T-79.5102 Autumn 2006
Special Course in Computational Logic

Tutorial 8

Solutions

1. (a) Let us present state transitions as a graph:

(2,3) 02 (2,3) 02 (2,3) o2 (3,3 o2 (3,3
o0 S 10 1050 192 o0
(2,2) (3,3) (2,2) (2,3) (3,2)
025 19%% No.2s
(1,2 (21 (32

Then we may summarise probabilities for individual states:

P(1,2) = 0.50 x 0.25 = 0.125

P(2,1) = 0.50 x 0.50 = 0.25

P(2,2) = 0.25 x 0.50 = 0.125

P(2,3) = 0.25 x 0.25+ 0.25 x 0.25 = 0.125
P(3,2) = 0.50 x 0.25 4 0.25 x 0.50 = 0.25
P(3,3) = 0.25 x 0.25+ 0.25 x 0.25 = 0.125

)

)

The sum of probabilities is 1 (as it should).

(b) We begin by writing down a set of equations for the expected utilities
u;; for each state (7,7):

U2 = —0.25 + 0.511,12 (1
u23 = —0.25 + 0.5a 4 0.25u23 (2
uge = —0.25 4+ 0.5u21 + 0.25u12 — 0.25=0 (3
—0.25 + a + 0.25u9; (4

Uu21

~— — —

Note in particular how the cost —0.25 of a move is incorporated in
each equation. The set of equations is solved as follows.

(1) = 0.5ui2 = —0.25 = uj2 = —0.5.

(3) = 0.5us1 = 0.5 — 0.25u12 = 0.625 —> ugy = %625 — 1,95,

(4) = a=0.75uy +0.25 = 1.1875

(2) = 0.75us5 = 0.5a — 0.25 —> ugg — 4242025 ~ () 4583,

Thus u1s = —0.5, us1 = 1.25, uss ~ 0.4583, a = 1.1875 ja 2a = 2.375.
(c) Let us calculate the expected utility us; when < is the action as-

signed to (2,1) by the policy:

u12 = —0.25 4 0.50u12 4+ 0.25u12 4+ 0.25u12

= U2 = —0.25 4+ uqo

— 0= -0.25.

There is no solution, i.e., the expected utility ws; cannot be deter-
mined. This is because us; — —o0.

2. Given the simplified (fully observable) grid environment

+1

S -1

the state space of the agent is S = {(1,1),(2,1),(3,1),(2,2),(3,2)} and
the set of possible actions A = {«,1,—,]}.

A policy 7 is an arbitrary function from S to A. In other words, a policy
attachs a unique action a = 7(s) to each state s, and the agent exe-
cutes a every time it is in s. An optimal policy 7* assigns to each state
s an action ¢ = 7*(s) that maximises the expected utility EUs(a) =
> o T(s,a,s)U(s") where T'(s,a,s’) gives the transition probability from
s to s'. Note that >, T'(s,a,s’) =1 holds for each state s and action a.

(a) The value iteration algorithm computes iteratively the new utility
values for each state s:

Uit1(s) = R(s) + max, y_ , T'(s,a,s)U;(s")

where R(s) is the reward of the state (here 1 in (3,2), —1in (3,1),
and —0.2 in all other states). Such a calculation is repeated until
utility values converge, i.e., |U;y1(s) — U;(s)| becomes small enough
for each state s. Then the action with the maximum expected utility
is chosen as 7*(s) for a particular state s.

Round i = 0:
State s | a EUg(a)
2,2) | < 1-(—02)=—02
7 09-(-0.2)40.1-1=-0.08
— 0.8-1+40.2-(-0.2) =0.76 X
! 0.9 (— 02)+01~1:70.08
2,1) | < 1-(—02)=—02 X
7 9-(-0)+01 (—1) = -0.28
R 08 (- 1)+02 (—0.2) = —0.84
! 9-(-0.2)4+0.1-(—-1)=-0.28
1,1) | < 1-(—02)=—02
) 1-(=0.2) = —0.2
— 1-(-0.2) =-0.2
! 1-(-0.2) =-0.2

So, the optimal action in (2,2) is — and in (2,1) it is <. Since all
actions have the same expected utilities in (1, 1) the choice is free:

- | +1

S | - | -1

The new expected utilities are:
U1(2,2) = -0.2+0.76 = 0.56

U1(2,1) = —0.2—0.2 = —0.4
U;(1,1) = —0.2— 0.2 = —0.4

Round i = 1:

State s | a EUs(a)
2,2) | — 0.9-0.56+0.1-(—0.4) = 0.464
T 0.9-056+0.1-1=0.604
— 0.8-1+0.1-0.56+0.1- (—0.4) = 0.816 X
l 0.8-(—04)4+0.1-0.564+0.1-1=—-0.164
2,1 | — 0.9-(— 04)+01 0.56 = —0.304
T | 0.8:0.56+0.1-(=1)+0.1-(—0.4) =0.308 x
5 0.8(+01 (04)+0.1-0.56 = —0.784
! 9-(-04)4+0.1-(—1)=-0.46
1,1) | < T (—0.4) = —04
1 1-(—0.4) =—-04
- 1-(—04)=—04
! 1-(—04)=—04
The resulting policy is
- [+1
S| A -1

and the new utility values are

Usz(2,2) = —0.2+ 0.816 = 0.616

Usz(2,1) = —0.2 4 0.308 = 0.108

Uy(1,1) = —0.2— 0.4 = —0.6
While continuing the execution of the value iteration algorithm, the
optimal actions in (2,2) and (2, 1) stay unchanged. Finally, the state

(1,1) gets a (unique) optimal action because the utility of (2,1) be-
comes higher than that of (1,1). Thus, the resulting policy is:

- | +1

- + 1

This is actually optimal but it takes still several rounds of the algo-
rithm until the utility values stabilize.

In policy iteration we start by creating a random policy 7. Then,
we compute the utility values of states given the policy m;, revise
the policy m; to ;41 by choosing the actions with highest expected
utilities, and compute new utility values. This process is continued
until the policy under construction stabilises, i.e., m;+1 = ;.
Suppose that the following random policy 7 is chosen:

++1

> | - | -1

The utilities given my can be computed analytically by solving the
following group of equations. In the following, u;; denotes the utility
of the state (i, 7).

u11 = 0.2u11 4+ 0.8us; — 0.2

o1 = 0.8u11 + 0.1ugy + 0.1ugss — 0.2

U2 = 0.9u92 +0.1-1—-0.2

The solution for this set of equations is:

Uil = —5.25
ug1 = -5
ugy = —1

Now we compute the expected utilities for different actions:

State s | a EUs(a)
2,2) | = 09 -(—1)+01-(—5)=—14
1 09-(—1)+0.1-1=-038
— 08-14+01-(-1)+0.1-(=5) =02 X
! 0.8-(—5)+0.1-(-1)401-1=-4
2,1) | — | 08 (=525)+0.1-(=5) +0.1-(—1) = —4.8
1108 (=1)+0.1-(=1)+0.1-(=5.25) = —1.425
— 08-(-1)+0.1-(=5)+01-(-1)=-14 X
L 108 (=5)+0.1-(=1)+0.1-(—5.25) = —4.625
= 1-(—5.25) = —5.25
7 0.9-(—5.25)+0.1-(—5) = —5.225
— 0.8-(—5)+0.2-(—5.25) = —5.05 X
! 0.9-(—5.25)+0.1-(—5) = —5.225

The revised policy 7 is

- | +1

= | e | -1

After the next round of the algorithm, the action for (2,1) changes
to the optimal one, i.e., T.

