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Solutions

1. KB is the set of symmetric frames. Let’s translate the formula in the
exercise into predicate logic:

r

—0-0-0-P — ~0-P,z)

7(~0-0-0-P,z) — 7(~0-P,z)

—7(0=0-0-P,z) — ~r(0-P,z)

ﬁVy(R(af:,y) — 7(=0-0-P, y); — “Vy(R(x, y) — T(ﬁpyy))
“Vy(R(z,y) — ~m(0-0-P,y)) — ~Vy(R(z,y) — ~7(P,y))
~Vy(R(z,y) — ~Va(R(y,z) — T(ﬂuﬂp,m); — —Vy(R(z,y) — ~P(y))

~Vy(R(z,y) — Ve (R(y,z) — -7(0-P,z))) — ~Vy(R(z,y) — ~P(y))
v,x) — ~Vy(R(x,y) — rbf:y)))g — —y(R(a,y) — ~P(y))

) (
—Vy(R(z,y) — ﬁVz(R
= Vy(R(z,y) — ﬁVz(R
“Vy(R(z,y) — ~Vaz (R
@

y,@) = Vy(R(z,y) — -7(P,y))) ) = ~Vy(R(z,y) — —P(y))
y.@) = Wy (R(a,y) = ~PW))) — ~Vy(R,y) — ~P)

Additionally, we encode the frame axiom in predicate logic:

Vavy(R(z,y) — R(y,x)) (symmetricity)

Then, we construct a complete tableau starting from the frame axiom

and —Vzp.
1. VaVy(R(z,y) — R(y,z))
PR— (—‘Vy(R(z,y) — —Vz(R(y, &) — ~Vy(R(z,y) — ﬂP(y)))) — ~Vy(R(z,y) — ﬂP(y)))
3. =(~vy(Rle,y) = Vo (R, 2) = ~Vy(R@,y) = ~PW))) = ~Vy(Rle.y) = ~PW)) (2 /o)
4. y(Rie,y) — Va(R(y,) — Vy(R(w,y) » ~PW))) ()
5. —~=Vy(R(e,y) — ~P(y)) 3)
6. ~(R(e,d) — ~Va(R(d, 2) — ~Vy(R(z,5) — ~P(1)))) (4, y/d)
7. Yy(R(e.y) — ~P(y)) (5)
8. R(c,d) (6)
9. ﬁﬁVz(H(d, z) — ﬁVy(H(z, y) — ﬁl’(y))) (6)
10. Vw(R(d, z) — —\Vy(R(L y) — ﬂP(y))) 9)
11. R(d,c) — —Vy(R(c,y) — ~P(y)) (10, z/c)
12. —R(d,c) (11) 13. Vy(R(c,y) — —P(y)) (11)
14. Vy(R(c,y) — R(yc)) (1, =/c) |18. ﬁ(R(c, e) — ﬁ]’(c)) (13, y/e)
15. R(e,d) — R(d,c) (14, y/d)[19. R(c,e) (18)
16.=R(c, d) (15)|17. R(d, ¢) (15) 20. ——P(e) (18)

® ® 21. R(c,e) — —P(e) (7, y/e

(21)

22. ~R(c, e) (21)[23. =P(e)
® ®

2.

3.

a) M, sy Ik K P since v(s1, P) = v(sq, P) = true, and
M, s1IF Ky P and M, sq IF K3P since v(sq, P) = true.
Thus M, s1 IF EP.

b) M, s; - K3EP and M, sy I K3EP since M, s; IF EP.
Furthermore, M, sy IF K1 P since v(s1, P) = v(sq, P) = true,
M, sy IF Ko P since v(sp, P) = v(s3, P) = true, and
M, sy IF K3 P since v(s2, P) = true. Hence M, sy IF EP, and
it follows that M, s; IF K3 EP. Thus M, s; IF EEP.
This result can also be obtained by noticing that P is true in all
worlds that are reachable from s; in two steps.

¢) M, s ¥ CP since sy is C-reachable from s; and v(s4, P) = false.

