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Solutions

1. KB is the set of symmetric frames. Let’s translate the formula in the
exercise into predicate logic:

τ(¬2¬2¬2¬P → ¬2¬P, x)
= τ(¬2¬2¬2¬P,x) → τ(¬2¬P, x)
= ¬τ(2¬2¬2¬P,x) → ¬τ(2¬P, x)
= ¬∀y

`

R(x, y) → τ(¬2¬2¬P, y)
´

→ ¬∀y
`

R(x, y) → τ(¬P, y)
´

= ¬∀y
`

R(x, y) → ¬τ(2¬2¬P, y)
´

→ ¬∀y
`

R(x, y) → ¬τ(P, y)
´

= ¬∀y
“

R(x, y) → ¬∀x
`

R(y, x) → τ(¬2¬P, x)
´

”

→ ¬∀y
`

R(x, y) → ¬P (y)
´

= ¬∀y
“

R(x, y) → ¬∀x
`

R(y, x) → ¬τ(2¬P, x)
´

”

→ ¬∀y
`

R(x, y) → ¬P (y)
´

= ¬∀y
“

R(x, y) → ¬∀x
`

R(y, x) → ¬∀y
`

R(x, y) → τ(¬P, y)
´´

”

→ ¬∀y
`

R(x, y) → ¬P (y)
´

= ¬∀y
“

R(x, y) → ¬∀x
`

R(y, x) → ¬∀y
`

R(x, y) → ¬τ(P, y)
´´

”

→ ¬∀y
`

R(x, y) → ¬P (y)
´

= ¬∀y
“

R(x, y) → ¬∀x
`

R(y, x) → ¬∀y
`

R(x, y) → ¬P (y)
´´

”

→ ¬∀y
`

R(x, y) → ¬P (y)
´

= ϕ

Additionally, we encode the frame axiom in predicate logic:

∀x∀y
(

R(x, y) → R(y, x)
)

(symmetricity)

Then, we construct a complete tableau starting from the frame axiom
and ¬∀xϕ.

1. ∀x∀y
`

R(x, y) → R(y, x)
´

2. ¬∀x
“

¬∀y
“

R(x, y) → ¬∀x
`

R(y, x) → ¬∀y
`

R(x, y) → ¬P (y)
´´

”

→ ¬∀y
`

R(x, y) → ¬P (y)
´

”

3. ¬

“

¬∀y
“

R(c, y) → ¬∀x
`

R(y, x) → ¬∀y
`

R(x, y) → ¬P (y)
´´

”

→ ¬∀y
`

R(c, y) → ¬P (y)
´

”

(2, x/c)

4. ¬∀y
“

R(c, y) → ¬∀x
`

R(y, x) → ¬∀y
`

R(x, y) → ¬P (y)
´´

”

(3)

5. ¬¬∀y
`

R(c, y) → ¬P (y)
´

(3)

6. ¬

“

R(c, d) → ¬∀x
`

R(d, x) → ¬∀y
`

R(x, y) → ¬P (y)
´´

”

(4, y/d)

7. ∀y
`

R(c, y) → ¬P (y)
´

(5)
8. R(c, d) (6)
9. ¬¬∀x

`

R(d, x) → ¬∀y
`

R(x, y) → ¬P (y)
´´

(6)
10. ∀x

`

R(d, x) → ¬∀y
`

R(x, y) → ¬P (y)
´´

(9)
11. R(d, c) → ¬∀y

`

R(c, y) → ¬P (y)
´

(10, x/c)
12. ¬R(d, c) (11) 13. ¬∀y

`

R(c, y) → ¬P (y)
´

(11)
14. ∀y

`

R(c, y) → R(y, c)
´

(1, x/c) 18. ¬
`

R(c, e) → ¬P (e)
´

(13, y/e)
15. R(c, d) → R(d, c) (14, y/d) 19. R(c, e) (18)
16.¬R(c, d) (15) 17. R(d, c) (15) 20. ¬¬P (e) (18)

⊗ ⊗ 21. R(c, e) → ¬P (e) (7, y/e)
22.¬R(c, e) (21) 23.¬P (e) (21)

⊗ ⊗
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2. a) M, s1 
 K1P since v(s1, P ) = v(s2, P ) = true, and
M, s1 
 K2P and M, s1 
 K3P since v(s1, P ) = true.
Thus M, s1 
 EP .

b) M, s1 
 K2EP and M, s1 
 K3EP since M, s1 
 EP .
Furthermore, M, s2 
 K1P since v(s1, P ) = v(s2, P ) = true,
M, s2 
 K2P since v(s2, P ) = v(s3, P ) = true, and
M, s2 
 K3P since v(s2, P ) = true. Hence M, s2 
 EP , and
it follows that M, s1 
 K1EP . Thus M, s1 
 EEP .

