T-79.5101 / Spring 2008 ML-11	1	T-79.5101 / Spring 2008 ML-11
		Key Decision Techniques
		 Tableau method (for example CTL):
DECISION METHODS FOR CTL AND LTL		(i) Given a CTL formula, a tableau graph is built representing (essentially) all possible models of the formula.
1. Tableau method for CTL		(ii) The tableau is pruned and the checked whether it represents any model of the formula.
2. Deciding satisfiability and validity in CIL and LIL		 Automata theory methods (for example LTL):
E. A. Emerson: <i>Automated Temporal Reasoning about Reactive Systems</i> , Section 4 (pp. 18–23).		 (i) Given an LTL formula, a finite state (Büchi-) automaton is constructed accepting infinite words (paths) such that the automaton accepts (essentially) all possible full paths satisfying the formula.
		 (ii) Then it is checked whether the language accepted by the automaton is empty.
© 2008 TKK, Department of Information and Computer Science		© 2008 TKK, Department of Information and Computer Science
T-79.5101 / Spring 2008 ML-11	2	T-79.5101 / Spring 2008 ML-11
 Background Temporal logics CTL and LTL are decidable because they satisfy the finite model property (and there is an upper bound on the size of a counter-model). More efficient decision methods can be developed using tableau techniques and automata theory. 		 1. Tableau Method for CTL A CTL tableau is a bipartite graph where nodes are sets of formulas and of two types: OR-nodes and AND-nodes. For a CTL formula P a tableau is constructed by first transforming P to the positive normal form (where negations can appear only in front of atomic propositions) and then proceeding in two stages: (i) building an initial tableau T₀ and (ii) reducing T₀ to the final tableau T₁ using pruning rules. In the positive normal form propositional connectives ∧, ∨ are used and negation ¬ appears only in front of atomic propositions. We denoted by ~P the formula ¬P in the positive normal form.

Ć

3

4

Transformation Rules

A CTL formula P can be transformed to the positive normal form using the following rules:

$P \rightarrow Q$	\mapsto	$\neg P \lor Q$	$\neg \mathbf{A}(P\mathbf{U}Q) \mapsto$	$\mathbf{E}(\neg P\mathbf{B}Q)$
$\neg(P \lor Q)$	\mapsto	$\neg P \land \neg Q$	$\neg \mathbf{E}(P\mathbf{U}Q) \mapsto$	$\mathbf{A}(\neg P\mathbf{B}Q)$
$\neg(P \land Q)$	\mapsto	$\neg P \lor \neg Q$	$\neg \mathbf{A}(P\mathbf{B}Q) \mapsto$	$\mathbf{E}(\neg P\mathbf{U}Q)$
$\neg \neg P$	\mapsto	Р	$\neg \mathbf{E}(P\mathbf{B}Q) \mapsto$	$\mathbf{A}(\neg P\mathbf{U}Q)$
$\neg \mathbf{AGP}$	\mapsto	$\mathbf{EF} \neg P$		
$\neg \mathbf{EFP}$	\mapsto	$\mathbf{AG} \neg P$	Note the shorth	ands:
$\neg \mathbf{EGP}$	\mapsto	$\mathbf{AF} \neg P$	$\mathbf{A}(P\mathbf{B}Q)$:	$\neg \mathbf{E}((\neg P)\mathbf{U}Q)$
¬EG P ¬AF P	\mapsto	$\mathbf{AF} \neg P$ $\mathbf{EG} \neg P$	$\mathbf{A}(P\mathbf{B}Q)$: $\mathbf{E}(P\mathbf{B}Q)$:	$\neg \mathbf{E}((\neg P)\mathbf{U}Q)$ $\neg \mathbf{A}((\neg P)\mathbf{U}Q)$
¬EG P ¬AF P ¬AX P	$\begin{array}{c} \mapsto \\ \mapsto \\ \mapsto \end{array}$	AF¬ <i>P</i> EG¬ <i>P</i> EX¬ <i>P</i>	$\mathbf{A}(P\mathbf{B}Q)$: $\mathbf{E}(P\mathbf{B}Q)$:	$\neg \mathbf{E}((\neg P)\mathbf{U}Q)$ $\neg \mathbf{A}((\neg P)\mathbf{U}Q)$

