Special Course in Computational Logic Tutorial 8 Solutions

1. (a) Let us present state transitions as a graph:

Then we may summarise probabilities for individual states:

$$P(1,2) = 0.50 \times 0.25 = 0.125$$

$$P(2,1) = 0.50 \times 0.50 = 0.25$$

$$P(2,2) = 0.25 \times 0.50 = 0.125$$

$$P(2,3) = 0.25 \times 0.25 + 0.25 \times 0.25 = 0.125$$

$$P(3,2) = 0.50 \times 0.25 + 0.25 \times 0.50 = 0.25$$

$$P(3,3) = 0.25 \times 0.25 + 0.25 \times 0.25 = 0.125$$

The sum of probabilities is 1 (as it should).

(b) We begin by writing down a set of equations for the expected utilities u_{ij} for each state (i, j):

$$\begin{cases} u_{12} = -0.25 + 0.5u_{12} & (1) \\ u_{23} = -0.25 + 0.5a + 0.25u_{23} & (2) \\ u_{22} = -0.25 + 0.5u_{21} + 0.25u_{12} - 0.25 = 0 & (3) \\ u_{21} = -0.25 + a + 0.25u_{21} & (4) \end{cases}$$

Note in particular how the cost -0.25 of a move is incorporated in each equation. The set of equations is solved as follows.

(1)
$$\implies 0.5u_{12} = -0.25 \implies u_{12} = -0.5.$$

(3)
$$\implies 0.5u_{21} = 0.5 - 0.25u_{12} = 0.625 \implies u_{21} = \frac{0.625}{0.5} = 1.25.$$

$$(4) \implies a = 0.75u_{21} + 0.25 = 1.1875$$

(2)
$$\implies 0.75u_{23} = 0.5a - 0.25 \implies u_{23} = \frac{0.5a - 0.25}{0.75} \approx 0.4583.$$

Thus $u_{12} = -0.5$, $u_{21} = 1.25$, $u_{23} \approx 0.4583$, a = 1.1875 ja 2a = 2.375.

(c) Let us calculate the expected utility u_{21} when \leftarrow is the action assigned to (2,1) by the policy:

$$u_{12} = -0.25 + 0.50u_{12} + 0.25u_{12} + 0.25u_{12}$$

 $\implies u_{12} = -0.25 + u_{12}$
 $\implies 0 = -0.25.$

There is no solution, i.e., the expected utility u_{21} cannot be determined. This is because $u_{21} \longrightarrow -\infty$.

2. Given the simplified (fully observable) grid environment

	+1
S	-1

the state space of the agent is $S = \{(1,1), (2,1), (3,1), (2,2), (3,2)\}$ and the set of possible actions $A = \{\leftarrow, \uparrow, \rightarrow, \downarrow\}$.

A policy π is an arbitrary function from S to A. In other words, a policy attachs a unique action $a=\pi(s)$ to each state s, and the agent executes a every time it is in s. An optimal policy π^* assigns to each state s an action $a=\pi^*(s)$ that maximises the expected utility $\mathrm{EU}_s(a)=\sum_{s'}T(s,a,s')U(s')$ where T(s,a,s') gives the transition probability from s to s'. Note that $\sum_{s'}T(s,a,s')=1$ holds for each state s and action a.

(a) The *value iteration* algorithm computes iteratively the new utility values for each state s:

$$U_{i+1}(s) = R(s) + \max_{a} \sum_{s'} T(s, a, s') U_i(s')$$

where R(s) is the *reward* of the state (here 1 in (3,2), -1 in (3,1), and -0.2 in all other states). Such a calculation is repeated until utility values converge, i.e., $|U_{i+1}(s) - U_i(s)|$ becomes small enough for each state s. Then the action with the maximum expected utility is chosen as $\pi^*(s)$ for a particular state s.

Round i = 0:

State s	a	$\mathrm{EU}_s(a)$	
(2,2)	\leftarrow	$1 \cdot (-0.2) = -0.2$	
	↑	$0.9 \cdot (-0.2) + 0.1 \cdot 1 = -0.08$	
	\rightarrow	$0.8 \cdot 1 + 0.2 \cdot (-0.2) = 0.76$	×
	\downarrow	$0.9 \cdot (-0.2) + 0.1 \cdot 1 = -0.08$	
(2,1)	\leftarrow	$1 \cdot (-0.2) = -0.2$	×
	↑	$0.9 \cdot (-0.2) + 0.1 \cdot (-1) = -0.28$	
	\rightarrow	$0.8 \cdot (-1) + 0.2 \cdot (-0.2) = -0.84$	
	\downarrow	$0.9 \cdot (-0.2) + 0.1 \cdot (-1) = -0.28$	
(1,1)	←	$1 \cdot (-0.2) = -0.2$	
	↑	$1 \cdot (-0.2) = -0.2$	
	\rightarrow	$1 \cdot (-0.2) = -0.2$	
	\downarrow	$1 \cdot (-0.2) = -0.2$	

