Lecture 10: Modularity Aspects

Outline

➤ Stratification
➤ Module architecture for ASP
➤ Compositional semantics
➤ Modularizing weak equivalence

1. STRATIFICATION

➤ The number of stable models varies from program to program.
➤ This is quite natural given the modelling philosophy of ASP: a strict correspondence of answer sets and solutions is sought for.
➤ The semantics of a positive program P is uniquely determined by the least model $LM(P)$. Likewise, the well-founded model $WFM(P)$ assigns a unique set of literals with a normal program P.
➤ These observations raise the question whether the existence of a unique stable model can be guaranteed under any circumstances.
➤ This is a property of stratified programs to be explored next.

Dependency Graphs

Definition. The dependency graph $DG(P)$ of an smodels program P is $(\text{Hb}(P), \leq)$ where $b \leq a$ holds for $a, b \in \text{Hb}(P)$ if and only if (i)
1. there is a basic rule $a \leftarrow B, \sim C \in P$,
2. there is a choice rule $\{A\} \leftarrow B, \sim C \in P$ such that $a \in A$,
3. there is a cardinality rule $a \leftarrow I\{B, \sim C\} \in P$, or
4. there is a weight rule $a \leftarrow I[B = w_B, \sim C = w_C] \in P$,

and $b \in B \cup C$, or

(ii) $b = a$ and $a \in A$ for some choice rule $\{A\} \leftarrow B, \sim C \in P$.

Remark. The positive dependency graph $DG^+(P)$ of P is defined analogously but using only positive dependencies.

Strongly Connected Components

➤ The overall dependency relation $\leq (\subseteq \text{Hb}(P)^2)$ is the reflexive and transitive closure (\leq^*) of the immediate dependency relation \leq.
➤ Thus $a \leq b$ holds if and only if there is a sequence a_1, \ldots, a_n of atoms from $\text{Hb}(P)$ such that $n \geq 0$ and $a = a_1, \ldots, a_n = b$.

Definition. A strongly connected component (SCC) of a dependency graph $DG(P) = (\text{Hb}(P), \leq)$ is a maximal subset S of $\text{Hb}(P)$ such that $a \leq b$ and $b \leq a$ for every $a, b \in S$.

Example. The dependency graph $DG(P)$ of the smodels program

$\begin{align*}
a &\leftarrow b. \\
b &\leftarrow c. \\
c &\leftarrow a. \\
\{a, b, c\} &\leftarrow d, \sim e. \\
d &\leftarrow \sim e. \\
e &\leftarrow \sim d.
\end{align*}$

has strongly connected components $S_1 = \{a, b, c\}$ and $S_2 = \{d, e\}$.
Stratified Programs

- The strongly connected components of DG(P) determine sets of atoms which are recursively defined in terms of the rules of P.
- A dependency \(c \leq_1 a \) in DG(P) is negative iff \(\sim c \) appears in a negative body \(\sim C \), or \(c = a \) appears in the head of a choice rule.

Definition. A program \(P \) is stratified iff the strongly connected components of DG(P) do not involve negative dependencies.

Proposition. A stratified \(\text{smo} \)des program \(P \) has a unique stable model \(M \) such that \(M = \text{WF}(P) \cap \text{Hb}(P) \).

Remark. The stratifiability of a program can be decided in linear time because the strongly connected components of DG(P) can be computed in time linear with respect to \(|P|\) (Tarjan’s algorithm).

2. MODULE ARCHITECTURE FOR ASP

- Modular program development has a number of advantages:
 1. It enforces a good programming style by giving extra structure for programs (sets of rules in ASP).
 2. The semantics of programs is easier to grasp and potentially complex details can be hidden inside modules.
 3. The task of programming is naturally divided into subtasks that can be delegated for a team of programmers.

- In the sequel, a module architecture originally proposed for PROLOG programs [Gaifman and Shapiro, 1988], is tailored to the case of \(\text{smo} \)des programs under stable model semantics.

Example

Consider a normal program \(P \) consisting of the following rules:

\[
\begin{align*}
\text{a} & \leftarrow \text{b}, \sim \text{c}. \\
\text{b} & \leftarrow \text{a}, \sim \text{d}. \\
\text{c} & \leftarrow \sim \text{e}. \\
\text{d} & \leftarrow \text{e}. \\
\text{e} & \leftarrow \text{a}.
\end{align*}
\]

1. The program is not stratified because DG(P) has a single SCC \(S = \text{Hb}(P) = \{\text{a, b, c, d, e}\} \) involving negative dependencies.

