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Lecture 1: Introduction.

Outline

1. Declarative problem solving
2. Answer set programming

3. Some prerequisites
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1. DECLARATIVE PROBLEM SOLVINGI

O Declarative programming languages allow the specification of what
is to be computed rather than how the computation takes place.

O PROLOG (PROgramming in LOGic) is a prototypical language
that was developed for declarative programming.
Nat (0). Nat(s(X)) :- Nat(X).

O Programming in a procedural language such as Pascal, C, or Java
is much about controlling the execution order of commands.

unsigned int f(unsigned int x) {

if(x ==0 || x==1)
return 1;
el se return x*f(x-1);
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Conceptual Model I

A problem is solved using a declarative programming language by
1. modelling the problem domain using the language,
2. performing actual computation steps to produce output, and

3. extracting a solution for the problem from the output.

! 1
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Compilers and/or interpreters can be used to execute the model.
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Basic Requirements

|

Any declarative language should

O have a clear declarative semantics,

O enable concise formalization of a variety of problem domains,
O lend itself to modular program development, and
O

provide sufficient performance and scalability.

Remark. The last two requirements may endanger the declarative
nature of programming (cf. the use of cuts “I" in PROLOG), i.e.,
a form of control necessary for efficiency reasons.

\_
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2. ANSWER SET PROGRAMMINGI

Answer set programming (ASP) is a paradigm for declarative
programming that effectively emerged in the late nineties.

O A rule-based language is used for problem encodings.

O Every program P, i.e., a set of rules, has a clearly defined
semantics (the set of answer sets associated with P).

O The order of rules and the order of individual conditions in rules is
irrelevant which gives a declarative nature for answer sets.

0 Dedicated search engines—answer set solvers—are used to

compute an answer set or several answer sets for a program.
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node( X)

r(xy :-
9(x) :-
b(X) :-
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Revising the Conceptual Model for ASPI

A problem is encoded so that the answer sets of the respective program
and the solutions of the problem are in a tight correspondence.

!

1
Set of rules| —

Current answer set solvers expect ground programs as their input
which implies a preprocessing step in order to remove variables.

4 N
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Example: Graph CoIoringI

edge(a, b). edge(b,c). edge(c,a).

- edge(X V).

node(Y) :- edge(XY).

% Edges

% Extract nodes

not g(X), not b(X), node(X). % Red
not b(X), not r(X), node(X). % Geen
not r(X), not g(X), node(X). %Blue

- r(X), r(Y), edge(XY).
i- g(X)r g(Y)r edge(er)'
- b(X), b(Y), edge(XY).

% Constraints
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Answer :

True

Nunber
Nurber
Number
Nunber
Nunber
Nurber
Number
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$ I parse color.lp > color.sm
$ Iplist color.sm| less

$ smodels 1 < color.sm

1

Stable Mdel: r(a) g(c) b(b) edge(c,a) edge(b,c) edge(a,b) \
node(c) node(b) node(a)

0. 004

choi ce points: 2
wrong choices: 0
atoms: 16
rules: 24

pi cked atons: 22
forced atons: 0
truth assignnents: 77

Example. The program for 3-coloring graphs is used as follows:

Size of searchspace (renmoved): 9 (0)

~
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Roots of ASPI

Knowledge representation and reasoning
Databases (SQL)

Deductive databases

o o o O

Logic programming (PROLOG)

— SLD-Resolution

— Negation as failure to prove

— Clark’s completion and supported models

O Constraint programming
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Example: SuDoku PuzzIeI

nunber (1). nunber(2). nunber(3). nunber(4). nunber(5).
nunber (6). nurmber (7). nunber(8). nunber(9).

border(1). border(4). border(7).
region(X Y) :- border(X), border(Y).

1 { value(X Y, N: nunber(X): nurmber(Y):
X1<=X: X<=X1+2: Y1<=Y: Y<=Y1+2 } 1
- nunber (N), region(X1,VY1).

o= 2 {value(X Y,N:nunber(N)}, nunber(X), nunber(Y).
o= 2 {value(X Y,N:nunber(Y)}, nunber(N), nunber(X).
:- 2 {value(X Y,N:nunber(X)}, nunber(N), nunber(Y).

\_
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Example. Royle's SuDoku puzzle with 16 clues gets solved in 52 ms.

