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Le
ture 1: Introdu
tionOutline1. De
larative problem solving2. Answer set programming3. Some prerequisites
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1. DECLARATIVE PROBLEM SOLVING

➤ De
larative programming languages allow the spe
i�
ation of whatis to be 
omputed rather than how the 
omputation takes pla
e.

➤ PROLOG (PROgramming in LOGi
) is a prototypi
al languagethat was developed for de
larative programming.

Nat(0). Nat(s(X)) :- Nat(X).

➤ Programming in a pro
edural language su
h as Pas
al, C, or Javais mu
h about 
ontrolling the exe
ution order of 
ommands.
unsigned int f(unsigned int x) {

if(x == 0 || x==1)

return 1;

else return x*f(x-1);

} 
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Con
eptual Model

A problem is solved using a de
larative programming language by1. modelling the problem domain using the language,2. performing a
tual 
omputation steps to produ
e output, and3. extra
ting a solution for the problem from the output.

Problem Solution
↓ ↑Model −→ Output

Compilers and/or interpreters 
an be used to exe
ute the model.
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Basi
 Requirements

Any de
larative language should

➤ have a 
lear de
larative semanti
s,

➤ enable 
on
ise formalization of a variety of problem domains,

➤ lend itself to modular program development, and

➤ provide su�
ient performan
e and s
alability.

Remark. The last two requirements may endanger the de
larativenature of programming (
f. the use of 
uts �!� in PROLOG), i.e.,a form of 
ontrol ne
essary for e�
ien
y reasons.
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2. ANSWER SET PROGRAMMINGAnswer set programming (ASP) is a paradigm for de
larativeprogramming that e�e
tively emerged in the late nineties.

➤ A rule-based language is used for problem en
odings.

➤ Every program P, i.e., a set of rules, has a 
learly de�nedsemanti
s (the set of answer sets asso
iated with P).

➤ The order of rules and the order of individual 
onditions in rules isirrelevant whi
h gives a de
larative nature for answer sets.

➤ Dedi
ated sear
h engines�answer set solvers�are used to
ompute an answer set or several answer sets for a program.
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Revising the Con
eptual Model for ASP

A problem is en
oded so that the answer sets of the respe
tive programand the solutions of the problem are in a tight 
orresponden
e.

Problem Solution

↓ ↑Set of rules −→ Answer set

Current answer set solvers expe
t ground programs as their inputwhi
h implies a prepro
essing step in order to remove variables.
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Example: Graph Coloring
edge(a,b). edge(b,c). edge(c,a). % Edges

node(X) :- edge(X,Y). % Extract nodes

node(Y) :- edge(X,Y).

r(X) :- not g(X), not b(X), node(X). % Red

g(X) :- not b(X), not r(X), node(X). % Green

b(X) :- not r(X), not g(X), node(X). % Blue

:- r(X), r(Y), edge(X,Y). % Constraints

:- g(X), g(Y), edge(X,Y).

:- b(X), b(Y), edge(X,Y).
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$ lparse color.lp > color.sm

$ lplist color.sm | less

$ smodels 1 < color.sm

Answer: 1

Stable Model: r(a) g(c) b(b) edge(c,a) edge(b,c) edge(a,b) \

node(c) node(b) node(a)

True

Duration: 0.004

Number of choice points: 2

Number of wrong choices: 0

Number of atoms: 16

Number of rules: 24

Number of picked atoms: 22

Number of forced atoms: 0

Number of truth assignments: 77

Size of searchspace (removed): 9 (0)
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Roots of ASP

➤ Knowledge representation and reasoning

➤ Databases (SQL)

➤ Dedu
tive databases

➤ Logi
 programming (PROLOG)� SLD-Resolution� Negation as failure to prove� Clark's 
ompletion and supported models

➤ Constraint programming
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Example: SuDoku Puzzle

number(1). number(2). number(3). number(4). number(5).

number(6). number(7). number(8). number(9).

border(1). border(4). border(7).

region(X,Y) :- border(X), border(Y).

1 { value(X,Y,N):number(X):number(Y):

X1<=X:X<=X1+2:Y1<=Y:Y<=Y1+2 } 1

:- number(N), region(X1,Y1).