This result can also be obtained by noticing that P is true in all
worlds that are reachable from s1 in two steps.

c) M, s1 1 CP since s4 is C-reachable from s1 and v(s4, P ) = false.

3. Recall that a model is universal of it is based on a universal frame. S5

denotes the set of all universal frames. Let ϕ be a formula that is not S5-
valid, where Then there is a universal countermodel for M = 〈S,R, v〉
having a world s ∈ S for which M, s 1 ϕ.

Let F = {2ψ | 2ψ is a subformula of ϕ and M, s 
 ¬2ψ}.

Then for each formula 2ψ ∈ F there is a corresponding sψ ∈ S such
that 〈s, sψ〉 ∈ R and M, sψ 
 ¬ψ.

Let M′ = 〈S ′, R′, v′〉, where S ′ = {s}∪{sψ | 2ψ ∈ F} ⊆ S, R′ = S ′×S ′

and v′(s′, P ) = v(s′, P ) for all s′ ∈ S ′ and for all atomic formulas P
occurring in ϕ.

We will show by induction that for every s′ ∈ S ′ and for every subfor-
mula ψ of ϕ it holds that M, s′ 
 ψ iff M′, s′ 
 ψ.

The base case (for every atomic formula) is trivial. Furthermore, the
induction step follows immediately for all subformulas of the form ψ′ ∧
ψ′′ and ¬ψ. Now consider a subformula of the form 2ψ. Let s′ ∈ S ′.

If M, s′ 
 2ψ, then M, t 
 ψ for all t ∈ S ′ due to the fact that M
is universal. By the induction hypothesis, M′, t 
 ψ for all t ∈ S ′. It
follows that M′, s′ 
 2ψ.

On the other hand, if M, s′ 1 2ψ, then M, t 
 ¬2ψ for all t ∈ S ′

since M is universal. Especially M, s 
 ¬2ψ, and hence 2ψ ∈ F .
Now we know that there is a world sψ ∈ S ′ such that 〈s, sψ〉 ∈ R and
M, sψ 
 ¬ψ, that is, M, sψ 1 ψ. By the induction hypothesis it follows
that M′, sψ 1 ψ, and thus M′, sψ 
 ¬ψ. Since M′ is universal, we have
M′, s′ 1 2ψ. Especially s ∈ S ′ and M, s 1 ϕ, and thus by the above
it follows that M′, s 1 ϕ. Hence M′ is a countermodel for ϕ, as well.
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If ϕ is not S5-valid, there is a universal countermodel M and a world
s such that M, s 1 ϕ. By our construction we obtain another universal
countermodel M′ for ϕ having at most |Sub(ϕ)| worlds.
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Solutions

1. Basic operator:

M, s |= AXP iff M, t |= P for all t such that sRt

Replace P by ¬P :

M, s |= AX¬P iff M, t |= ¬P for all t such that sRt

M, s 6|= AX¬P iff M, t 6|= ¬P for some t such that sRt

M, s |= ¬AX¬P iff M, t 6|= ¬P for some t such that sRt

M, s |= EXP iff M, t |= P for some t such that sRt

Basic operator:

M, s |= A(PUQ) iff for all full paths (s0, s1, . . . ) with s0 = s

in M, there is some i such that M, si |= Q,

and for all j < i it holds that M, sj |= P.

Make the substitutions P → ⊤, Q→ P :

M, s |= A(⊤UP ) iff for all full paths (s0, s1, . . . ) with s0 = s

in M there is some i such that M, si |= P

and for all j < i it holds that M, sj |= ⊤.

M, s |= AFP iff for all full paths (s0, s1, . . . ) with s0 = s

in M there is some i such that M, si |= P.

Basic operator:

M, s |= E(PUQ) iff there is a full path (s0, s1, . . . ) with s0 = s

in M and there is some i such that M, si |= Q

and for all j < i it holds that M, sj |= P.
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Make the substitutions P → ⊤, Q→ P :

M, s |= E(⊤UP ) iff there is a full path (s0, s1, . . . ) with s0 = s

in M and there is some i such that M, si |= P

and for all j < i it holds that M, sj |= ⊤.

M, s |= EFP iff there is a full path (s0, s1, . . . ) with s0 = s

in M and there is some i such that M, si |= P.

M, s |= EFP iff there is a full path (s0, s1, . . . ) with s0 = s

in M and there is some i such that M, si |= P.

M, s |= EF¬P iff there is a full path (s0, s1, . . . ) with s0 = s

in M and there is some i such that M, si |= ¬P.

M, s 6|= EF¬P iff for all full paths (s0, s1, . . . ) with s0 = s

in M and for all i it holds that M, si 6|= ¬P.

M, s |= ¬EF¬P iff for all full paths (s0, s1, . . . ) with s0 = s

in M and for all i it holds that M, si 6|= ¬P.