$ I parse sudoku.lp royle.lp | snodels 1
smodel s version 2.32. Reading...done

Answer: 1
Stabl e Model : value(8,8,1) value(4,7,1) ... value(3,1,9)
True

Duration; 0.052

Nunber of choice points: 1

Nurmber of wrong choices: 0

Nunber of atoms: 1156

Nunber of rules: 928

Nunmber of picked atons: 321

Nunmber of forced atons: 51

Nurmber of truth assignments: 8017

Si ze of searchspace (renoved): 36 (0)

\_

~
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Example. The corresponding solution can be extracted from the
answer set and then visualized as a solved SuDoku puzzle:

W 0 N O O Oo|lN & ==
A N R [O0O0O W DO O ©
© o1 o|~N A ~H N O w
~N o W N O M| O
O N OO0 = NS W o
- A OO 00 W o N N
N H 0|l WwW N 0| ©
Ol W NP o O = N
O © A NN OlW N O
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Example. Actually, there are 2 solutions for this 16 clue puzzle. The \
other is obtained by exchanging the occurrences of 8 and 9: Factors Behind the Success of ASP I
1 83|96 7|4 25 O The performance of computers has increased remarkably.
46 9532817 0 Implementation techniques have advanced rapidly.
752|148)6093 O Many efficient solvers are publicly available:
62114735809 snodel s, cl asp, cnodel s, dlv, ...
53 4,819|7 6 2 i . . .
O Rule-based languages are highly expressive—enabling concise
8 97]256]3 41 encodings for a wide variety of problems.
2 1 6[3 85|97 4 . o
O ASP languages lend themselves to fast prototyping with little
9 7 5/624]1 338 programming effort.
348|791|25€6
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Applications of ASPI 3. SOME PREREQUISITESI

0 Product configuration

Propositional languages

0 Combinatorial problems Interpretations and models

Graph problems, combinatorial auctions, ... Logical entailment

O Al Planning
Contingency plans for the NASA space shuttle

First-order languages

Structures

O Verification and analysis
o ) Herbrand bases
Communication protocols, security protocols, ...

] ; ) Herbrand structures and models
O Information and data integration

o o o o o o o O

Semantic web Relational operations
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Propositional Languages'

O Any set of atomic sentences P # 0, or atoms for short, induces a
propositional language L— the set of well-formed sentences.

0 Sentences are built using the atoms of P and propositional
connectives — (negation), A (conjunction), V (disjunction), —
(implication), and < (equivalence).

1. Atomic sentences are sentences.
2. If a and B are sentences, then expressions of the forms (—a),
(aVPB), (aAB), (a —B), (o« B) are also sentences.

O Propositional theories T are defined as subsets of L.

Example. The theory T ={rvgvb, -rv-g, -gVv-b, =bVv-r}
describes the 3-coloring of a single node in a graph.

\_
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Interpretations and Models'

O An interpretation | for L is defined as any subset of P:
1. atoms in | are considered to be true and
2. atoms in P\ | are false.

O If 2 is finite, there are |27| = 2|?| different interpretations, each of
which represents of a unique state of the world described in L.

O The satisfaction | |=a of a sentence o € L in an interpretation | is
defined in the standard way.

O An interpretation | is a model of a theory T iff | ET, i.e.,
| = a holds for every a € T.

Example. The theory T ={rvgvb, -rv-g, =gV -b, -bVv-r}
based on P = {r,g,b} has models M1 = {r}, M2 ={g}, and M3 = {b}.

\_
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Logical Entailment'

O A sentence O is a logical consequence of a theory T, denoted
T Ea, iff M = o for every model M =T.

O The set of logical consequences Cn(T) ={a € L |T =a}.

O The operator Cn(:) has the properties of a closure operator.
For any Ty and To,
1. T CCn(Ty),
2. T CT, = Cn(Ty) CCn(T2), and
3. Cn(Cn(T1)) =Cn(T1).
Example. Consider the theory T={a, a— b, -bvc, d — —c} based
on P ={a,b,c,d}. The theory has a unique model M = {a,b,c}.

— Cn(T)={a, a—b, b, -bvc, ¢, d——c, —d, cvd,...}.

J
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First-Order Languages (I)I

O A first-order language L is based on mutually disjoint sets of
— constant symbols C,
— variable symbols v/,
— function symbols ¥, and
— relation symbols X .
O A term is either
1. a constant symbol c from C,
2. a variable symbol v from v, or
3. an expression of the form f(ty,...,t;) where f is a function

symbol of arity n> 0 from F and ty,... t, are terms.

Remark. Constants represent function symbols of arity O.

- J
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First-Order Languages (II)I

O An atomic formula is an expression of the form

1. Rfor each relation symbol of arity O from R,

2. t1 =to where t; and to are terms, or

3. R(ty,...,th) where Ris a relation symbol of arity n > 0 from &
and tg,... t, are terms.

O Atomic formulas are formulas.

O If a and B are formulas and Vv is a variable from 7/, then
expressions of the forms

(—a), (aVB), (aAB), (a—B), (a« B), (Yva), and (Iva)
are also formulas.

