

LOGICAL AND BAYESIAN LEARNING

Logical and Bayesian Learning

Outline

- ➤ A Logical Formulation of Learning
- ➤ Bayesian Learning

Based on the textbook by Stuart Russell & Peter Norvig:

Artificial Intelligence, A Modern Approach (2nd Edition)

Sections 19.1 and 20.1

© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

2

1. A LOGICAL FORMULATION OF LEARNING

- ➤ Inductive learning was previously defined as a process of searching for a hypothesis that agrees with the observed examples.
- ➤ For now we concentrate on the case where hypotheses, examples, classifications are **represented** in terms of *logical sentences*.
- ➤ This form of learning is more general and complex compared to learning decision trees or lists.
- ➤ This approach allows for *incremental construction* of hypotheses, one sentence at a time.
- ➤ The full power of logical inference can be utilised in learning.

Examples and Hypotheses

- ➤ In the logical representation, attributes become unary predicates.
- ➤ The ith example is generically denoted by X_i.
 Example. The first example in the restaurant domain is described by the following sentence:

$$Alternate(X_1) \land \neg Bar(X_1) \land \neg Fri/Sat(X_1) \land Hungry(X_1) \land \dots$$

- \blacktriangleright The classification of the object is given by $WillWait(X_1)$.
- ➤ The generic notations $Q(X_i)$ and $\neg Q(X_i)$ are used for *positive* and *negative* examples, respectively.
- ➤ The complete training set corresponds to the conjunction of the respective description and classifications sentences.

© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

Candidate Definitions

- ➤ The aim is to find an equivalent logical expression for the goal predicate *Q* that can be used to classify examples correctly.
- ► Each hypothesis H_i proposes a **candidate definition** $C_i(x)$ for the goal predicate Q_i , i.e. H_i takes the form $\forall x (Q(x) \leftrightarrow C_i(x))$.
- ➤ The **extension** of a hypothesis $H_i = \forall x (Q(x) \leftrightarrow C_i(x))$ is the set of examples X for which Q(X) evaluates to true.

Example. For the decision tree learned in the restaurant example:

```
H_{1} = \forall r(WillWait(r) \leftrightarrow Patrons(r,Some) \lor \\ (Patrons(r,Full) \land \neg Hungry(r) \land Type(r,French)) \lor \\ (Patrons(r,Full) \land \neg Hungry(r) \land Type(r,Thai) \land Fri/Sat(r)) \lor \\ (Patrons(r,Full) \land \neg Hungry(r) \land Type(r,Burger)))
```


Hypothesis Space

Logical and Bayesian Learning

- ➤ Logically equivalent hypotheses have equal extensions.
- ➤ Two hypotheses with different extensions are logically inconsistent with each other, as they differ on at least one example X_i . **Example.** The conjunction of $H_2 = \forall r(WillWait(r) \leftrightarrow Hungry(r))$
 - and $H_3 = \forall r(WillWait(r) \leftrightarrow \neg Hungry(r))$ implies a contradiction.
- \blacktriangleright The hypothesis space $\{H_1, H_2, \dots, H_n\}$ is denoted by **H**.
- ➤ It is usually believed that one of the hypotheses in **H** is correct. i.e. the disjunction $H_1 \vee H_2 \vee ... \vee H_n$ evaluates to true.

Example. In decision tree learning, the hypothesis space consists of all decision trees that can be defined in terms of the attributes provided.

© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

Classifying Examples with Hypotheses

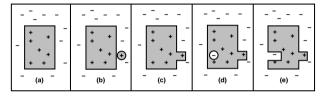
- ➤ Given a hypothesis $H_i = \forall x (Q(x) \leftrightarrow C_i(x))$, an example X is **positive/negative** if $Q(X)/\neg Q(X)$ evaluates to true.
- ➤ A **false** positive/negative example X for a hypothesis $H_i = \forall x (Q(x) \leftrightarrow C_i(x))$ gets an incorrect classification by H_i .
- ➤ Inductive learning can be seen as a process of gradually eliminating hypotheses that are inconsistent with examples.

