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Lecture 7: Complexity and Approximation'

Outline

1. Complexity concepts in brief
2. Complexity results for ASP
3. Ordinals and transfinite induction

4. Well-founded semantics

Additional references:

C. Papadimitriou: “Computational Complexity”, 1994,
T. Jech: “Set Theory", 1978.
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Deterministic Computation I

Consider a deterministic Turing machine M = (K,Z,8,s).

O States of computation are described in terms of configurations
(g, W, Uy where g € K is a state and w,u € £* are strings.

O The initial configuration of M is (S,>,X) where the string
X€ (Z—{U})* or x="U is the input of M.

0 The computation of M on input X is a sequence of configurations
M M
{To,Wo, Ug) — ... — (Qk, Wk, Uk)

where gp =S, Wo =b, Up =X, k>0, and gk € {halt,yes, no}.

. . M . M*
O The reflexive transitive closure of — is denoted by —.
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1. COMPLEXITY CONCEPTS IN BRIEFI

O We shall use Turing machines (TM) as models of computation.
O A deterministic Turing machine (DTM) M is a quadruple
(K,Z,d,s) where
1. K is a set of states that includes the initial state s€ K,

2. X is the finite alphabet of M which always contains LI and 1,
the blank and first symbol, respectively, and
3. dis a transition function
0:KxZ— (Ku{hat,yesno}) xZx {—,«,|}
where halt, yes, and no are halting, accepting, and rejecting
states, respectively, and —, «—, and | express cursor moves.

O In a nondeterministic Turing machine (NTM) M, & is replaced by
a transition relation for the domain and range in question.

J
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O The machine M accepts / rejects its input X iff gx = yes / gk = no.

J
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Deciding Language Membership'

O Given an input X, an NTM M may exhibit different computations
that can be organized as a computation tree:

(s, >,0000)

M* L N\ M
(no,>1,000) (yes,>0000, L)

O An NTM M = (K,Z,9,s) decides a language, i.e., a set of strings
L C(Z\{u})*, if and only if for all strings x € (X\ {U})*,

XeL < (s>,X) M (yes,w,u) for some w and u.

O This definition covers DTMs as special cases of NTMs.

Example. The input 0000 is accepted by the rightmost computation.

\_

J
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Decision Problems'

O A decision problem is a problem whose instances have a simple
solution: either an answer “yes” or “no”.

O Consider an instance of PRIMES: Is 561 a prime?

O A decision problem is solved using a DTM or an NTM
1. by encoding problem instances as strings, and
2. by constructing a machine M which decides the language L

corresponding to the “yes’-instances of the problem.

Example. The famous satisfiability problem of propositional logic is
about deciding whether the given sentence @ is satisfiable or not.

= The problem can be identified with the language of satisfiable
sentences—denoted by SAT.

\_
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Fundamental Complexity CIassesI

0 The computational complexity of decision problems can be
analyzed by setting resource bounds on TMs that solve them.

O A TM M halts in polynomial time if and only if there is a
polynomial p so that for any input x€ (Z—{U})*, any
computation of M on X comprises at most p(|x|) configurations.

O The two fundamental time complexity classes are
1. P: languages decidable in polynomial time using a DTM, and
2. NP: languages decidable in polynomial time using an NTM.

O The class Pis a subclass of NP—and likely to be a proper one.

Theorem. PRIMES and SAT belong to P and NP, respectively.

\_

J
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Definition. Let L; and L, be two languages.

The language L is reducible to Ly iff there is function R—computable
by a DTM M in polynomial time—such that for all inputs X,

xeli < R(x) €Ly
Example. Consider a graph G= (N,E) where N and EC N x N

specify its nodes and edges, respectively.

The question whether G is 3-colorable (language 3COL) can be
reduced to propositional satisfiability using R(G) = R((N,E)) =

{rn\/gn\/bn | ne N}U{_'rn\/_‘rm, _‘gn\/_'gm7 _‘bn\/_'bm| <n,m> S E}

Proposition. For any finite G, G € 3COL if and only if R(G) € SAT.

- J
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Completeness'

O Consider any class C of languages (such as P or NP).

