheir probabilities, rather than by using a single �best� hypothesis.
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Example. Our favorite Surprise 
andy 
omes in two �avors, 
herryand lime, but they are wrapped in an indistinguishable way.The 
andy is sold in large (indistinguishable) bags 
ontaining variousmixtures of the two �avors:1. 100% 
herry2. 75% 
herry and 25% lime3. 50% 
herry and 50% lime4. 25% 
herry and 75% lime5. 100% limeGiven a new bag of 
andy, the random variable H (for hypothesis)denotes the type of the bag, with possible values h1 through h5.

☞ The agent needs to infer a probabilisti
 model of the world.
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Bayesian Learning

➤ Let D represent all the data with observed value d.

➤ The probability of ea
h hypothesis hi is obtained by Bayes' rule:

P(hi | d) = αP(d | hi)P(hi).

➤ Assuming that ea
h hi spe
i�es a 
omplete distribution for anunknown quantity X , Bayesian learning is 
hara
terized by

P(X | d) = ∑
i

P(X | d,hi)P(hi | d) = ∑
i

P(X | hi)P(hi | d).

➤ The key quantities are the hypothesis prior P(hi) and thelikelihood of the data under ea
h hypothesis P(d | hi).

➤ If the observations are independently and identi
ally distributed(i.i.d. for short), then P(d | hi) = ∏
j

P(d j | hi).
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Example. For the 
andy example, the prior distribution over h1, . . . ,h5is given by 〈0.1,0.2,0.4,0.2,0.1〉, as advertised by the manufa
turer.

➤ If the bag is really an all-lime bag (h5) and the �rst 10 
andies are
onsequently all lime, then P(d | h3) = 0.510.

➤ The posterior probabilities of the �ve hypotheses 
hange as thesequen
e of 10 lime 
andies is observed:
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Example. The probability that the next 
andy is lime be
omes

P(dN+1 = lime) =
5

∑
i=1

P(dN+1 = lime | hi)P(hi | d1 = lime, . . . ,dN = lime).When N = 0, we obtain P(d1 = lime) = ∑5
i=1 P(d1 = lime | hi)P(hi)

= 0.0×0.1+0.25×0.2+0.5×0.4+0.75×0.2+1.0×0.1 = 0.5.
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☞ The true hypothesis eventually dominates Bayesian predi
tion.
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MAP and ML Hypotheses
➤ Unfortunately, the hypothesis spa
e is usually very large or in�nitewhi
h makes the Bayesian approa
h intra
table.
➤ A 
ommon approximation is to use maximum a posteriori (MAP)hypothesis hMAP � a hypothesis hi that maximizes P(hi | d):

P(X | d) ≈ P(X | hMAP).
➤ To determine hMAP, it is su�
ient to maximize P(d | hi)P(hi), oralternatively, to minimize − log2 P(d | hi)− log2 P(hi).

➤ In some 
ases (re
all the subje
tive nature of priors), the priorprobabilities P(hi) 
an be assumed to be uniformly distributed.

➤ Then maximizing P(d | hi) produ
es a maximum-likelihood (ML)hypothesis hML � a spe
ial 
ase of hMAP.
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2. LEARNING WITH COMPLETE DATA

➤ A parameter learning task is about �nding the numeri
alparameters for a probability model having a �xed stru
ture.

➤ Data are 
omplete when ea
h data point 
ontains values forevery variable in the probability model being learned.

➤ Complete data greatly simpli�es parameter learning.

➤ We will 
onsider parameter learning in two simple settings:1. Maximum-likelihood parameter learning2. Naive Bayes models

➤ See the 
ourse book for further examples su
h as 
ontinuousmodels and strategies to learn Bayes network stru
ture.


© 2008 TKK / ICS



AB

T-79.5102 / Autumn 2008 Bayesian Learning 9

Maximum Likelihood Parameter Learning

➤ Suppose arbitrary 
herry�lime proportions in the 
andy example.

➤ The parameter θ is the proportion of 
herry 
andies.

➤ Out of N 
andies, the likelihood of c 
herries and l = N−c limes is

P(d | hθ) =
N

∏
j=1

P(d j | hθ) = θc(1−θ)l.

➤ This 
an be maximized by maximizing

L(d | hθ) = logP(d | hθ) = c logθ+ l log(1−θ).

➤ By setting dL(d|hθ)
dθ = 0, one obtains a ML hypothesis θ = c

c+l = c
N .

➤ As a short
oming, the ML hypothesis assigns zero probability toevents (e.g., no 
herry 
andies) that have not yet been observed.
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Naive Bayes Models

➤ The naive Bayes model 
onsists of a 
lass/root node C and anumber of attribute variables X1, . . . , Xn as leaves.

➤ In the Boolean 
ase, there are only 2n+1 parameters in themodel: P(C = true) = θ and for ea
h 1≤ i ≤ n,

P(Xi = true|C = true) = θ(i,1) and P(Xi = true|C = false) = θ(i,2).
➤ Attributes are assumed 
onditionally independent given the 
lass.
➤ For observed attribute values x1, . . . , xn and a 
lass C,

P(C | x1, . . . ,xn) = αP(C)∏n
i=1 P(xi |C).