:- 2 {value(X,Y,N):number(N)}, number(X), number(Y).

:- 2 {value(X,Y,N):number(Y)}, number(N), number(X).

:- 2 {value(X,Y,N):number(X)}, number(N), number(Y).
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Example. Royle's SuDoku puzzle with 16 
lues gets solved in 52 ms.
$ lparse sudoku.lp royle.lp | smodels 1

smodels version 2.32. Reading...done

Answer: 1

Stable Model: value(8,8,1) value(4,7,1) ... value(3,1,9)

True

Duration: 0.052

Number of choice points: 1

Number of wrong choices: 0

Number of atoms: 1156

Number of rules: 928

Number of picked atoms: 321

Number of forced atoms: 51

Number of truth assignments: 8017

Size of searchspace (removed): 36 (0)
© 2007 TKK / TCS

AB
T-79.5102 / Autumn 2007 Introdu
tion 12

Example. The 
orresponding solution 
an be extra
ted from theanswer set and then visualized as a solved SuDoku puzzle:

1 9 3 8 6 7 4 2 54 6 8 5 3 2 9 1 77 5 2 1 4 9 6 8 36 2 1 4 7 3 5 9 85 3 4 9 1 8 7 6 29 8 7 2 5 6 3 4 12 1 6 3 9 5 8 7 48 7 5 6 2 4 1 3 93 4 9 7 8 1 2 5 6
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Example. A
tually, there are 2 solutions for this 16 
lue puzzle. Theother is obtained by ex
hanging the o

urren
es of 8 and 9:

1 8 3 9 6 7 4 2 54 6 9 5 3 2 8 1 77 5 2 1 4 8 6 9 36 2 1 4 7 3 5 8 95 3 4 8 1 9 7 6 28 9 7 2 5 6 3 4 12 1 6 3 8 5 9 7 49 7 5 6 2 4 1 3 83 4 8 7 9 1 2 5 6
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Appli
ations of ASP

➤ Produ
t 
on�guration

➤ Combinatorial problemsGraph problems, 
ombinatorial au
tions, . . .

➤ AI PlanningContingen
y plans for the NASA spa
e shuttle

➤ Veri�
ation and analysisCommuni
ation proto
ols, se
urity proto
ols, . . .
➤ Information and data integrationSemanti
 web
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Fa
tors Behind the Su

ess of ASP
➤ The performan
e of 
omputers has in
reased remarkably.
➤ Implementation te
hniques have advan
ed rapidly.
➤ Many e�
ient solvers are publi
ly available:

smodels, clasp, cmodels, dlv, . . .
➤ Rule-based languages are highly expressive�enabling 
on
iseen
odings for a wide variety of problems.
➤ ASP languages lend themselves to fast prototyping with littleprogramming e�ort.
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3. SOME PREREQUISITES

➤ Propositional languages

➤ Interpretations and models

➤ Logi
al entailment

➤ First-order languages

➤ Stru
tures

➤ Herbrand bases

➤ Herbrand stru
tures and models

➤ Relational operations
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Propositional Languages

➤ Any set of atomi
 senten
es P 6= /0, or atoms for short, indu
es apropositional language L� the set of well-formed senten
es.

➤ Senten
es are built using the atoms of P and propositional
onne
tives ¬ (negation), ∧ (
onjun
tion), ∨ (disjun
tion), →(impli
ation), and ↔ (equivalen
e).1. Atomi
 senten
es are senten
es.2. If α and β are senten
es, then expressions of the forms (¬α),

(α∨β), (α∧β), (α → β), (α ↔ β) are also senten
es.

➤ Propositional theories T are de�ned as subsets of L .Example. The theory T = {r∨g∨b, ¬r∨¬g, ¬g∨¬b, ¬b∨¬r}des
ribes the 3-
oloring of a single node in a graph.
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Interpretations and Models

➤ An interpretation I for L is de�ned as any subset of P :1. atoms in I are 
onsidered to be true and2. atoms in P \ I are false.