© 2008 TKK, Department of Information and Computer Science

	T-79.5101 / Spring 20	08	ML-11
2			
	Example		
	Constructing the pos	itive normal form	$\mathbf{h} \sim \mathbf{AG}(R \rightarrow (\neg Q \wedge \mathbf{A}(P\mathbf{U}Q)))$:
	$\neg \mathbf{A}$	$\mathbf{G}(R \to (\neg Q \land \mathbf{A}))$	(PUQ)))
	\mapsto	$\mathbf{EF}\neg (\neg R \lor (\neg Q))$	$P \wedge \mathbf{A}(P\mathbf{U}Q)))$
	\mapsto	$\mathbf{EF}(R \wedge \neg (\neg Q / \neg Q))$	$(\mathbf{A}(P\mathbf{U}Q)))$
	\mapsto	$\mathbf{EF}(R \wedge (Q \vee \neg A))$	$\mathbf{A}(P\mathbf{U}Q)))$
	\mapsto	$\mathbf{EF}(R \wedge (Q \vee \mathbf{E}))$	$(\neg P\mathbf{B}Q)))$

Building the Initial Tableau T_0

- Given a CTL formula P we start with the OR-node $D_0 = \{P\}$.
- The successors of an OR-node *D* are AND-nodes obtained by applying α/β -*rules* to the node *D*.
- The successors of an AND-node *C* are OR-nodes obtained by applying the *successor rule* to *C*.

Remark. If a successor C of an OR-node D already appears in the tableau, another copy of C is not introduced in the tableau but the successor of D is set to be the already existing node (and similarly for the successors of AND-nodes).

 \implies The tableau remains finite.

C 2008 TKK, Department of Information and Computer Science

T-79.5101 / Spring 20	08 ML-11	
Successors of an O	R-Node	
Each successor of an that $D \subseteq C$ and C is a such that	OR-node D is a smallest set \mathfrak{a} downward closed under the \mathfrak{a}	of formulas C such and β rules below
1. if $lpha\in C$, then $lpha_1$	$\in C$ and $lpha_2 \in C;$	
2. if $eta\in C$, then eta_1	$\in C ext{ or } \beta_2 \in C.$	
α rules:		
$P \wedge Q$	AGP	EGP
Р	Р	Р
Q	AXAGP	EXEGP
$\mathbf{A}(P\mathbf{B}Q)$	$\mathbf{E}(P\mathbf{B}Q)$	
$\sim Q$	$\sim Q$	
$P \lor \mathbf{AXA}(P\mathbf{B}Q)$	$P \lor \mathbf{EXE}(P\mathbf{B}Q)$	

8

T-79.5101 / Sp	oring 2008
----------------	------------

Successors of an (OR-Node–cont'd	
β rules:		
$P \lor Q$	AFP	EFP
$P \mid Q$	$P \mid \mathbf{AXAF}P$	$P \mid \mathbf{EXEF}$
$\mathbf{A}(P\mathbf{U}Q)$	$\mathbf{E}(P\mathbf{U}Q)$	
$Q \mid P \land \mathbf{AXA}(P\mathbf{U}Q)$	$Q \mid P \land \mathbf{EXE}(P\mathbf{U}Q)$	

Remark. For literals and for formulas of the form \mathbf{AXP} and \mathbf{EXP} there are no applicable rules (and the expansion of a successor C ends in such formulas).