2. If the last rule is dropped, the resulting program \(P' \) is stratified because DG(P) has SCCs \(S_1 = \{\text{e}\} \), \(S_2 = \{\text{d}\} \), \(S_3 = \{\text{c}\} \), and \(S_4 = \{\text{a, b}\} \)—not involving negative dependencies.

Remark. The computation of the unique \(M = \{\text{c}\} \in \text{SM}(P') \) can be done in a modular fashion using an order of SCCs which is compatible with DG(P)—such as \(S_1, S_2, S_3, S_4: \sim e, \sim d, e, \sim a, \sim a, \sim b \).

Modules for \(\text{smo} \)des Programs

- Given a set of rules \(R \), we write \(\text{Hb}(R) \) and Head(\(R \)) for the sets of atoms that appear in \(R \) and in the heads of rules of \(R \), respectively.

Definition. A program module \(P \) is a quadruple \(\langle R, I, O, H \rangle \) where

1. \(I \), \(O \), and \(H \) are distinct sets input, output, and hidden atoms, respectively, and

2. \(R \) is a set of rules such that

\[
\text{Hb}(R) \subseteq \text{Hb}(P) = I \cup O \cup H, \text{ and } \text{Head}(R) \cap I = \emptyset.
\]

Example. Verify these requirements for an \(\text{smo} \)des program module

\[
\begin{align*}
P = \langle \{\text{a} \leftarrow \sim \text{b}. \ b \leftarrow \sim \text{a}, \sim \text{c}.\},\{\text{c}\},\{\text{a}\},\{\text{b}\}\rangle.
\end{align*}
\]
Hebrand Bases and Interpretations

- The Herbrand base \(\text{Hb}(P) \) of \(P = \langle R, I, O, H \rangle \) partitions into:
 1. \(\text{Hb}_1(P) = I \) (input atoms)
 2. \(\text{Hb}_2(P) = O \) (output atoms)
 3. \(\text{Hb}_3(P) = I \cup O \) (visible atoms), and
 4. \(\text{Hb}_4(P) = H \) (hidden atoms).

- An interpretation \(M \subseteq \text{Hb}(P) \), which determines the true atoms of \(\text{Hb}(P) \), has analogous projections with respect to these sets:
 \(M_1, M_2, M_3 = M_1 \cup M_2 \) and \(M_4 \).

- The idea is that the visible part is accessible by other modules.

Interpreting Input Atoms within the Reduct

Definition. For a module \(P = \langle R, I, O, H \rangle \) and an interpretation \(M \subseteq \text{Hb}(P) \) determining the input \(M_I \) for \(P \), the reduct \(R^{M,I} \) contains:

1. For each basic rule \(a \leftarrow B, \sim C \in R \) satisfying \(M \models (B \cap I) \cup \sim C \), the reduced rule \(a \leftarrow (B \setminus I) \).
2. For each choice rule \(\{A\} \leftarrow B, \sim C \in R \) satisfying \(M \models (B \cap I) \cup \sim C \) and for each head atom \(a \in A \cap M \), the rule \(a \leftarrow (B \setminus I) \).
3. For each cardinality rule \(a \leftarrow I \{B, \sim C\} \in R \), the reduced rule \(a \leftarrow l' \{(B \setminus I\} \) with \(l' = \min(0, l - |B \cap I| - |C \cap M|) \).
4. For each weight rule \(a \leftarrow l \{B = w_B, \sim C = v_C\} \in R \), the reduced rule \(a \leftarrow l' \{(B \setminus I) = w_{(B,I)}\} \) with \(l' = \min(0, l - \sum_{b \in B \cap M} w_b - \sum_{c \in (C \cap M)} v_c) \).

Example: Graph Colouring

A program module for 3-colouring a graph having at most \(n \) nodes:

\[
\begin{align*}
O_\text{a} : & \quad \{ r(x), g(x), b(x) \mid 1 \leq x \leq n \} \\
R_\text{a} : & \quad \{ (r(x), g(x), b(x)) \leftarrow \text{node}(x), 1 \leq x \leq n \} \cup \\
& \quad \{ f \leftarrow \text{node}(x), \sim r(x), \sim g(x), \sim b(x), \sim f, 1 \leq x \leq n \} \cup \\
& \quad \{ \text{node}(x) \leftarrow \text{edge}(x,y), 1 \leq x \leq n \} \cup \\
& \quad \{ \text{node}(y) \leftarrow \text{edge}(x,y), 1 \leq x \leq n \} \cup \\
& \quad \{ f \leftarrow \text{edge}(x,y), r(x), r(y), \sim f, 1 \leq x < y \leq n \} \cup \\
& \quad \{ f \leftarrow \text{edge}(x,y), g(x), g(y), \sim f, 1 \leq x < y \leq n \} \cup \\
& \quad \{ f \leftarrow \text{edge}(x,y), b(x), b(y), \sim f, 1 \leq x < y \leq n \}
\end{align*}
\]