0 The most demanding languages of C are distinguished as follows.

Definition. A language L—not necessarily contained in C—is

1. C-hard if and only if every language L’ € C is reducible to L in
polynomial time, and

2. C-complete if and only if L € C and L is C-hard.
Theorem. SAT is NP-complete (Cook, 1971).

Remark. No general polynomial-time algorithm that would solve an
NP-complete decision problem is known to date.

- J
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2. COMPLEXITY RESULTS FOR ASP'

A number of decision problems are of interest:

1. Existence of a stable model:

Given a normal logic program P, does P have a stable model?
2. Brave reasoning with respect to stable models:
Given a normal logic program P and an atom a € Hb(P):
Is there a stable model M € SM(P) such that a is true in M?
3. Cautious reasoning with respect to stable models:
Given a normal logic program P and an atom a € Hb(P):

Is & true in every stable model M € SM(P)?

© 2007 TKK / TCS
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Existence of Stable Models.

Definition. The language STABLE is the set of finite normal
programs P—represented as strings—such that SM(P) # 0.

Proposition. STABLE is in NP and NP-hard/complete.
Proof. 1. It is possible to construct an NTM M which
(i) chooses a model candidate M C Hb(P) for the input P,
(ii) computes LM(PM) in time polynomial with respect to ||P||, and
(iii) accepts P if M = LM(PM) and rejects it otherwise.

2. For a set Sof clauses, let R(S) = {f «— ~A ~B,~f. |AV—-Be S}
U{a«< ~a a«< ~a |a€Hb(S)} where shorthands A= {ay,...,an},
B={by,...,bm}, and B={b| b€ B} are used.

For a finite set Sof clauses, Se SAT <= R(S) € STABLE. O

J

© 2007 TKK / TCS

10

T-79.5102 / Autumn 2007 Complexity and Approximation

4 )

Sketch for a Direct Completeness Proof'

0 Due to NP-completeness, any nondeterministic polynomial time

computation can be reduced to computation of stable models.

O More specifically, one may construct for any NTM M, any string X,
and any polynomial p, a normal program P(M,x, p) such that
M accepts X in at most p(|X|) steps
<= the program P(M,X, p) has a stable model.
O Such a polynomial time reduction P(M, X, p) describes the effects
of n=p(|X|) computation steps in terms of
1. the state of the tape (n cells) in the beginning,
2. the possible state transitions of M, and

3. the final condition for an accepting computation.

- J
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Complexity of Brave Reasoning'

Definition. The language BRAVE consists of pairs (P,a) such that P is
a finite normal program, a € Hb(P), and a€ M for some M € SM(P).

Proposition. BRAVE is in NP and NP-hard/complete.
Proof. 1. For a normal program P and an atom a € Hb(P),
(P a) € BRAVE <— Ry(P,a)=PU{f — ~a, ~f. } € STABLE
where f & Hb(P) is new so that Hb(Ry(P,a)) = Hb(P) U {f}.
2. For a normal program P,
P e STABLE < Ry(P) = (PU{f. },f) € BRAVE
where f & Hb(P) is new so that Hb(PU{f. }) =Hb(P)U{f}. O

- J
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Complexity of Cautious Reasoning'

Definition. CAUTIOUS is the language of pairs (P,a) such that P is a
finite normal program, a€ Hb(P), and a€ M for every M € SM(P).

Proposition. The complement of CAUTIOUS is in NP and and
NP-hard/complete which means that CAUTIOUS is coNP-complete.

Proof. 1. For a finite normal program P and an atom a € Hb(P),
(Pa) ¢ CAUTIOUS <= Ry(Pa)=PU{f«—a, ~f. } ¢ STABLE
where f & Hb(P) is new so that Hb(Ry(P,a)) = Hb(P) U{f}.
2. For a finite normal program P,
PeSTABLE <— Ry(P)=(PU{f « f. },f) & CAUTIOUS
where f & Hb(P) is new so that Hb(PU{f «— f. }) =Hb(P)U{f}. O

4 )

- J
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Complexity of snodel s Programs'

0 The input language of the snodel s solver is of interest.

O Analogous hardness results follow immediately from the fact that
normal rules form a part of the input language.

reduction from snodel s programs to normal programs.