 \odot 2008 TKK, Department of Information and Computer Science

ML-11

10

9

Example

T-79 5101 / Spring 2008

From the set $D = \{ AFEF((P \land Q) \lor R) \}$ we can construct the following downward closed sets of formulas:

 $C_{1} = \{ \mathbf{AFEF}((P \land Q) \lor R), \mathbf{EF}((P \land Q) \lor R), (P \land Q) \lor R, P \land Q, P, Q \}$ $C_{2} = \{ \mathbf{AFEF}((P \land Q) \lor R), \mathbf{EF}((P \land Q) \lor R), (P \land Q) \lor R, R \}$ $C_{3} = \{ \mathbf{AFEF}((P \land Q) \lor R), \mathbf{EF}((P \land Q) \lor R), \mathbf{EXEF}((P \land Q) \lor R) \}$ $C_{4} = \{ \mathbf{AFEF}((P \land Q) \lor R), \mathbf{AXAFEF}((P \land Q) \lor R) \}$

Remark. Downward closed sets of formulas for a node D can be built by constructing a tableau where the formulas in D are put to the root of the tableau and then α and β rules are applied as in the tableau method for propositional logic. Each branch of the resulting tableau corresponds to a downward closed set.

11

Successors of AND-Nodes

The successors of an AND-node C are obtained with the successor rule.

• Let the set of formulas C contain the following $\mathbf{A}\mathbf{X}P_i/\mathbf{E}\mathbf{X}Q_j$ formulas:

 $\mathbf{AX}P_1, \ldots, \mathbf{AX}P_l$ and $\mathbf{EX}Q_1, \ldots, \mathbf{EX}Q_k$

Then the successors of \boldsymbol{C} are

$$D_1 = \{P_1, \ldots, P_l, Q_1\}, \ldots, D_k = \{P_1, \ldots, P_l, Q_k\}.$$

• If the set C has no formulas of the form **EX**Q_i, then C has a unique successor {P₁,...,P_l}.

Note that there is always at least one successor (which is the empty set if there are no formulas of the form $\mathbf{AX}P_i$ either).

Example. The node

 $C = \{\mathbf{A}(PUQ), \mathbf{AXA}(PUQ), \mathbf{EGP}, P, \mathbf{EXEGP}, \mathbf{EFQ}, \mathbf{EXEFQ}\}.$

has successors
$$D_1 = \{ \mathbf{A}(P\mathbf{U}Q), \mathbf{E}\mathbf{G}P \}$$
 and $D_2 = \{ \mathbf{A}(P\mathbf{U}Q), \mathbf{E}\mathbf{F}Q \}$

C 2008 TKK, Department of Information and Computer Science

ML-11

12

Pruning Rules

The final tableau is obtained by pruning the initial tableau T_0 using the following rules until none of them is applicable.

- Remove an AND-node containing a formula and its negation.
- Remove an AND-node if one of its original successors have been removed.
- Remove an OR-node if all its original successors have been removed.
- Remove an AND-node if it contains a **eventuality formula** not satisfiable in the current tableau.

Eventuality formulas are of the form:

Satisfiability of Eventuality Formulas

- An eventuality formula $\mathbf{EF}Q$ ($\mathbf{E}(P\mathbf{U}Q)$) is satisfiable in an AND-node C iff the tableau includes a path from C to an AND-node C' containing the formula Q (and all other AND-nodes in the path contain the formula P).
- An eventuality formula AFQ (A(PUQ)) is satisfiable in an AND-node C iff there is a finite acyclic subgraph in the tableau such that
- (i) The root of the subgraph is the node C.
- (ii) For each interior OR-node in the subgraph exactly one of its successor AND-nodes in the current tableau is in the subgraph.
- (iii) For each interior AND-node all of its successor OR-nodes in the current tableau are in the subgraph.
- (iv) Every leaf node of the subgraph is an AND-node containing the formula Q (and all other AND-nodes contain P).