Example. For H_1 in the restaurant domain, the first example X_1 is a positive one, as $WillWait(X_1)$ evaluates to true.

On the other hand, X_1 is a false negative example for $H_3 = \forall r(WillWait(r) \leftrightarrow \neg Hungry(r))$, as $Hungry(X_1)$ holds.

Current-Best-Hypothesis Search

- \triangleright The idea is to maintain a single hypothesis H, and to adjust it as new examples arrive in order to maintain consistency.
- \triangleright The current hypothesis H is illustrated in the figure (a) below.
- ➤ A false negative example (b) can be removed by a **generalisation** (c) that extends the extension of the current hypothesis H_i .
- ➤ A false positive example (d) can be removed by a **specialisation** (e) that narrows the extension of the current hypothesis H_i .



© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

Skeletal Algorithm

Current-best-hypothesis search is captured by the following algorithm:

function CURRENT-BEST-LEARNING(examples) returns a hypothesis $H \leftarrow$ any hypothesis consistent with the first example in examples for each remaining example in examples do if e is false positive for H then $H \leftarrow$ **choose** a specialization of H consistent with examples else if e is false negative for H then $H \leftarrow$ **choose** a generalization of H consistent with *examples* if no consistent specialization/generalization can be found then fail return H

- ➤ Generalisations and specialisations imply *logical relationships*: E.g., if $H_1 = \forall x (Q(x) \leftrightarrow C_1(x))$ is a generalisation of $H_2 = \forall x (Q(x) \leftrightarrow C_2(x))$, then $\forall x (C_2(x) \to C_1(x))$ holds.
- \blacktriangleright Note that H_2 is a specialisation of H_1 in the setting above.

Examples

Logical and Bayesian Learning

Example. Recall the training set used in the restaurant domain.

Example	Attributes										Goal
Zampie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X_4	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10-30	Yes
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	Yes
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	No
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	Yes

© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

10

Example. A way to generalise is to **drop conditions** from hypotheses. For instance, $\forall x(WillWait(x) \leftrightarrow Patrons(x,Some))$ generalises the hypothesis $\forall x(WillWait(x) \leftrightarrow Alternate(x) \land Patrons(x,Some))$.

Example. Hypotheses are formed in the restaurant example as follows:

 $H_1: \forall x(WillWait(x) \leftrightarrow Alternate(x))$

 $H_2: \forall x(WillWait(x) \leftrightarrow Alternate(x) \land Patrons(x, Some))$

 $H_3: \forall x(WillWait(x) \leftrightarrow Patrons(x, Some))$

 H_4 : $\forall x (WillWait(x) \leftrightarrow Patrons(x, Some) \lor (Patrons(x, Full) \land Fri/Sat(x))$)

There are also other hypotheses conforming to the first four examples:

 $H_{\Delta}': \forall x (WillWait(x) \leftrightarrow \neg WaitEstimate(x, 30-60))$

 H_4'' : $\forall x (WillWait(x) \leftrightarrow Patrons(x, Some) \lor$ $(Patrons(x, Full) \land WaitEstimate(x, 10-30)))$

Discussion

- ➤ The Current-Best-Learning algorithm is *non-deterministic*: there may be several possible specialisations or generalisations that can be applied at any point.
- ➤ The choices made might not lead to the simplest hypothesis.
- ➤ If a dead-end (unrecoverable inconsistency) is encountered, the algorithm must backtrack to a previous choice point.
- ➤ Checking the consistency of all the previous examples over again for each choice is very expensive.

© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

12

Least-Commitment Search

➤ The original hypothesis space can be seen as a huge disjunction

$$H_1 \vee H_2 \vee \ldots \vee H_n$$
.