Recall that a model is universal of it is based on a universal frame. S5
denotes the set of all universal frames. Let ¢ be a formula that is not S5-
valid, where Then there is a universal countermodel for M = (S, R, v)
having a world s € S for which M, s ¥ .

Let F = {0O¢ | O¢ is a subformula of ¢ and M, s IF =0}

Then for each formula Oty € F there is a corresponding s, € S such
that (s, sy) € R and M, sy Ik =1,

Let M’ = (5", R',v"), where S" = {s}U{s,, | O € F} C S, R’ = 5'x 5’
and v'(¢', P) = v(¢, P) for all ¢ € S" and for all atomic formulas P
occurring in .

We will show by induction that for every s’ € S’ and for every subfor-
mula ¢ of ¢ it holds that M, ' I-4 iff M’ s I 4.

The base case (for every atomic formula) is trivial. Furthermore, the
induction step follows immediately for all subformulas of the form ¢’ A
¥"” and —). Now consider a subformula of the form O. Let s’ € 5.

If M, s I+ O, then M, t I 4 for all t € S’ due to the fact that M
is universal. By the induction hypothesis, M’ ¢ IF ¢ for all ¢t € S’. Tt
follows that M’, " I 0.

On the other hand, if M, s ¥ Oy, then M, t |- =0y for all t € 5’
since M is universal. Especially M, s |- =01, and hence Oy € F.
Now we know that there is a world s, € S’ such that (s, sy) € R and
M, sy IF =), that is, M, sy, ¥ 7). By the induction hypothesis it follows
that M', sy ¥ ¢, and thus M, sy, IF =¢p. Since M’ is universal, we have
M' ' ¥ 0. Especially s € S and M, s ¥ ¢, and thus by the above
it follows that M', s ¥ ¢. Hence M’ is a countermodel for ¢, as well.



If ¢ is not S5-valid, there is a universal countermodel M and a world
s such that M, s * ¢. By our construction we obtain another universal
countermodel M’ for ¢ having at most |Sub(y)| worlds.
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1. Basic operator:
M,s |= AXP iff M,t = P for all ¢ such that sRt
Replace P by —P:

M, s = AX-P iff M,t |= =P for all t such that sR¢
M, s £ AX=P iff M,t [~ =P for some ¢ such that sRt
M, s = ~AX=P iff M, t £ =P for some t such that sR¢
M, s = EXP iff M,t = P for some t such that sR¢

Basic operator:

M, s = A(PUQ) iff for all full paths (s, s1,...) with s = s
in M, there is some i such that M, s; E Q,
and for all j <4 it holds that M, s; = P.

Make the substitutions P — T, QQ — P:

M, s = A(TUP) iff for all full paths (s, s1,...) with sp = s
in M there is some ¢ such that M, s; = P
and for all j < ¢ it holds that M, s; = T.

M, s = AFP iff for all full paths (sg, s1,...) with so =5
in M there is some ¢ such that M, s; = P.

Basic operator:

M, s = E(PUQ) iff there is a full path (sg, s1,...) with so = s
in M and there is some i such that M, s; = Q
and for all j < 4 it holds that M, s; = P.



Make the substitutions P — T, Q — P: 2.

M,z = PUQ iff there is some 4 such that M, z’ = Q
and for all j < i it holds that M, 27 |= P.

M, x |= TUP iff there is some 4 such that M, z’ = P

M, s = E(TUP) iff there is a full path (sq, s1,...) with so = s
in M and there is some ¢ such that M, s; = P
and for all j < ¢ it holds that M, s; = T.

M, s = EFP iff there is a full path (s, s1,...) with sp = s and for all j < i it holds that M, 27 = T
in M and there is some ¢ such that M, s; = P. M, x |= FP iff there is some i such that M, z' = P.

M,z |= FP iff there is some 4 such that M, 2’ = P.

