1. Consider the query $P(Rain \mid Sprinkler = true, WetGrass = true)$ for the network given below and how MCMC can answer it.

(a) How many states does the Markov chain have?
(b) Calculate the transition matrix Q containing $q(x \rightarrow x')$ for all states x and x'.
(c) What does the square of the transition matrix Q^2 represent?
(d) What about Q^n as $n \rightarrow \infty$.

(R&N, Exercise 14.11.abcd)

2. A fire station has one fire truck. Upon an emergency call, the truck goes out to fight fire and then returns to the station.

(a) Design a hidden Markov model (HMM) with two states, fs (the truck is at the fire station) and $\neg fs$ to describe the behaviour of this system. Choose transition probabilities to reflect the following properties of the domain.
- On the average, there is an alert once in twelve hours.
- The expected duration for one fire mission is 3 hours.
Use one hour time slices in your model.
(b) Write down the corresponding transition matrix Q for the HMM as well as the transition model
\[P(FS_{t+1} \mid FS_t) \]
using a Boolean random variable FS.
(c) Use the model to determine how many hours a day the truck spends at the fire station in the long run?
(d) Given a parametrised prior distribution $P(FS_0) = \langle r, 1-r \rangle$, derive an exact expression for the distribution $P(FS_t)$ as a function of t using the transition model and prediction.
(e) Does $P(FS_t)$ converge as t approaches to infinity?