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LOGICAL AND BAYESIAN LEARNINGI

Outline

O A Logical Formulation of Learning

U Bayesian Learning

Based on the textbook by Stuart Russell & Peter Norvig:
Artificial Intelligence, A Modern Approach (2nd Edition)

Sections 19.1 and 20.1
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1. A LOGICAL FORMULATION OF LEARNINGI

O Inductive learning was previously defined as a process of searching
for a hypothesis that agrees with the observed examples.

0 For now we concentrate on the case where hypotheses, examples,
classifications are represented in terms of logical sentences.

0 This form of learning is more general and complex compared to
learning decision trees or lists.

O This approach allows for incremental construction of hypotheses,
one sentence at a time.

O The full power of logical inference can be utilised in learning.
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Examples and Hypotheses I

O In the logical representation, attributes become unary predicates.

0 The i example is generically denoted by X;.

Example. The first example in the restaurant domain is described
by the following sentence:

Alternate(Xy) A —Bar (X1) A —Fri/Sat(X1) AHungry(Xi) A...
[0 The classification of the object is given by WIIW&it(Xy).

O The generic notations Q(X;) and —Q(X;) are used for positive and
negative examples, respectively.

0 The complete training set corresponds to the conjunction of the

respective description and classifications sentences.
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Candidate Definitions I

O The aim is to find an equivalent logical expression for the goal
predicate Q that can be used to classify examples correctly.

O Each hypothesis H; proposes a candidate definition C;(X) for the
goal predicate Q, i.e. H; takes the form Vx(Q(x) < Ci(X)).

O The extension of a hypothesis Hj = VX(Q(X) < Ci(X)) is the set of
examples X for which Q(X) evaluates to true.

Example. For the decision tree learned in the restaurant example:

Hy = Vr(WiIIWait(r) < Patrons(r, Some) Vv
(Patrons(r, Full) A =Hungry(r) A Type(r, French) )V
(Patrons(r, Full) A =Hungry(r) A Type(r, Thai) A Fri/Sat(r))Vv
(Patrons(r, Full) A =Hungry(r) A Type(r, Burger)) )

\ /
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Hypothesis Space'

O Logically equivalent hypotheses have equal extensions.

~

0 Two hypotheses with different extensions are logically inconsistent
with each other, as they differ on at least one example X;.

Example. The conjunction of Hy = Vr(WIIWait(r) < Hungry(r))
and Hz = Vr(WiIIWA&it(r) < —Hungry(r)) implies a contradiction.
O The hypothesis space {H1,Ha,...,Hn} is denoted by H.

O It is usually believed that one of the hypotheses in H is correct,
i.e. the disjunction Hy VH2 V...V Hy evaluates to true.

Example. In decision tree learning, the hypothesis space consists of all
decision trees that can be defined in terms of the attributes provided.
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Classifying Examples with Hypotheses'

O Given a hypothesis H; = VYX(Q(X) <> Ci(X)), an example X is
positive/negative if Q(X)/—Q(X) evaluates to true.

O A false positive/negative example X for a hypothesis
Hi = x(Q(X) «» Ci(X)) gets an incorrect classification by H;.

O Inductive learning can be seen as a process of gradually
eliminating hypotheses that are inconsistent with examples.

Example. For H; in the restaurant domain, the first example Xy is a
positive one, as WHIWait(X;) evaluates to true.

On the other hand, X is a false negative example for

Hz = Vr(WIIWait(r) < =Hungry(r)), as Hungry(Xi) holds.

\ /
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Current-Best-Hypothesis Search I \

0 The idea is to maintain a single hypothesis H, and to adjust it as

new examples arrive in order to maintain consistency.
O The current hypothesis H is illustrated in the figure (a) below.

O A false negative example (b) can be removed by a generalisation
(c) that extends the extension of the current hypothesis H;.

O A false positive example (d) can be removed by a specialisation
(e) that narrows the extension of the current hypothesis H;.

+ - + - + - + +
+ + + + +
+ - + - + -1 _ |+ - + -
+ + + + +
+ ) e @++ =1 + 7
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(@) (b) © (d) (e)
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/ Skeletal AIgorithmI \

Current-best-hypothesis search is captured by the following algorithm:

function CURRENT-BEST-LEARNING(examples) returns a hypothesis

H « any hypothesis consistent with the first example in examples
for eachremaining example in examples do
if eisfalse positive for H then
H + choosea specialization of H consistent with examples
else ifeisfalse negative for H then
H «+ choosea generalization of H consistent with examples
if no consistent specialization/generalization can be found then fail
end
return H

O Generalisations and specialisations imply logical relationships:

E.g., if H =VWX(Q(X) « C1(X)) is a generalisation of
Haz = WX(Q(X) « Cy(X)), then ¥X(Ca(x) — C1(x)) holds.