➤ If P is �nite, there are |2P | = 2|P | di�erent interpretations, ea
h ofwhi
h represents of a unique state of the world des
ribed in L .
➤ The satisfa
tion I |= α of a senten
e α ∈ L in an interpretation I isde�ned in the standard way.

➤ An interpretation I is a model of a theory T i� I |= T , i.e.,
I |= α holds for every α ∈ T .Example. The theory T = {r∨g∨b, ¬r∨¬g, ¬g∨¬b, ¬b∨¬r}based on P = {r,g,b} has models M1 = {r}, M2 = {g}, and M3 = {b}.
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Logi
al Entailment

➤ A senten
e α is a logi
al 
onsequen
e of a theory T , denoted
T |= α, i� M |= α for every model M |= T .

➤ The set of logi
al 
onsequen
es Cn(T ) = {α ∈ L | T |= α}.
➤ The operator Cn(·) has the properties of a 
losure operator.For any T1 and T2,1. T1 ⊆ Cn(T1),2. T1 ⊆ T2 =⇒ Cn(T1) ⊆ Cn(T2), and3. Cn(Cn(T1)) = Cn(T1).Example. Consider the theory T = {a, a → b, ¬b∨ c, d →¬c} basedon P = {a,b,c,d}. The theory has a unique model M = {a,b,c}.

=⇒ Cn(T ) = {a, a → b, b, ¬b∨ c, c, d →¬c, ¬d, c∨d, . . .}.
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First-Order Languages (I)

➤ A �rst-order language L is based on mutually disjoint sets of� 
onstant symbols C ,� variable symbols V ,� fun
tion symbols F , and� relation symbols R .

➤ A term is either1. a 
onstant symbol c from C ,2. a variable symbol v from V , or3. an expression of the form f (t1, . . . , tn) where f is a fun
tionsymbol of arity n > 0 from F and t1, . . . ,tn are terms.Remark. Constants represent fun
tion symbols of arity 0.
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First-Order Languages (II)

➤ An atomi
 formula is an expression of the form1. R for ea
h relation symbol of arity 0 from R ,2. t1 = t2 where t1 and t2 are terms, or3. R(t1, . . . , tn) where R is a relation symbol of arity n > 0 from Rand t1, . . . ,tn are terms.

➤ Atomi
 formulas are formulas.

➤ If α and β are formulas and v is a variable from V , thenexpressions of the forms

(¬α), (α∨β), (α∧β), (α → β), (α ↔ β), (∀vα), and (∃vα)are also formulas.

➤ A senten
e is a formula having no free o

urren
es of variables.
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Stru
tures (I)

➤ An interpretation for a �rst-order language L is a stru
ture Sbased on a universe U whi
h is any non-empty set and1. ea
h c ∈ C is mapped to an element cS ∈U ,2. ea
h v ∈ V is mapped to an element vS ∈U ,3. ea
h f ∈ F is mapped to a fun
tion f S : Un →U where n isthe arity of f , and4. ea
h R ∈ R with an arity n is mapped to a relation RS ⊆Un.
➤ Given a stru
ture S, ea
h term t is mapped to an element ts ∈U .Example. Given a 
onstant symbol 0 and a unary (of arity 1) fun
tionsymbol s we may de�ne a stru
ture S based on U = {0,1,2, . . .} bysetting 0S = 0 and sS : x 7→ x+1. Thus (s(s(s(0))))S = 3.
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Stru
tures (II)

➤ Atomi
 formulas R, t1 = t2, and R(t1, ..., tn) are satis�ed by S i�
〈〉 ∈ RS, (t1)S = (t2)S, and 〈(t1)S, . . . ,(tn)S〉 ∈ RS, respe
tively.

➤ The satisfa
tion of a �rst order formula/senten
e α in a stru
tureis de�ned in the standard way.
➤ Stru
tures that are models of senten
es (S |= α) and theories(S |= T ) are distinguished in analogy to propositional logi
.

➤ Moreover, the de�nition of T |= α, i.e., whether a senten
e α is alogi
al 
onsequen
e of a theory T , remains un
hanged.