- ➤ Hypotheses which are consistent with all examples encountered so far form a set of hypotheses called the **version space** *V*.
- ➤ Version space is shrunk by the **candidate elimination** algorithm:

function Version-Space-Learning(examples) **returns** a version space **local variables**: V, the version space: the set of all hypotheses $V \leftarrow$ the set of all hypotheses **for each** example e in examples **do if** V is not empty **then** $V \leftarrow$ Version-Space-Update(V, e) **end return** V

function VERSION-SPACE-UPDATE(V, e) returns an updated version space

 $V \leftarrow \{h \in V : h \text{ is consistent with } e\}$

13

Boundary Sets

Logical and Bayesian Learning

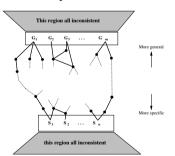
- \triangleright The algorithm finds a subset of the version space V that is consistent with all examples in an incremental way.
- > Candidate elimination is an example of a least-commitment algorithm, as no arbitrary choices are made among hypotheses.
- \triangleright Since the hypothesis space V is possibly enormous, it cannot be represented directly as a set of hypotheses or a disjunction.
- \blacktriangleright The problem can be alleviated by **boundary sets** $\{S_1, \ldots, S_n\}$ (S-set) and $\{G_1,\ldots,G_m\}$ (G-set) and a partial ordering among hypotheses induced by specialisation/generalisation.
- \triangleright Any hypothesis H between a most specific boundary S_i and a most general boundary G_i is consistent with the examples seen.

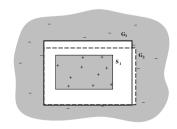
© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

14





- ▶ Initially, the S-set contains a single hypothesis $\forall x(Q(x) \leftrightarrow False)$ while the G-set contains $\forall x(Q(x) \leftrightarrow True)$ only.
- ➤ The remaining problem is how to update S-sets and G-sets for a new example (the job of the VERSION-SPACE-UPDATE function).

Updating Version Space

- ➤ Upon a false negative/positive example, a most specific boundary S is replaced by all its immediate generalisations / deleted.
- ➤ Upon a false positive/negative example, a most general boundary G is replaced by all its immediate specialisations / deleted.

These operations on S-sets and G-sets are continued until:

- 1. There is exactly one hypothesis left in the version space.
- 2. The version space collapses (i.e., the S-set or G-set becomes empty): there are no consistent hypotheses for the training set.
- 3. We run out of examples with several hypotheses remaining in the version space: a solution is to take the majority vote.

© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

16

Discussion

- ➤ If the domain contains noise or insufficient attributes for exact classification, the version space will always collapse.
- ➤ If unlimited disjunction is allowed in the hypothesis space, the S-set will always contain a single most-specific hypothesis (disjunction of positive examples seen to date).
- ➤ Analogously for the G-set and negative examples.
- ➤ A solution is to allow only limited forms of disjunction.
- ➤ For certain hypothesis spaces, the number of elements in the S-set and G-set may grow exponentially in the number of attributes.

2. BAYESIAN LEARNING

Logical and Bayesian Learning

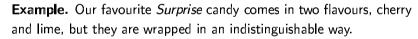
- The data, i.e. instantiations of some or all random variables describing the domain, serve as evidence.
- **Hypotheses** are probabilistic theories of how the domain works.
- ➤ The aim is to make a prediction concerning an unknown quantity X given some data and hypotheses.
- ➤ In Bayesian learning, the probability of each hypothesis is calculated, given the data, and predictions are made on that basis.
- ➤ Predictions are made by using all the hypotheses, weighted by their probabilities, rather than by using a single "best" hypothesis.

© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

18



The candy is sold in large (indistinguishable) bags containing various mixtures of the two flavours:

- 1. 100% cherry
- 2. 75% cherry and 25% lime
- 3. 50% cherry and 50% lime
- 4. 25% cherry and 75% lime
- 5. 100% lime

Given a new bag of candy, the random variable H (for hypothesis) denotes the type of the bag, with possible values h_1 through h_5 .

The agent needs to infer a probabilistic model of the world.

