
T-79.5102 Syksy 2005
Laskennallisen logiikan erikoiskurssi
Laskuharjoitus 9
Ratkaisut

1. %% vacuum.lp -- a domain description file for planning in the

%% vacuum domain.

%% predicates:

% at(V, L, I) -- a vacuum cleaner V is at a place L at the time

% step I.

% clean(L, I) -- a location L is clean at a time step I.

%

%% Actions:

% move(V, F, T, I) -- move the vacuum cleaner V from a place F to a

% place T at a time step I.

%

% suction(V, L, I) -- a vacuum cleaner V cleans the location L at

% time step I.

% The basic encoding of the actions is such that the preconditions

% of an action imply that the action can be performed.

%

% { action } :- preconditions.

%

% An action implies its effects.

%

% effects :- action.

%% Action: SUCTION

% Preconditions: location not clean, vacuum cleaner at the same

% room:

{ suction(V, L, I) } :-

vacuum(V),

location(L),

time(I),

at(V, L, I),

not clean(L, I).

1



% Effects: room clean:

clean(L,I+1) :-

vacuum(V),

location(L),

time(I),

suction(V,L,I).

% Effects: not moved during cleaning:

at(V,L,I+1) :-

vacuum(V),

location(L),

time(I),

suction(V,L,I).

%% Action: MOVE

% Preconditions: vacuum cleaner at source, destination adjacent:

{ move(V, F, T, I) } :-

vacuum(V),

next_to(F, T),

time(I),

at(V, F, I).

% Effects: vacuum cleaner at the destination:

at(V, T, I+1) :-

vacuum(V),

next_to(F, T),

time(I),

move(V, F, T, I).

% Moves is an auxiliary predicate that is true if a cleaner changes

% its location in any way during a time step. Having this predicate

% makes defining the frame axioms easier.

moves(V, I) :-

vacuum(V),

next_to(F, T),

time(I),

move(V, F, T, I).

2



%% Frame axioms:

% A vacuum cleaner may not be in two places at the same time:

:- 2 { at(V, L, I) : location(L) },

vacuum(V),

time(I).

% A vacuum cleaner stays at the same spot if it doesn’t move:

at(V, L, I+1) :-

vacuum(V),

location(L),

time(I),

at(V, L, I),

not moves(V, I).

% A once cleaned room stays cleaned:

clean(L, I+1) :-

location(L),

time(I),

clean(L, I).

%% Some domain facts:

%% We want to have n time steps:

time(1..n).

% Desired goal state:

compute { clean(L, n+1) : location(L) } .

% Instantiation:

at(vac, oh, 1).

next_to(oh, et). next_to(et, kh). next_to(et, k).

next_to(et, mh). next_to(mh, vh).

next_to(F, T) :- next_to(T, F), location(T), location(F).

location(oh). location(et). location(kh). location(k).

location(mh). location(vh).

vacuum(vac).

3



2. %% The idea of the grocery world is similar to the vacuum world.

%% That is, preconditions of an action imply that the action may

%% be performed and an action implies its effects:

%

% { action } :- preconditions.

% effect :- action.

%

% Since in this example we have more than two different action

% types, we have to be more careful about weeding out conflicting

% actions (such as paying and moving at the same time). The

% simplest way to do it is to add all preconditions of an action also

% as its effects if the action doesn’t specifically change it. For

% example, since the action ’pick’ doesn’t change its precondition

% that the shopper has to be at the same location as the picked item,

% we add as an explicit effect for ’pick’ that the shopper stays at

% the same location.

% First define the time:

time(1..n).

%% Action: MOVE

% Precondition: at source, destination adjacent:

{ move(F, T, I) } :-

next_to(F, T),

time(I),

at(F, I).

% Effect: at destination:

at(T, I+1) :-

next_to(F, T),

time(I),

move(F, T, I).

% Another auxiliary predicate for frame exioms:

moving(I) :-

next_to(F, T),

time(I),

move(F, T, I).

4



%% Action: PICK

% Preconditions: the picked item is in the shopping list, at the

% same location as shopper, and not yet picked:

{ pick(Item, I) } :-

in_list(Item),

time(I),

not has(Item, I),

not paid(I),

at(L, I),

located(Item, L).

% Effect: the item is in possession, we are at the same location:

has(Item, I+1) :-

in_list(Item),

time(I),

pick(Item, I).

at(L, I+1) :-

in_list(Item),

at(L, I),

located(Item, L),

time(I),

pick(Item, I).

%% Action: PAY

% Preconditions: we are at the cashier and have not yet paid:

{ pay(I) } :-

located(cashier, L),

at(L, I),

not paid(I),

time(I).

% Effect: we have paid, stay at the same location

paid(I+1) :-

time(I),

pay(I).

5



at(L, I+1) :-

pay(I),

at(L, I),

located(cashier, L),

time(I).

%%% FRAME AXIOMS

% we may be only in one place at a time:

:- 2 { at(L, I) : location(L) },

time(I).

% our position stays the same if we are not moving:

at(L, I+1) :-

at(L, I),

location(L),

time(I),

not moving(I).

% we don’t drop picked items:

has(Item, I+1) :-

has(Item, I),

in_list(Item),

time(I).

% once we pay we stay paid:

paid(I+1) :-

paid(I),

time(I).

% Goal

compute { paid(n+1), has(Item, n+1): in_list(Item) }.

% instantiation:

in_list(bread). in_list(apples). in_list(icecream).

location(entrance). location(fruits). location(breads).

location(flours). location(icecreams). location(exit).

6



at(entrance, 1).

next_to(entrance, fruits). next_to(fruits, breads).

next_to(breads, flours). next_to(flours, icecreams).

next_to(icecreams, exit).

next_to(F,T) :- next_to(T,F), location(T), location(F).

located(apples, fruits). located(bread, breads).

located(icecream,icecreams). located(cashier, exit).

7