Example. For T = {E(0), ∀x(E(x) → O(s(x))), ∀x(O(x) → E(s(x)))}formalizing even natural numbers: T |= E(s(s(0))) but T 6|= ¬E(s(0)).
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Herbrand Bases

➤ A ground term is a term having no o

urren
es of variables.

➤ Given the sets C and F (see above), the Herbrand universe is theset of ground terms 
onstru
tible using the symbols of C and F .

➤ Given the set R , the Herbrand base 
onsists of atomi
 senten
es

R(t1, . . . , tn) where R ∈ R is of arity n and ea
h ti is a ground term.

➤ A Herbrand instan
e of an atomi
 formula R(t1, ..., tn) is obtainedby substituting ground terms for variables o

urring in t1, . . . , tn.

➤ We may also de�ne the Herbrand base Hb(T ) of a theory T byinspe
ting whi
h 
onstant/fun
tion symbols o

ur in T .Example. For the previous theory T formalizing even naturalnumbers, we have Hb(T ) = {E(0),O(0),E(s(0)),O(s(0)), . . .}.
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Herbrand Stru
tures and Models

➤ A Herbrand stru
ture S is based on a �xed interpretation of
onstant and fun
tion symbols over the Herbrand universe:1. Ea
h c ∈ C is mapped to cS = c.2. Ea
h f ∈ F is mapped to f S : 〈t1, . . . , tn〉 7→ f (t1, ..., tn).

=⇒ Only interpretations of variables and predi
ates 
an vary!

➤ Any Herbrand stru
ture S 
an be viewed as a propositionalinterpretation I = {R(t1, . . . , tn) ∈ Hb(T ) | S |= R(t1, ..., tn)}.

➤ A Herbrand model M of a theory T is a Herbrand stru
ture thatsatis�es all senten
es of T .Example. For the theory T formalizing even natural numbers, we havea Herbrand model M = {E(0),O(s(0)),E(s(s(0))),O(s(s(s(0)))), . . .}.
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Relational operations

Assume that R1 and R2 are binary relations (of arity 2) over a �xeduniverse U , i.e., R1 ⊆U2 and R2 ⊆U2.1. The union of R1 and R2 is

R1 ∪R2 = {〈x,y〉 ∈U2 | 〈x,y〉 ∈ R1 or 〈x,y〉 ∈ R2}.2. The interse
tion of R1 and R2 is

R1 ∩R2 = {〈x,y〉 ∈U2 | 〈x,y〉 ∈ R1 and 〈x,y〉 ∈ R2}.3. The proje
tions of R1 w.r.t. the �rst/se
ond arguments are
P1 = {x ∈U | 〈x,y〉 ∈ R1} and P2 = {y ∈U | 〈x,y〉 ∈ R1}.4. The 
omposition of R1 of R2 is

R1 ◦R2 = {〈x,y〉 ∈U2 | 〈x,z〉 ∈ R1 and 〈z,y〉 ∈ R2}.
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OBJECTIVES
➤ You have the ne
essary premises for the 
ourse, i.e., you arefamiliar with the syntax and semanti
s of 
lassi
al logi
.
➤ You know the main 
hara
teristi
s of de
larative programminglanguages and understand the di�eren
e w.r.t. pro
edural ones.

➤ You understand the 
on
eptual model of answer set programming.

➤ You are able to list the basi
 steps whi
h are required to to applyASP in de
larative problem solving.
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TIME TO PONDERDe�nition. The set of 
lassi
al models asso
iated with a propositionaltheory T is CM(T ) = {M ⊆ Hb(T ) | M |= T}.Problem. Let T1 and T2 be arbitrary propositional theories.Whi
h one of the following is 
orre
t in general?1. CM(T1 ∪T2) = CM(T1)∩CM(T2).2. CM(T1 ∪T2) = {M1 ∪M2 | M1 ∈ CM(T1) and M2 ∈ CM(T2)}.3. CM(T1 ∪T2) =

{M1 ∪M2 | M1 ∈ CM(T1), M2 ∈ CM(T2), and M1 ∩H = M2 ∩H}where H = Hb(T1)∩Hb(T2).
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