O A sentence is a formula having no free occurrences of variables.
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Structures (1) I

O An interpretation for a first-order language L is a structure S

based on a universe U which is any non-empty set and
1. each ce C is mapped to an element cSe U,
2. each ve 7 is mapped to an element VS e U,

3. each f € ¥ is mapped to a function fS:U" — U where nis
the arity of f, and

4. each Re R with an arity nis mapped to a relation RS C U™,
O Given a structure S each term t is mapped to an element tSc U.

Example. Given a constant symbol 0 and a unary (of arity 1) function
symbol s we may define a structure Sbased on U = {0,1,2,...} by
setting 0°=0 and s°: x— x+ 1. Thus (s(s(s(0))))S = 3.

- J
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Structures (1) I

O Atomic formulas R, t; =tp, and R(ty, ...,ty) are satisfied by Siff
() €RS, (t1)S=(t2)S, and ((t1)S,...,(tn)S) € RS, respectively.

O The satisfaction of a first order formula/sentence o in a structure
is defined in the standard way.

O Structures that are models of sentences (S}= ) and theories
(SET) are distinguished in analogy to propositional logic.

O Moreover, the definition of T = a, i.e., whether a sentence 0 is a

logical consequence of a theory T, remains unchanged.

Example. For T = {E(0), ¥X(E(X) — O(s(X))), ¥YX(O(x) — E(s(x)))}

formalizing even natural numbers: T = E(s(s(0))) but T & —E(s(0)).

- J
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Herbrand Bases I

O A ground term is a term having no occurrences of variables.

O Given the sets C and F (see above), the Herbrand universe is the

set of ground terms constructible using the symbols of C and F.

O Given the set R, the Herbrand base consists of atomic sentences
R(ts,...,tn) where R€ R is of arity n and each t; is a ground term.

O A Herbrand instance of an atomic formula R(ty,...,t,) is obtained
by substituting ground terms for variables occurring in ty,...,t,.

O We may also define the Herbrand base Hb(T) of a theory T by
inspecting which constant/function symbols occur in T.

Example. For the previous theory T formalizing even natural
numbers, we have Hb(T) = {E(0),0(0),E(s(0)),0(s(0)),...}.

\_
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Herbrand Structures and Models'

O A Herbrand structure Sis based on a fixed interpretation of
constant and function symbols over the Herbrand universe:

1. Each ce C is mapped to cS=c.
2. Each f € ¥ is mapped to fS: (tg,...,tn) — f(t1,...,tn).

= Only interpretations of variables and predicates can vary!

O Any Herbrand structure S can be viewed as a propositional
interpretation | = {R(t1,...,tn) € Hb(T) | SE= R(ty, ...,tn) }.

O A Herbrand model M of a theory T is a Herbrand structure that
satisfies all sentences of T.

Example. For the theory T formalizing even natural numbers, we have
a Herbrand model M = {E(0),0(s(0)),E(s(s(0))),O(s(s(s(0)))), .. .}

4 )
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Relational operationsI

Assume that Ry and Ry are binary relations (of arity 2) over a fixed
universe U, i.e., R CU2 and Ry CUZ2.

1. The wunion of Ry and Ry is
RIURz = {(x,y) €U?| (x,y) € Ry or (x,y) € Rp}.
2. The intersection of Ry and Ry is
RiNRz = {(x,y) €U?| (x,y) € Ry and (x,y) € Ry}.
3. The projections of Ry w.r.t. the first/second arguments are
Po={xeU|(xy) €eRi}and P,={yecU|(xy) € Ri}.
4. The composition of Ry of Ry is
RioRy = {{x,y) €U? | (x,2) € Ry and (z)y) € Ro}.
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OBJECTIVES I

O You have the necessary premises for the course, i.e., you are
familiar with the syntax and semantics of classical logic.

O You know the main characteristics of declarative programming
languages and understand the difference w.r.t. procedural ones.

O You understand the conceptual model of answer set programming.

O You are able to list the basic steps which are required to to apply
ASP in declarative problem solving.

4 )
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TIME TO PONDERI

Definition. The set of classical models associated with a propositional
theory T is CM(T)={M CHb(T) [ MET}.

Problem. Let T; and T, be arbitrary propositional theories.
Which one of the following is correct in general?
1. CM(T1UT,) = CM(T1) NCM(Ty).
2. CM(T1UT,) ={M1UM32 | M3 € CM(T1) and My € CM(T>)}.
3. CM(T1UTy) =
{M1UM2 | M3 € CM(Ty), My € CM(T5), and M1NH =M>NH}
where H = Hb(T1) NHb(T>).

- J
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