O However, the membership of STABLE in NP can be proved as in
the case of normal programs using a similar NTM.

O For BRAVE and the complement of CAUTIOUS, the reductions
Ri(P,a) presented for normal programs apply as such.

O The language of | parse is of much higher time complexity.

4 N

O The translations presented so far do not provide a polynomial time

J
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3. ORDINALS AND TRANSFINITE INDUCTIONI

The definition of ordinal numbers, or ordinals for short, will be based

Complexity and Approximation

on two properties of sets defined as follows:
Definition. A set Sis transitive if and only if for every e€ S eC S

Example. For instance, the set S= {0,{0},{0,{0}}} is transitive
because it holds that 0C S, {0} C S and {0,{0}} C S

Definition. A binary relation <C Sx Sis a linear order < on Sif and
only if < is irreflexive, transitive, and connected, i.e., for every

e,8 €S e <€, e =6, ore>e.

Definition. A set Sis well-ordered by a linear order < if and only if for

every 0 C X C S, there is the least element X € X with respect to <,
i.e., for every ec X, x<e

- J
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Ordinal Numbers I

An ordinal number Sis a transitive set well-ordered by €.

Each well-ordered set is isomorphic to some ordinal (or order type).
The class of all ordinals is well-ordered: a < < a € p.

If a and B are ordinals, then either a C 3 or B C q.

o o o o O

The sum o+ B of two ordinals a and B denotes the concatenation
of the respective well-orders.

Example. Natural numbers correspond to finite ordinals:
0—0 1=0+1—{0},2=1+1+— {0,{0}}, ...

The set of all natural numbers corresponds to the least infinite ordinal

w={0,{0},{0,{0}},{0,{0},{0,{0}}},...}.
- J
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Ordinals and Cardinals I

Definition.

1. The successor o+ 1 of an ordinal a is the ordinal aU{a}.

2. If a =B +1 for some ordinal 3, then a is a successor ordinal.

3. An ordinal a which is not a successor ordinal is a /imit ordinal.

4. If |a| # |B| for every ordinal B < a, then a is a cardinal number.
Examples.

1. The first two limit ordinals are 0 and .

2. 2+ w=w are W+ 2 are not isomorphic as well-ordered sets.

3. The ordinals 2= {0,{0}} and w are cardinals but w+2 is not
(o] = [w+2)).
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The Principle of Transfinite InductionI

O Let P(a) be some property defined for an ordinal a.

O Proving the property P(a) for all ordinals a using transfinite
induction consists of the following tree steps:
1. In the base case o0 =0, it is proved that P(0).

2. Then P(a+1) is proved for all successor ordinals o +1
assuming that P(a) holds by the inductive hypothesis.

3. Finally, P(B) is proved for all limit ordinals B using the
inductive hypothesis that P(a) holds for all ordinals a < B.

Remark. Transfinite induction is the basic method for proving
properties of ordinals, or other objects indexed by ordinals.

\_
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4. WELL-FOUNDED SEMANTICSI

O Since reasoning with stable models is intractable in general, finding

techniques that approximate such reasoning tasks is of interest.

O The well-founded semantics [Van Gelder et al., 1988] provides a
sound approximation of stable models.

0 Each normal program P is assigned a unique three-valued model
that can be characterized in terms of the operator INp.

Example. Suppose M C Hb(P) is a set of atoms which are known to
be true for sure (initially this set could be 0). Then

1. Tp(M) =LM(PM) gives atoms that are potentially true, and

2. T3(M) =Tp(I'p(M)) gives atoms that are true for sure, again.

- J
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. . . 2
Properties of the Approximation Operator FPI

The following results are formulated for normal programs P.

Proposition. The operator F% is monotonic.

Proof. Consider any interpretations M1 C My C Hb(P). Since 'p is
antimonotonic, we obtain 'p(M2) C 'p(M31) and F%(Ml) - F%(Mz).
O

Corollary. The operator '3 has the least fixpoint Ifp(I'3).

Proposition. For all M € SM(P), Ifp(F2) C M C p(Ifp(F2)).