M, s |= AGP iff for all full paths (s0, s1, . . . ) with s0 = s

in M and for all i it holds that M, si |= P.

M, s |= AFP iff for all full paths (s0, s1, . . . ) with s0 = s

in M there is some i such that M, si |= P.

M, s |= AF¬P iff for all full paths (s0, s1, . . . ) with s0 = s

in M there is some i such that M, si |= ¬P.

M, s 6|= AF¬P iff there is a full path (s0, s1, . . . ) with s0 = s

in M such that for all i it holds that M, si 6|= ¬P.

M, s |= ¬AF¬P iff there is a full path (s0, s1, . . . ) with s0 = s

in M such that for all i it holds that M, si 6|= ¬P.

M, s |= EGP iff there is a full path (s0, s1, . . . ) with s0 = s

in M such that for all i it holds that M, si |= P.
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2.

M, x |= PUQ iff there is some i such that M, xi |= Q

and for all j < i it holds that M, xj |= P.

M, x |= ⊤UP iff there is some i such that M, xi |= P

and for all j < i it holds that M, xj |= ⊤

M, x |= FP iff there is some i such that M, xi |= P.

M, x |= FP iff there is some i such that M, xi |= P.

M, x |= F¬P iff there is some i such that M, xi |= ¬P.

M, x 6|= F¬P iff for all i it holds that M, xi 6|= ¬P.

M, x |= ¬F¬P iff for all i it holds that M, xi 6|= ¬P.

M, x |= GP iff for all i it holds that M, xi |= P.

M, x |= PUQ iff there is some i such that M, xi |= Q

and for all j < i it holds that M, xj |= P.

M, x |= (¬P )U(¬Q) iff there is some i such that M, xi |= ¬Q

and for all j < i it holds that M, xj |= ¬P.

M, x 6|= (¬P )U(¬Q) iff for all i :

M, xi 6|= ¬Q or there is some j < i such that M, xj 6|= ¬P.

M, x |= ¬
(

(¬P )U(¬Q)
)

iff for all i :

if M, xi |= ¬Q, then there is some j < i such that M, xj 6|= ¬P.

M, x |= PRQ iff for all i :

if M, xi 6|= Q, then there is some j < i such that M, xj |= P.

3. For example, define

v(s0, P ) = true v(s0, Q) = false
v(s1, P ) = false v(s1, Q) = true
v(s2, P ) = false v(s2, Q) = false.

Then we have the model

s0 // s1 // s2
ss

P,¬Q ¬P,Q ¬P,¬Q
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Now for the full path x = (s0, s1, s2, s2, s2, . . .) it holds that

M, x |= PUQ, since M, x1 |= Q and M, xj |= P holds for all j < 1,

but M, x 6|= QRP since M, x1 6|= P and there is no j < 1 for which
M, xj |= Q.
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1. a) P ∧ EFQ

b) EF(P ∧ AXAG¬P )

c) AG
(

P → AX(P → EFQ)
)

d)
(

P → A(PUQ)
)

∧
(

¬P → AX(P ∨AXP )
)

e) E
(

PUAG((Q→ AX¬Q) ∧ (¬Q→ AXQ)
))

f) AG
(

P → AG(¬Q ∧ ¬R)
)

∧AG
(

(Q ∨R) → AG¬P
)

2. a) M = 〈S,R, v〉, where S = {s, t}, R =
{

〈s, t〉, 〈t, t〉
}

, v(s, P ) =
true and v(t, P ) = false.

s
P

//
t

¬P

��

M, s |= AFP holds since (s, t, t, t, . . .) is the only full path begin-
ning from s and on this path there is a state s such that M, s |= P

holds. Thus AFP is satisfiable.

For GFP to be satisfiable in the model M there should be a
full path x in M for which M, x |= GFP . Then M, xi |= FP

should hold for all i ≥ 0, that is, for all i ≥ 0 there should be a
j ≥ i such that M, xj |= P . In other words, P should be true on
infinitely many (infinite) suffixes of the path x However, there are
no such paths since the only full paths in M are (s, t, t, t, . . .) and
(t, t, t, . . .), and P is true only on finitely many suffixes of these
paths. Thus the formula GFP is not satisfiable in the model M.

b) M = 〈S,R, v〉, where S = {s, t}, R =
{

〈s, s〉, 〈s, t〉, 〈t, t〉
}

,
v(s, P ) = false and v(t, P ) = true.

s
¬P

//��
t
P

��

M, s |= EFAGP and M, t |= EFAGP hold since the model inclu-
des the full paths (s, t, t, t, . . .) and (t, t, t, . . .) which go though the
state t, and clearly M, t |= AGP . Thus the formula EFAGP is
valid in the model.
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However, FGP is not valid in the model: the full path (s, s, s, . . .)
has no infinite suffix x such that M, xi |= P holds for all i (since
v(s, P ) = false), and hence M, (s, s, s, . . .) 6|= FGP .

c) M = 〈S,R, v〉, where S = {s, t}, R =
{

〈s, s〉, 〈s, t〉, 〈t, s〉, 〈t, t〉
}

,
v(s, P ) = true and v(t, P ) = false.

s
P

99��
t

¬P

��yy

The formula FXP is satisfiable since the model has (for example)
the full path x = (t, s, s, s, . . .) for which M, x |= XP (since
v(s, P ) = true), and hence M, x |= FXP .