➤ No sear
h is required to �nd the ML naive Bayes hypothesis.
➤ Boosting yields a very e�e
tive general-purpose learning algorithm.
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3. LEARNING WITH HIDDEN VARIABLES
➤ Many real-world problems have hidden or latent variables whi
hare not observable in the data available for learning.
➤ Latent variables 
an dramati
ally redu
e the number ofparameters required to spe
ify a Bayes network.
➤ This, in turn, 
an signi�
antly de
rease the amount of dataneeded to learn the parameters.
➤ The expe
tation-maximization (EM) algorithm enables learningin the presen
e of hidden variables in a very general way.
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Example

➤ In a Bayes network des
ribing heart diseases, ea
h variable hasthree possible values: mone, moderate, and severe.

➤ The removal of the only hidden variable HeartDisease in
reasesthe number of parameters from 78 to 708.

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

(a) (b)

HeartDisease

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

2 2 2

54

6 6 6

2 2 2

54 162 486
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Learning Bayesian Networks with Hidden Variables

➤ We will 
onsider mixture distributions where the data aregenerated from k independent 
omponent distributions.

➤ The probability of parti
ular attribute values x is given by

P(x) = ∑k
i=1 P(x|C = i)P(C = i)where variable C, with values 1, . . . , k, denotes the 
omponent.
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Example

➤ In a generalized 
andy domain, 
andies are des
ribed by threefeatures: Flavor, Wrapper, and Hole.

➤ The distribution of 
andies in ea
h bag is des
ribed by a naiveBayes model : the features are independent given the bag.
(a)
 (b)


C


X
Holes


Bag


P(Bag=1)


θ


Wrapper
Flavor


Bag


1


2


P(F=cherry | B)


θF2


θF1


➤ Given two bags, the parameters for the nodes of the network are
θ, θF1/θF2, θW1/θW2, and θH1/θH2. See Figure (a) above.
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Example (
ontinued)

➤ A test data were generated using a
tual parameters θ = 0.5,
θF1 = θW1 = θH1 = 0.8, and θF2 = θW2 = θH2 = 0.3:

W = red W = green

H = 1 H = 0 H = 1 H = 0

F = cherry 273 93 104 90
F = lime 79 100 94 167

➤ For numeri
al simpli
ity, the parameter values are initialized as

θ(0) = 0.6, θ(0)
F1 = θ(0)

W1 = θ(0)
H1 = 0.6, and θ(0)

F2 = θ(0)
W2 = θ(0)

H2 = 0.4:for one iteration of the EM algorithm.
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Example (
ontinued)

➤ The parameter θ for the bag variable B is revised as follows:

θ(1) = N̂(B = 1)/N = 1
N ∑N

j=1 P(B = 1 | f j,w j,h j)

=
1
N

N

∑
j=1

P(f j | B = 1)P(w j | B = 1)P(h j | B = 1)P(B = 1)

∑i P(f j | B = i)P(w j | B = i)P(h j | B = i)P(B = i)

≈ 0.6124.

➤ Other parameters, su
h as θF1, are revised by expe
ted 
ounts

∑
j:F j=cherry

P(B = 1 | F j = cherry,wrapper j,holes j)

whi
h 
an be 
al
ulated using standard Bayes network algorithms.
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Example (�nished)

➤ After 
ompleting the pro
ess, the new parameter values are:

θ(1) = 0.6124, θ(1)
F1 = 0.6684, θ(1)

W1 = 0.6483, θ(1)
H1 = 0.6558,

θ(1)
F2 = 0.3887, θ(1)

W2 = 0.3817, θ(1)
H2 = 0.3827.

➤ The log likelihood of the data in
reases very rapidly:
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➤ The new model soon �ts better than the original (L ≈−1982).
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Learning Hidden Markov Models (HMMs)

➤ The goal is to learn the transition probabilities of HMMs given a(set of) observation sequen
e as data.

➤ As shown earlier, any HMM 
an be represented as a dynami
 BNwith a single dis
rete state variable.

➤ In HMMs, the transition probability θi jt = P(Xt+1 = j | Xt = i) is�xed, i.e., θi jt = θi j, for all points of time t.

➤ To estimate the probability of a transition from state i to state j,
θi j =

∑t N̂(Xt+1 = j,Xt = i)

∑t N̂(Xt = i)

.
➤ Expe
ted 
ounts are 
omputed by any HMM inferen
e algorithm.
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General Form of the EM Algorithm
➤ The treatment of hidden variables is based on 
omputing theirexpe
ted values for ea
h example.

➤ Then parameters 
an be re
omputed using the expe
ted values asif they were observed values.
➤ In general, the EM algorithm 
an be 
hara
terized by

θ(i+1) = argmax
θ ∑

z
P(Z = z | x,θ(i))L(x,Z = z | θ)where x and Z, respe
tively, denote observed values and hiddenvariables in all examples, and θ denotes all parameters.

➤ The type of parameters varies from 
ase to 
ase.
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SUMMARY

➤ Bayesian learning methods formulate learning as a form ofprobabilisti
 inferen
e: observations are used to update a priordistribution over hypotheses.

➤ This approa
h implements O
kham's razor prin
iple but qui
klybe
omes intra
table for 
omplex hypothesis spa
es.

➤ Maximum a posteriori (MAP) and maximum likelihood (ML)learning are more tra
table approximations of Bayesian learning.

➤ Naive Bayes learning s
ales parti
ularly well.

➤ When some variables are hidden, lo
al maximum likelihoodsolutions 
an be found using the EM algorithm.
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