M, s = EFP iff there is a full path (sq, s1,...) with so = s M,z |= F—P iff there is some 4 such that M, 2’ = =P.

in M and there is some ¢ such that M, s; = P. M, x = F-P iff for all i it holds that M, z® £ —P.
M, s = EF—P iff there is a full path (sg, s1,...) with sg = s M,z |= =F—P iff for all i it holds that M, z* & =P.
in M and there is some ¢ such that M, s; = —P. M,z |= GP iff for all it holds that M, 2’ |= P.
M, s = EF—P iff for all full paths (so, s1,...) with sp = s
in M and for all 4 it holds that M, s; |£ =P M,z |= PUQ iff there is some i such that M, 2" = Q
M, s = =EF-P iff for all full paths (sg, s1,...) with sg =s and for all j < i it holds that M, 2/ = P.
in M and for. all it holds that M, s; [~ = P. M,z |= (=P)U(=Q) iff there is some i such that M, 2’ | -Q
M, s = AGP iff for all full paths (sq, s1,...) with sp = s and for all j < 7 it holds that M, 27 = —P.
in M and for all ¢ it holds that M, s; = P. M,z b (~PYU(=Q) iff for all i

M, z" £ =Q or there is some j < i such that M,z £ —P.
M,z = ~((=P)U(=Q)) iff for all i :

M., s |= AFP iff for all full paths (so, s1,...) with sp = s if M, 2" = —Q, then there is some j < 4 such that M, 27 £ —P.
in M there is some ¢ such that M, s; = P. M,z = PRQ iff for all i :
M. s |= AF=P iff for all full paths (so, s1,...) with so = s if M, 2" £ @, then there is some j < i such that M, 27 |= P.
in M there is some ¢ such that M, s; = —P.
M, s = AF—P iff there is a full path (sg, s1,...) with s =s 3. For example, define
in M such that for all ¢ it holds that M, s; = - P. v(s0, P) = true v(s0, Q) = false
M, s = ~AF-P iff there is a full path (so, s1,...) with sp = s (s, P) = false (s1,Q) = true
in M such that for all ¢ it holds that M, s; K& —P. v(sq, P) = false v(s2, Q) = false.

M, s = EGP iff there is a full path (sq, s1,...) with sg = s
in M such that for all 7 it holds that M, s; = P.

Then we have the model

So S1 SQ

2

P,=Q -P,Q -P,-Q




Now for the full path x = (sq, s1, S2, $2, Sa, . . .) it holds that
M,z |= PUQ, since M, 2" |= Q and M, 27 = P holds for all j < 1,

but M,z = QRP since M, z! £ P and there is no j < 1 for which
M, 27 = Q.
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1. a
b) EF(P AN AXAG-P)
c AG(P — AX(P — EFQ))

) PAEFQ
)
)
d) (P — A(PUQ)) A (=P — AX(PV AXP))
)
)
)

¢) E(PUAG((Q — AX-Q) A (-Q — AXQ)))
f) AG(P — AG(-Q A —R)) AAG((QV R) — AG-P)

2. a) M = (5 R,v), where S = {s,t}, R = {{s,t),(t,t)}, v(s, P) =
true and v(t, P) = false.

M, s = AF P holds since (s,t,t,t,...) is the only full path begin-
ning from s and on this path there is a state s such that M, s = P
holds. Thus AF P is satisfiable.

For GFP to be satisfiable in the model M there should be a
full path z in M for which M,z = GFP. Then M,z' = FP
should hold for all ¢ > 0, that is, for all # > 0 there should be a
j > such that M, 2’ = P. In other words, P should be true on
infinitely many (infinite) suffixes of the path = However, there are
no such paths since the only full paths in M are (s,¢,t,¢,...) and
(t,t,t,...), and P is true only on finitely many suffixes of these
paths. Thus the formula GFP is not satisfiable in the model M.

b) M = (S,R,v), where S = {s,t}, R = {(s,s),(s,t},(t,t)},
v(s, P) = false and v(t, P) = true.

s t
P P

M, s = EFAGP and M, t = EFAGP hold since the model inclu-
des the full paths (s, t,¢,t,...) and (¢,¢,t,...) which go though the
state ¢, and clearly M,t = AGP. Thus the formula EFAGP is
valid in the model.