However, the formula EFAXP is not satisfiable in any state of the
model: otherwise, there should be a full path that begins from s

or t which goes through states s and t which would also go though
a state which satisfies AXP . In other words, either M, s |= AXP

or M, t |= AXP should holds; however, this is not the case since
both s and t have a successor (t) in R for which M, t 6|= P .

3. a) M = 〈S,R, v〉, where S = {s, t}, R =
{

〈s, t〉, 〈t, s〉
}

, v(s, P ) =
v(s, V ) = false and v(t, P ) = v(t, V ) = true.

s
¬P
¬V

99
t
P
V

yy

Here we can separately look at the paths x1 = (s, t, s, t, . . .) and
x2 = (t, s, t, s, . . .).

• M, s |= E(¬VUP ) holds since M, x1
1 |= P (because v(t, P ) =

true), and for all i < 1 we have M, xi1 |= ¬V . Furthermore,
M, t |= E(¬VUP ) holds since the full path x2 starts from t

and M, x0
2 |= P .

• Since M, x0
1 |= ¬P , we have M, s |= E(VU¬P ). Similarly,

M, t |= E(VU¬P ) holds since M, x1
2 |= ¬P and M, xi2 |= V

for all i < 1.

• M, s |= AF(V → AX¬V ) ∧ EFV since x1 is the only path
that starts from s and M, x1 |= F(V → AX¬V ) (because,
e.g., M, x0

1 |= V → AX¬V since v(s, V ) = false) and, ad-
ditionally, M, x1 |= FV since the path x1 goes through the
state t and v(t, V ) = true.
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Similarly, we have M, t |= AF(V → AX¬V ) ∧ EFV since
x2 is the only full path that starts from t and M, x0

2 |=
AX¬V holds since M, t |= AX¬V (the only successor of t is
s and v(s, V ) = false). Furthermore, M, t |= EFV holds since
for the full path x2 that starts from t we have M, x0

2 |= V

(because v(t, V ) = true).

b) M = 〈S,R, v〉, where S = {s, t}, R =
{

〈s, t〉, 〈t, s〉
}

, v(t, P ) =
v(s, V ) = false and v(s, P ) = v(t, V ) = true.

s
P
¬V

88
t

¬P
V

xx

Again, we can separate the paths x1 = (s, t, s, t, . . .) and x2 =
(t, s, t, s, . . .).

• M, s |= AG(P → FV ) holds since x1 is the only full path
that starts from s and M, x1 |= G(P → FV ). This is because
M, x2k

1 |= FV (since M, x2k+1
1 |= V ) holds for all k ≥ 0 and,

additionally, M, x2k+1
1 6|= P holds for all k ≥ 0.

Similarly, M, t |= AG(P → FV ) holds since x2 is the only full
path that starts from t and M, x2 |= G(P → FV ) because
M, x2k

2 6|= P and M, x2k+1
2 |= FV holds for all k ≥ 0.

• M, s |= AF
(

P ∧ F(¬P ∧ XP )
)

holds since x1 is the only
full path that starts from s and M, x0

1 |= P ∧ F(¬P ∧ XP )
holds because M, x0

1 |= P (v(s, P ) = true) and, additionally,
M, x0

1 |= F(¬P∧XP ) holds because M, x1
1 |= ¬P∧XP (since

v(t, P ) = false M, (x1
1)

1 |= P ).
Similarly, M, t |= AF

(

P ∧F(¬P ∧XP )
)

holds since x2 is the
only full path that starts from t and because x1

2 = x1 = x0
1

and M, x0
1 |= P ∧ F(¬P ∧ XP ), and (cf. above) M, x2 |=

F
(

P ∧ F(¬P ∧XP )
)

.

• M, s |= A(¬VUV ) holds since x1 is the only full path that
starts from s and M, x1 |= ¬VUV because M, x1

1 |= V

(v(t, V ) = true) and M, xi1 |= ¬V for all i < 1 (v(s, V ) =
false).
Since v(t, V ) = true, M, x |= ¬VUV holds for all full paths
x that start from t. Thus M, t |= A(¬VUV ) holds.
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