&D Note that Hy is a specialisation of Hy in the setting above. /
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Example. Recall the training set used in the restaurant domain.

Attributes Goal
Example
Alt | Bar | Fri | Hun| Pat |Price| Rain| Res| Type Est WiIIWait

X1 Yes| No| No| Yes| Some| $$5| No | Yes| French | 0-10 Yes
X2 Yes| No| No | Yes| Full $ No | No Thai 30-60 No
X3 No | Yes| No| No | Some $ No | No | Burger | 0-10 Yes
X4 Yes| No | Yes| Yes| Full $ No | No Thai 10-30 Yes
Xs Yes| No| Yes| No Full $$$| No | Yes| French >60 No
Xs No | Yes| No | Yes| Some| $$ | Yes| Yes| lItalian | 0-10 Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 No
Xs No| No| No| Yes| Some| $$ | Yes| Yes Thai 0-10 Yes
X No | Yes| Yes| No | Full $ | Yes| No | Burger >60 No
X10 Yes | Yes| Yes| Yes| Full $$%| No | Yes| Italian | 10-30 No
Xu No | No| No | No | None $ No | No Thai 0-10 No
X2 Yes | Yes| Yes| Yes| Full $ No | No | Burger | 3060 Yes
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/Example. A way to generalise is to drop conditions from hypotheses.\

For instance, VX(WIIWait(x) < Patrons(x, Some)) generalises the
hypothesis Vx(WIIWait(x) < Alternate(x) A Patrons(x, Some)).

Example. Hypotheses are formed in the restaurant example as follows:
Hi: VX(WIIW&it(x) < Alternate(x))

Ho: Vx(WIIW&it(x) < Alternate(x) A Patrons(x, Some))

Hs: vx(WHIW&it(x) < Patrons(x, Some))

Ha: Wx(WiIlIWait(x) < Patrons(x, Some) V (Patrons(x, Full) A Fri/Sat(x)) )
There are also other hypotheses conforming to the first four examples:
Hj: X(WHIWait(X) < —WaitEstimate(x, 30-60))

Hj:  vx(WIIWait(x) < Patrons(x, Some)V
(Patrons(x, Full) A WaitEstimate(x, 10-30)) )
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Discussion

The CURRENT-BEST-LEARNING algorithm is non-deterministic:
there may be several possible specialisations or generalisations
that can be applied at any point.

The choices made might not lead to the simplest hypothesis.

If a dead-end (unrecoverable inconsistency) is encountered, the
algorithm must backtrack to a previous choice point.

Checking the consistency of all the previous examples over again
for each choice is very expensive.

/
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Least-Commitment Search I \

The original hypothesis space can be seen as a huge disjunction

HiVHaV...VH,.

Hypotheses which are consistent with all examples encountered so
far form a set of hypotheses called the version space V.

Version space is shrunk by the candidate elimination algorithm:

function VERSION-SPACE-L EARNING(examples) returns aversion space
local variables V, the version space: the set of all hypotheses

V « the set of al hypotheses
for eachexample e in examplesdo
if Visnot empty then V < VERSION-SPACE-UPDATH(V, €)
end
return V

function VERSION-SPACE-UPDATE(V, €) returns an updated version space
V+{h € V: hisconsistent with e}
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Boundary Sets'

The algorithm finds a subset of the version space V that is
consistent with all examples in an incremental way.

Candidate elimination is an example of a least-commitment
algorithm, as no arbitrary choices are made among hypotheses.

Since the hypothesis space V is possibly enormous, it cannot be
represented directly as a set of hypotheses or a disjunction.

The problem can be alleviated by boundary sets {S;,..., S}
(S-set) and {Gq,...,Gn} (G-set) and a partial ordering among
hypotheses induced by specialisation/generalisation.

Any hypothesis H between a most specific boundary § and a most

/

general boundary G;j is consistent with the examples seen.
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Boundary sets for the version space are illustrated below:

This region all inconsistent

More general

v
S S Sa -

this region all inconsistent

Initially, the S-set contains a single hypothesis ¥x(Q(X) « False)
while the G-set contains Vx(Q(X) <> True) only.

The remaining problem is how to update S-sets and G-sets for a
new example (the job of the VERSION-SPACE-UPDATE function).

/
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00 Upon a false negative/positive example, a most specific boundary

[0 Upon a false positive/negative example, a most general boundary

These operations on S-sets and G-sets are continued until:
1.
2.