So, the optimal action in (2,2) is \rightarrow and in (2,1) it is \leftarrow . Since all actions have the same expected utilities in (1,1) the choice is free:

	*	+1
S	+	-1

The new expected utilities are:

$$U_1(2,2) = -0.2 + 0.76 = 0.56$$

 $U_1(2,1) = -0.2 - 0.2 = -0.4$
 $U_1(1,1) = -0.2 - 0.2 = -0.4$

Round i = 1:

State s	a	$\mathrm{EU}_s(a)$	
(2,2)	\leftarrow	$0.9 \cdot 0.56 + 0.1 \cdot (-0.4) = 0.464$	
	1	$0.9 \cdot 0.56 + 0.1 \cdot 1 = 0.604$	
	\rightarrow	$0.8 \cdot 1 + 0.1 \cdot 0.56 + 0.1 \cdot (-0.4) = 0.816$	×
	\downarrow	$0.8 \cdot (-0.4) + 0.1 \cdot 0.56 + 0.1 \cdot 1 = -0.164$	
(2,1)	←	$0.9 \cdot (-0.4) + 0.1 \cdot 0.56 = -0.304$	
	1	$0.8 \cdot 0.56 + 0.1 \cdot (-1) + 0.1 \cdot (-0.4) = 0.308$	×
	\rightarrow	$0.8 \cdot (-1) + 0.1 \cdot (-0.4) + 0.1 \cdot 0.56 = -0.784$	
	\downarrow	$0.9 \cdot (-0.4) + 0.1 \cdot (-1) = -0.46$	
(1,1)	\leftarrow	$1 \cdot (-0.4) = -0.4$	
	1	$1 \cdot (-0.4) = -0.4$	
	\rightarrow	$1 \cdot (-0.4) = -0.4$	
	\downarrow	$1 \cdot (-0.4) = -0.4$	

The resulting policy is

and the new utility values are

$$U_2(2,2) = -0.2 + 0.816 = 0.616$$

 $U_2(2,1) = -0.2 + 0.308 = 0.108$
 $U_2(1,1) = -0.2 - 0.4 = -0.6$

While continuing the execution of the value iteration algorithm, the optimal actions in (2,2) and (2,1) stay unchanged. Finally, the state (1,1) gets a (unique) optimal action because the utility of (2,1) becomes higher than that of (1,1). Thus, the resulting policy is:

This is actually optimal but it takes still several rounds of the algorithm until the utility values stabilize.

(b) In policy iteration we start by creating a random policy π_0 . Then, we compute the utility values of states given the policy π_i , revise the policy π_i to π_{i+1} by choosing the actions with highest expected utilities, and compute new utility values. This process is continued until the policy under construction stabilises, i.e., $\pi_{i+1} = \pi_i$. Suppose that the following random policy π_0 is chosen:

The utilities given π_0 can be computed analytically by solving the following group of equations. In the following, u_{ij} denotes the utility of the state (i, j).

$$\begin{aligned} u_{11} &= 0.2u_{11} + 0.8u_{21} - 0.2 \\ u_{21} &= 0.8u_{11} + 0.1u_{21} + 0.1u_{22} - 0.2 \\ u_{22} &= 0.9u_{22} + 0.1 \cdot 1 - 0.2 \end{aligned}$$

The solution for this set of equations is:

$$u_{11} = -5.25$$

$$u_{21} = -5$$

$$u_{22} = -1$$

Now we compute the expected utilities for different actions:

State s	a	$\mathrm{EU}_s(a)$	
(2,2)	\leftarrow	$0.9 \cdot (-1) + 0.1 \cdot (-5) = -1.4$	
	1	$0.9 \cdot (-1) + 0.1 \cdot 1 = -0.8$	
	\longrightarrow	$0.8 \cdot 1 + 0.1 \cdot (-1) + 0.1 \cdot (-5) = 0.2$	×
	\downarrow	$0.8 \cdot (-5) + 0.1 \cdot (-1) + 0.1 \cdot 1 = -4$	
(2,1)	\leftarrow	$0.8 \cdot (-5.25) + 0.1 \cdot (-5) + 0.1 \cdot (-1) = -4.8$	
	1	$0.8 \cdot (-1) + 0.1 \cdot (-1) + 0.1 \cdot (-5.25) = -1.425$	
	\rightarrow	$0.8 \cdot (-1) + 0.1 \cdot (-5) + 0.1 \cdot (-1) = -1.4$	×
	\downarrow	$0.8 \cdot (-5) + 0.1 \cdot (-1) + 0.1 \cdot (-5.25) = -4.625$	
(1,1)	\leftarrow	$1 \cdot (-5.25) = -5.25$	
	1	$0.9 \cdot (-5.25) + 0.1 \cdot (-5) = -5.225$	
	\rightarrow	$0.8 \cdot (-5) + 0.2 \cdot (-5.25) = -5.05$	×
	\downarrow	$0.9 \cdot (-5.25) + 0.1 \cdot (-5) = -5.225$	

The revised policy π_1 is

After the next round of the algorithm, the action for (2,1) changes to the optimal one, i.e., \uparrow .