\(l_\text{a} : \) \quad \{ \text{edge}(x,y), 1 \leq x < y \leq n \}

\Rightarrow \) Atoms in \(H_n = \{ f \} \cup \{ \text{node}(x) \mid 1 \leq x \leq n \} \) are hidden.

Stable Semantics for Program Modules

Definition. An interpretation \(M \subseteq \text{Hb}(P) \) is a **stable model** of a program module \(P = \langle R, I, O, H \rangle \) having an input interface \(\text{Hb}_1(P) \) iff

\(M \setminus I = \text{LM}(R^{M,I}) \).

Example. Verify the set of stable models

\(\text{SM}(P) = \{ \emptyset, \{ a \}, \{ b \}, \{ a, b \}, \{ a, c \}, \{ b, c \} \} \)

for the smodels program module \(P \) illustrated below:

\[
\begin{array}{c}
\{a,b\} \\
\{a\} \leftarrow \sim c. \quad a \leftarrow c, \sim b. \quad b \leftarrow c, \sim a. \\
\{c\}
\end{array}
\]
3. COMPOSITIONAL SEMANTICS

- The principle of compositionality: the semantics of an entire theory should be a function of the semantics of its components.
- This is true for classical propositional theories:
\[
\text{CM}(T_1 \cup T_2) = \text{CM}(T_1) \times \text{CM}(T_2)
\]
where \(\text{CM}(T) = \{M \subseteq \text{Hb}(P) \mid M \models T\}\) and the operator \(\times\) which combines compatible models will be defined next.
- Unfortunately, logic programs under stable model semantics do not have an analogous property for arbitrary unions of programs.
- Thus more attention has to be paid to circumstances under which programs, or modules introduced so far, can be joined together.

Composing Programs from Modules

- We say that \(P_1 = \langle R_1, I_1, O_1, H_1\rangle\) and \(P_2 = \langle R_2, I_2, O_2, H_2\rangle\) respect the module interface of each other if and only if
\[
(I_1 \cup O_1 \cup H_1) \cap H_2 = \emptyset, (I_2 \cup O_2 \cup H_2) \cap H_1 = \emptyset, \text{ and } O_1 \cap O_2 = \emptyset.
\]

Definition. The composition of program modules \(P_1 = \langle R_1, I_1, O_1, H_1\rangle\) and \(P_2 = \langle R_2, I_2, O_2, H_2\rangle\) respecting module interfaces of each other is
\[
P_1 \oplus P_2 = \langle R_1 \cup R_2, (I_1 \setminus O_2) \cup (I_2 \setminus O_1), O_1 \cup O_2, H_1 \cup H_2\rangle.
\]

Example. Verify interface conditions for the following composition:

\[
\begin{align*}
\{a\} & \quad \{b\} \quad \{a, b\} \\
\begin{array}{c}
a \leftarrow c. \quad c \leftarrow \lnot b. \\
\{a\}
\end{array} & \quad \begin{array}{c}
b \leftarrow \lnot a. \\
\emptyset
\end{array} & \quad \begin{array}{c}
a \leftarrow c. \quad c \leftarrow \lnot b. \quad b \leftarrow \lnot a. \\
\{a, b\}
\end{array}
\end{align*}
\]

Counter-Example for \(\oplus\)

- The interface conditions involved in the definition \(\oplus\) are not sufficient to guarantee the compositionality of stable semantics.

Example. Let us analyze the composition illustrated below

\[
\begin{align*}
\{a\} & \quad \{b\} \quad \{a, b\} \\
\begin{array}{c}
a \leftarrow b. \\
\{a\}
\end{array} & \quad \begin{array}{c}
b \leftarrow \lnot a. \\
\emptyset
\end{array} & \quad \begin{array}{c}
a \leftarrow b. \quad b \leftarrow \lnot a. \\
\emptyset
\end{array}
\end{align*}
\]

in more detail. Now, we have \(\text{SM}(P_1) = \emptyset, \{a, b\}\) = \(\text{SM}(P_2)\) but
\(\text{SM}(P_1 \oplus P_2) = \emptyset\) differs from \(\text{SM}(P_1) \times \text{SM}(P_2) = \emptyset, \{a, b\}\).
Joins of Program Modules

- In the preceding example, the key issue is that a and b are positively interdependent and hence false in the least model.
- The compositionality of stable semantics is achieved if the creation of such dependencies is pre-empted in program composition.