. We run out of examples with several hypotheses remaining in the

Updating Version Space'

Siis replaced by all its immediate generalisations / deleted.

G is replaced by all its immediate specialisations / deleted.

There is exactly one hypothesis left in the version space.

The version space collapses (i.e., the S-set or G-set becomes
empty): there are no consistent hypotheses for the training set.

version space: a solution is to take the majority vote.

/
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Discussion

If the domain contains noise or insufficient attributes for exact
classification, the version space will always collapse.

If unlimited disjunction is allowed in the hypothesis space, the
S-set will always contain a single most-specific hypothesis
(disjunction of positive examples seen to date).

Analogously for the G-set and negative examples.
A solution is to allow only limited forms of disjunction.

For certain hypothesis spaces, the number of elements in the S-set

/

and G-set may grow exponentially in the number of attributes.
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2. BAYESIAN LEARNINGI

00 The data, i.e. instantiations of some or all random variables
describing the domain, serve as evidence.

0 Hypotheses are probabilistic theories of how the domain works.

O The aim is to make a prediction concerning an unknown quantity
X given some data and hypotheses.

0 In Bayesian learning, the probability of each hypothesis is
calculated, given the data, and predictions are made on that basis.

O Predictions are made by using all the hypotheses, weighted by
their probabilities, rather than by using a single “best” hypothesis.

\_
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Example. Our favourite Surprise candy comes in two flavours, cherry
and lime, but they are wrapped in an indistinguishable way.

The candy is sold in large (indistinguishable) bags containing various
mixtures of the two flavours:

1. 100% cherry
75% cherry and 25% lime
50% cherry and 50% lime

Ll

25% cherry and 75% lime
5. 100% lime

Given a new bag of candy, the random variable H (for hypothesis)
denotes the type of the bag, with possible values h; through hs.

|:| The agent needs to infer a probabilistic model of the world.
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Bayesian Iearning'

O Let D represent all the data with observed value d.

Logical and Bayesian Learning

\

0 The probability of each hypothesis h; is obtained by Bayes’ rule:
P(hi [ d) = aP(d [ h)P(h;).

O Assuming that each h; specifies a complete distribution for an
unknown quantity X, Bayesian learning is characterised by

P(X [ d) = T P(X | d.h)P(hy | d) = 5 P(X | h)P(h | d).

[0 The key quantities are the hypothesis prior P(h;) and the
likelihood of the data under each hypothesis P(d | h).

O If the observations are independently and identically distributed

(i.i.d. for short), then P(d | hy) = I_l P(d; | hy).
j

/
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ample. For the candy example, the prior distribution over hy,..., hg
is given by (0.1,0.2,0.4,0.2,0.1), as advertised by the manufacturer.

If the bag is really an all-lime bag (hs) and the first 10 candies are

consequently all lime, then P(d | hg) = 0.5%.

The posterior probabilities of the five hypotheses change as the
sequence of 10 lime candies is observed:

(2] Q
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MAP and ML hypotheses' \

The true hypothesis eventually dominates Bayesian prediction.

Unfortunately, the hypothesis space is usually very large or infinite
which makes the Bayesian approach intractable.

A common approximation is to use maximum a posteriori (MAP)
hypothesis hyap — a hypothesis h; that maximises P(h; | d):

P(X ‘ d) ~ P(X | hMAP)-
To determine hyap, it is sufficient to maximise P(d | hy)P(h;).

In some cases, the prior probabilities P(hj) can be assumed to be
uniformly distributed.

Then maximising P(d | hj) produces a maximum-likelihood (ML)

hypothesis hyy. — a special case of hyap.

/
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The learning problem for Bayesian networks comes in several varieties:

1.

. Unknown structure, fully observable: this involves heuristic

~

Bayesian Network Learning Problems'

Known structure, fully ocbservable: only CPTs are learned and
the statistics of the set of examples can be used.

search through the space of structures — guided by the ability of
modelling data correctly (MAP or ML probability value).

Known structure, hidden variables: analogy to neural networks.

Unknown structure, hidden variables: no good/general
algorithms are known for learning in this setting.

/
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SUMMARY

Learning is essential for dealing with unknown environments.

Prior knowledge helps learning by eliminating otherwise consistent
hypotheses and by “filling in" the explanation of examples, thereby
allowing for shorter hypotheses.

Bayesian learning methods formulate learning as a form of
probabilistic inference: observations are used to update a prior
distribution over hypotheses.

This approach implements Ockham's razor principle but quickly
becomes intractable for complex hypothesis spaces.

Maximum a posteriori (MAP) and maximum likelihcod (ML)

learning are more tractable approximations of Bayesian learning.
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