However, FGP is not valid in the model: the full path (s, s, s,...)
has no infinite suffix  such that M, 2* = P holds for all i (since
v(s, P) = false), and hence M, (s,s,s,...) = FGP.

M = (S, R,v), where S = {s,t}, R = {(s,s), (s, 1), (t, s),(t,t)},
v(s, P) = true and v(t, P) = false.

P P

The formula FXP is satisfiable since the model has (for example)
the full path = = (¢,s,s,s,...) for which M,z = XP (since
v(s, P) = true), and hence M,z = FXP.

However, the formula EFAXP is not satisfiable in any state of the
model: otherwise, there should be a full path that begins from s
or t which goes through states s and ¢ which would also go though
a state which satisfies AXP. In other words, either M, s = AXP
or M,t = AXP should holds; however, this is not the case since
both s and ¢ have a successor (¢) in R for which M, t [= P.

M = (S, R,v), where § = {s,t}, R = {(s,8),{t,s)}, v(s, P) =
v(s, V) = false and v(t, P) = v(t, V) = true.

s € >y
—\P P
-V v
Here we can separately look at the paths x; = (s,t,s,¢t,...) and
T2 = (t7 S, t7 Sy )

e M, s = E(=VUP) holds since M, 21 |= P (because v(t, P) =
true), and for all i < 1 we have M,z = —=V. Furthermore,
M, t = E(=VUP) holds since the full path z, starts from ¢
and M, 29 |= P.

e Since M, 2} = =P, we have M,s = E(VU-P). Similarly,
M, t = E(VU=P) holds since M, z} = =P and M, z} =V
for all ¢ < 1.

e M,s = AF(V — AX-V) AEFV since ; is the only path
that starts from s and M,z | F(V — AX-V) (because,
eg., M,2) =V — AX~V since v(s,V) = false) and, ad-
ditionally, M, z; = FV since the path x; goes through the
state ¢ and v(t, V) = true.

Similarly, we have M.t = AF(V — AX-=V) A EFV since
xo is the only full path that starts from ¢ and M,y =
AX-V holds since M, t = AX=V (the only successor of ¢ is
s and v(s, V) = false). Furthermore, M, ¢t = EFV holds since
for the full path x, that starts from ¢ we have M, 25 | V
(because v(t, V) = true).

b) M = (S,R,v), where S = {s,t}, R = {(s,8),(t,s)}, v(t, P) =

v(s, V) = false and v(s, P) = v(t, V) = true.

s €< >y

P P

—\V V
Again, we can separate the paths z; = (s,t,s,¢,...) and 25 =
(t,s,t,8,...).

e M,s = AG(P — FV) holds since z; is the only full path
that starts from s and M, 21 = G(P — FV). This is because
M, 23 |= FV (since M,z3*" |= V) holds for all k > 0 and,
additionally, M, 22*+1 |£ P holds for all k > 0.

Similarly, M, t = AG(P — FV) holds since 5 is the only full
path that starts from ¢ and M, 2z, = G(P — FV) because
M,z = P and M, 22¥"1 |= FV holds for all k > 0.

e M,s = AF(P AF(=P A XP)) holds since z; is the only

full path that starts from s and M, 29 | P A F(=P A XP)
holds because M, 10 = P (v(s, P) = true) and, additionally,
M, 2 = F(=PAXP) holds because M, x1 = ~PAXP (since
v(t, P) = false M, (21)! = P).
Similarly, M, ¢ = AF (P AF(=P AXP)) holds since 5 is the
only full path that starts from ¢ and because 3 = z; =
and M,29 = P AF(=P AXP), and (cf. above) M, 2y =
F(PAF(-P AXP)).

e M,s = A(=VUV) holds since z; is the only full path that
starts from s and M,z; | —VUV because M,z | V
(v(t, V) = true) and M,z} | =V for all i < 1 (v(s,V) =
false).

Since v(t, V) = true, M,z = =V UV holds for all full paths
x that start from ¢. Thus M, t = A(=VUV) holds.
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