Proof. Consider any M € SM(P). Let Mg =0, Mg1 = '3(Mg) for all
successor ordinals o +1 and Mg = Jq.gMq for all limit ordinals 3.
Then Mg C M C T'p(Mgy) follows by transfinite induction for any a. O

- J
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The Well-Founded Model I

O The operator 'p yields a lower and an upper bound for SM(P).

O The fixpoint Ifp(I'3) gives rise to a partial (three-valued) model,
the well-founded model of P. Stable models are total (two-valued).

O In contrast with Ifp(Tp), the fixpoint Ifp(I'3) might not be
reached with w applications of I'3.

Definition. The well-founded model of a normal program P is
characterized by WFM(P) = Ifp(F'3) U {~a|a<c Hb(P)\ I'p(Ifp(r'3))}.
Proposition. If WFM(P) is total, i.e., Tp(Ifp(F3)) \Ifp(F3) = 0, it
holds that SM(P) = {Ifp(r'3)}.

Example. For the normal program P = {a« ~a,~b. }, we have
Mp(0) = {a} and ['3(0) = 0. Thus WFM(P) = {~b}.

4 )
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Consider the normal program Q =

{ a1 ~ao.
bl «— ag, sz. b2 «— ag, Nbl. }

ay «— ~aj. ag <« ~ap.

The construction of pr(FZQ) proceeds as follows:
1. Tq(0) = {ay,a,a3,b1,b2} and F3(0) = {ai}.
2. To({a1}) = {a1,ag,b1, bz} and M3 ({au}) = {a, as}-
3. Mo({a1,as}) = {au,as,b1, bp} and M3 ({ay,a3}) = {a1,a3}.

Thus Ifp("3) = {a1,a3} and WFM(Q) = {ay,a3,~a0, ~az} which
approximates the two stable models in
SM(Q) = {{a1,as,b1},{a1,as,b2}}.

4 N
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Transfinite Case '

Example. Consider the infinite normal program R= Gnd(P) for a

Complexity and Approximation

normal program P involving variables and function symbols:

R= {g1 ~bi. bj—~a. |i>0}U{c—a. |i>0}U
{841 < ~C, ~di. di— ~c,~g |i >0}

rg10=0.

rZti={bj|0<j<i}.

rg1tw={bj|j=>0}.
Matw+i={bj|j>0ru{d|0<j<i}.
r&1w+o={b|j>0}u{d|j>0} =Ifp(}).

AR

Thus WEM(R) = {~a; | j = 0} U{b; | j > 0} U{~c}
U{d ]} >0} U{~e; | j >0},

- J
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Complexity of Well-Founded Reasoning'

The effects of approximation become also apparent in the

Complexity and Approximation

computational complexities associated with the main reasoning tasks.

0 Since the existence of the well-founded model is guaranteed the
respective decision problem can be answered “yes’ constantly.

O Moreover, there is no distinction between brave and cautious
reasoning because the well-founded model is also unique.

Proposition. BRAVE = CAUTIOUS is in P and P-hard/complete.

Proof. 1. It is possible to construct a DTM M which (i) computes
M = Ifp(3) for P and (ii) accepts the input (P,a) if and only if a € M.

2. For a set of Horn clauses S, Se SAT <= R(S) =

({a—B. |av-Be S}U{f —B. |-BeC}, f) € CAUTIOUS. O

- J
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OBJECTIVES I

O You are familiar with the basic concepts of computational
complexity theory (classes P and NP, reductions, and
completeness).

O You know the computational complexity results associated with
the main reasoning tasks of ASP.

O You know the basics of ordinals and the difference of (ordinary)
finite induction and transfinite induction.

O You are able to define well-founded models for normal program
and prove simple properties about them.

O You can calculate the well-founded model for simple normal logic
programs (by applying '3 iteratively).

J
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TIME TO PONDERI

Reconsider the technique of encoding Al planning problems and how
the accepting computations of an NTM M, time-wise bounded by a
polynomial p, could be described in terms of normal rules.

e What is the notion of a situation in the context of NTMs?
e Design a set of relation symbols for the description of situations.
e What kind of operators can be identified?

e How the length of a plan is determined?
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