Definition. Modules P_1 and P_2, for which $P_1 \oplus P_2$ is defined, are mutually dependent if there is an SCC S in $DG^+(P_1 \oplus P_2)$ such that $S \cap Hb_0(P_1) \neq \emptyset$ and $S \cap Hb_0(P_2) \neq \emptyset$.

If there is no such S, we say that the join $P_1 \sqcup P_2 = P_1 \oplus P_2$ is defined.

Example. In the preceding example, the join is not defined because of the strongly connected component $S = \{a, b\}$ involved in the positive dependency graph $DG^+ \{a \leftarrow b, b \leftarrow a\}$.

Computing Stable Models for Module

- The definition of stable models for a program module P covers all interpretations $M \subseteq Hb(P)$.
- The context of P determines which of them come into effect.
- The set of stable models $SM(P)$ can be computed by attaching P to a general context that creates all input interpretations for P.

Proposition. Let $P = \langle R, I, O, H \rangle$ be a program module and $G_I = \langle I \rangle, \emptyset, I, 0 \rangle$ the respective input generator. Then $SM(P) = SM(P \sqcup G_I)$.

Example. In an earlier example, the set of stable models $SM(P) = SM(P \sqcup G_{I_1})$ is essentially generated by the set of rules $\{a, b\} \leftarrow \neg c$. $a \leftarrow c, \neg b$. $b \leftarrow c, \neg a$. $\{c\}$ having no input atoms.

Module Theorem

Theorem. Let P_1 and P_2 be two program modules such that $P_1 \sqcup P_2$ is defined. Then $SM(P_1 \sqcup P_2) = SM(P_1) \otimes SM(P_2)$.

Example. Consider the following composition of modules:

\[
\begin{array}{c|c|c|c|c}
\{a\} & \{a\} & \{b\} & \{a\} & \{a, b\} \\
\hline
a \leftarrow \neg b. & a \leftarrow b. & b \leftarrow \neg a. & b \leftarrow \neg a. & \emptyset \\
\{b\} & \{b\} & \{a\} & \{a\} & \{a\}
\end{array}
\]

1. The SCCs of $DG^+(P_1 \oplus P_2)$ are $S_1 = \{a\}$ and $S_2 = \{b\}$.
2. The sets $SM(P_1) = \{\{a\}, \{a, b\}\}$ and $SM(P_2) = \{\{a\}, \{b\}\}$.
3. Thus $SM(P_1) \otimes SM(P_2) = \{\{a\}\} = SM(P_1 \sqcup P_2)$.

4. MODULARIZING WEAK EQUIVALENCE

- The computation of $SM(P)$ for a module P is based on an input generator G_I that acts as the most general context for P.
- The equivalence of modules can be addressed in the same way:
 Do P and Q have the same stable models in all possible contexts?
- The role of hidden atoms must be addressed at this point.
- The notion of visible equivalence stems from the modelling philosophy of ASP as well as the user’s perspective:
 1. The number of stable models—that correspond to the solutions of the problem—should be the same.
 2. The visible parts of stable models—as observed by the user of an answer set solver—should be the same.
Visible/Modular Equivalence

Definition. The *visible* and *modular* equivalence of program modules P and Q, denoted by $P \equiv_v Q$ and $P \equiv_m Q$, are defined as follows:

1. $P \equiv_v Q$ if and only if $\text{Hb}_v(P) = \text{Hb}_v(Q)$ and there is a bijection $f : \text{SM}(P) \rightarrow \text{SM}(Q)$ such that for all $M \in \text{SM}(P)$, $M \cap \text{Hb}_v(P) = f(M) \cap \text{Hb}_v(Q)$.

2. $P \equiv_m Q$ if and only if $\text{Hb}_m(P) = \text{Hb}_m(Q)$ and $P \equiv_v Q$.

Theorem. Let P, Q, and R be program modules such that $P \cup R$ and $Q \cup R$ are defined. If $P \equiv_m Q$, then $P \cup R \equiv_m Q \cup R$.

Remark. The converse does not hold in general, i.e., $P \cup R \equiv_m Q \cup R$ (equivalence in a specific context R) might well not imply $P \equiv_m Q$.