Bayesian learning

- ➤ Let **D** represent all the data with observed value **d**.
- \triangleright The probability of each hypothesis h_i is obtained by Bayes' rule:

$$P(h_i \mid \mathbf{d}) = \alpha P(\mathbf{d} \mid h_i) P(h_i).$$

 \blacktriangleright Assuming that each h_i specifies a complete distribution for an unknown quantity X. Bayesian learning is characterised by

$$\mathbf{P}(X \mid \mathbf{d}) = \sum_{i} \mathbf{P}(X \mid \mathbf{d}, h_i) P(h_i \mid \mathbf{d}) = \sum_{i} \mathbf{P}(X \mid h_i) P(h_i \mid \mathbf{d}).$$

- \blacktriangleright The key quantities are the **hypothesis** prior $P(h_i)$ and the **likelihood** of the data under each hypothesis $P(\mathbf{d} \mid h_i)$.
- ➤ If the observations are independently and identically distributed (i.i.d. for short), then $P(\mathbf{d} \mid h_i) = \prod P(d_i \mid h_i)$.

© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

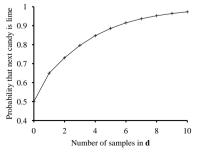
20

Example. For the candy example, the prior distribution over h_1, \ldots, h_5 is given by (0.1, 0.2, 0.4, 0.2, 0.1), as advertised by the manufacturer.

If the bag is really an all-lime bag (h_5) and the first 10 candies are consequently all lime, then $P(\mathbf{d} \mid h_3) = 0.5^{10}$.

The posterior probabilities of the five hypotheses change as the sequence of 10 lime candies is observed:





T-79.5102 / Autumn 2006

Logical and Bayesian Learning

23

MAP and ML hypotheses

- ➤ The true hypothesis eventually dominates Bayesian prediction.
- ➤ Unfortunately, the hypothesis space is usually very large or infinite which makes the Bayesian approach intractable.
- ➤ A common approximation is to use maximum a posteriori (MAP) **hypothesis** h_{MAP} — a hypothesis h_i that maximises $P(h_i \mid \mathbf{d})$: $\mathbf{P}(X \mid \mathbf{d}) \approx \mathbf{P}(X \mid h_{\text{MAP}}).$
- ➤ To determine h_{MAP} , it is sufficient to maximise $P(\mathbf{d} \mid h_i)P(h_i)$.
- \blacktriangleright In some cases, the prior probabilities $P(h_i)$ can be assumed to be uniformly distributed.
- \blacktriangleright Then maximising $P(\mathbf{d} \mid h_i)$ produces a **maximum-likelihood** (ML) **hypothesis** $h_{\rm ML}$ — a special case of $h_{\rm MAP}$.

© 2006 TKK / Laboratory for Theoretical Computer Science

T-79.5102 / Autumn 2006

Logical and Bayesian Learning

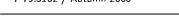
22

21

Bayesian Network Learning Problems

The learning problem for Bayesian networks comes in several varieties:

- 1. Known structure, fully observable: only CPTs are learned and the statistics of the set of examples can be used.
- 2. **Unknown structure, fully observable:** this involves heuristic search through the space of structures — guided by the ability of modelling data correctly (MAP or ML probability value).
- 3. Known structure, hidden variables: analogy to neural networks.
- 4. Unknown structure, hidden variables: no good/general algorithms are known for learning in this setting.



SUMMARY

- ➤ Learning is essential for dealing with unknown environments.
- ➤ Prior knowledge helps learning by eliminating otherwise consistent hypotheses and by "filling in" the explanation of examples, thereby allowing for shorter hypotheses.
- **Bayesian learning** methods formulate learning as a form of probabilistic inference: observations are used to update a prior distribution over hypotheses.
- ➤ This approach implements Ockham's razor principle but quickly becomes intractable for complex hypothesis spaces.
- ➤ Maximum a posteriori (MAP) and maximum likelihood (ML) learning are more tractable approximations of Bayesian learning.

© 2006 TKK / Laboratory for Theoretical Computer Science