Modules having Enough Visible Atoms

- In the worst case, the verification of \equiv_v and \equiv_m can be highly complex (a counting problem is involved in general).
- Hidden atoms tend to increase the complexity of the problem.

Definition. The *hidden part* of a module $P = (R, I, O, H)$ is $P_h = (R_h, I \cup O, H, \emptyset)$ where R_h contains rules of R defining atoms in H (the heads of rules are projected with respect to H).

Definition. A program module $P = (R, I, O, H)$ has *enough visible atoms* if and only if for each $N \subseteq \text{Hb}_v(P) = I \cup O$, $\text{SM}(P_h) = \{M\}$ where $M \cap (I \cup O) = N$.

Remark. If $\text{Hb}_v(P) = \emptyset$, then the module P has enough visible atoms.

Example

Module P:

<table>
<thead>
<tr>
<th>${a, b}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${a} \leftarrow c$</td>
</tr>
<tr>
<td>${b} \leftarrow \neg c$</td>
</tr>
<tr>
<td>${c}$</td>
</tr>
</tbody>
</table>

Module Q:

<table>
<thead>
<tr>
<th>${a, b}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leftarrow c, \neg d$</td>
</tr>
<tr>
<td>$d \leftarrow c, \neg a$</td>
</tr>
<tr>
<td>$b \leftarrow c, \neg e$</td>
</tr>
<tr>
<td>$e \leftarrow \neg c, \neg b$</td>
</tr>
<tr>
<td>${c}$</td>
</tr>
</tbody>
</table>

The modular equivalence of the modules P and Q illustrated above is based on the following correspondence of stable models mediated by f:

- $\text{SM}(P) = \{c\}, \{a, c\}, \{\}$, $\{b\}$
- $f: \downarrow \downarrow \downarrow \downarrow$
- $\text{SM}(Q) = \{d, c\}, \{a, c\}, \{c\}, \{b\}$

Translation-Based Verification

- The translation-based method for the verification of weak equivalence $P \equiv Q$ can be generalized for modules.

- The relation $P \equiv_m Q$ coincides with $R_P \equiv R_Q$ for the respective rule sets, if $\text{Hb}_v(P) = \text{Hb}_v(Q) = \emptyset$ and $\text{Hb}_m(P) = \text{Hb}_m(Q) = \emptyset$.

Theorem. Let P and Q be two compatible smodels program modules having the *eva property*, i.e., enough visible atoms. Then $P \equiv_m Q$ if $\text{SM}(\text{EQT}(P, Q)) = \text{SM}(\text{EQT}(Q, P)) = \emptyset$.

Remarks. If $\text{Hb}_b(P) = I = \text{Hb}_b(Q) \neq \emptyset$, then the stable models $\text{EQT}(P, Q)$ are determined using the respective input generator G_I.

Moreover, if $P \cup R$ and $Q \cup R$ are defined, then $\text{EQT}(P \cup R, Q \cup R)$ and $\text{EQT}(P, Q) \cup R$ have the same stable models (if any).
Tool Support

- The current smodels system does not distinguish input atoms.
- For now, the working definition is that input atoms have a name, i.e., are visible, but do not have any defining rules.
- The join \sqcup operator of smodels programs has been implemented as a linker called lpcat (option flag -m indicates modules).

  ```
  $ lparse p.lp > p.sm; lparse q.lp > q.sm
  $ lpcat -m p.sm q.sm | igen | smodels 0
  
  In the pipeline, igen adds an input generator to the program
  ```
- The translator for equivalence checking, i.e., lpeq, supports the verification of modular equivalence (option flag -m).

  ```
  $ lpeq -m p.sm q.sm | lpcat -r.sm | igen | smodels 1
  $ lpeq -m q.sm p.sm | lpcat -r.sm | igen | smodels 1
  ```

Objectives

- You are able to form a (positive) dependency graph for a given logic program and exploit it in the computation of stable models.
- You understand the limitations of stable model semantics in view obtaining a compositional semantics for ASP.
- You are able to relate the notion of modular equivalence with weak and strong equivalence—as regards strength and abstract properties such as congruence.
- You are familiar with the basic tools for linking smodels program modules (lpcat) and verifying their equivalence (lpeq).

Time to Ponder

Consider program modules $P = (R,I,O,H)$ for which the hidden part $P_h = (R_h,I \cup O,H,\emptyset)$ is essentially a stratified program, i.e., R_h is stratified when reduced with respect to an interpretation $N \subseteq I \cup O$.

- Prove that modules of this kind have enough visible atoms.
- Provide an example of a program module which is not stratified in this sense but still has the EVA property.