© 2008 TKK, Department of Information and Computer Science

ML-11

Example

T-79 5101 / Spring 2008

- The node $D_0 = { \mathbf{EFP} \land \neg P }$ has AND-successors $C_1 = { \mathbf{EFP} \land \neg P, \mathbf{EFP}, \neg P, P }$ and $C_2 = { \mathbf{EFP} \land \neg P, \mathbf{EFP}, \neg P, \mathbf{EXEFP} }.$
- The OR-successors of C_1 : $D_1 = \{\}$. The OR-successors of C_2 : $D_2 = \{ EFP \}$.
- The AND-successors of D_2 : $C_3 = \{ EFP, P \}$ and $C_4 = \{ EFP, EXEFP \}$. The AND-successors of D_1 : $C_5 = \{ \}$.
- The OR-successors of C₃ and C₅: {} = D₁. The OR-successors of C₄: {EFP} = D₂.
- Initial tableau T_0 is now finished.
- Pruning: Remove C_1 (contains a formula and its negations). Final tableau T_1 now ready (an eventuality formula **EF***P* satisfiable in AND-nodes C_2, C_3, C_4).

T-79.5101 / Spring 2008

© 2008 TKK, Department of Information and Computer Science

Р

EXEFP

ML-11

Deciding CTL Satisfiability using Tableaux

Theorem. Let P be a CTL formula in the positive normal form. Then P is satisfiable iff the final tableau T_1 for P has an AND-node containing P.

- A tableau provides a satisfying model for a CTL formula P:
- The states of the model are given by the AND-nodes and the valuation is given by the atomic propositions in the AND-nodes.
- The model must contain at least one AND-node containing *P*.
- The successors need to be chosen such that the model is serial and for all AND-nodes the eventuality formulas in the AND-nodes are satisfiable.

Remark. The tableau method can be used for program synthesis (to construct program control skeletons):

(i) The specification of the program is provided as a CTL formula.

(ii) The method is used to construct a model satisfying the

specification (providing the control skeleton).

C 2008 TKK, Department of Information and Computer Science

ML-11

Example

T-79 5101 / Spring 2008

For a CTL formula $\mathbf{EFP} \land \neg P$ we can construct a model $\langle S, R, v \rangle$ from the tableaux T_1 as follows:

- Let $S = \{C_2, C_3, C_5\}$, $R = \{\langle C_2, C_3 \rangle, \langle C_3, C_5 \rangle, \langle C_5, C_5 \rangle\}$ and v(P, s) =true if $s = C_3$ and otherwise v(P, s) = false.
- Another possibility:
 S = {C₂, C₃, C₄, C₅}, R = { (C₂, C₄), (C₄, C₃), (C₃, C₅), (C₅, C₅) } and v(P,s) = true if s = C₃ and otherwise v(P,s) = false.

Remark. Consider a model

$$S = \{C_2, C_4\}$$
, $R = \{\langle C_2, C_4 \rangle, \langle C_4, C_4 \rangle\}$ and $v(P, C_2) = v(P, C_4) =$ false.

This is not a satisfying model because the eventuality formula \mathbf{EFP} in C_2 and C_4 is not satisfiable.

Deciding CTL Validity using Tableaux

- A formula ϕ is valid iff its negation $\neg\phi$ is not satisfiable.
- Satisfiability can be determined using the tableau method:

(i) transform the formula $\neg\phi$ to the positive normal form $\sim\phi;$

(ii) construct a tableau for the formula $\sim \phi.$

• Hence, a CTL formula ϕ is valid iff $\sim \phi$ is not satisfiable iff in the final tableau for the formula $\sim \phi$ there is no AND-node containing the formula $\sim \phi$.

C 2008 TKK, Department of Information and Computer Science

Computational Complexity

• CTL

Model checking: **P**-complete, $O(|M| \cdot |P|)$ Satisfiability: **EXPTIME**-complete

• LTL

Model checking: **PSPACE**-complete, $O(|M| \cdot exp(|P|))$ Satisfiability: **PSPACE**-complete

• CTL*

Model checking: **PSPACE**-complete, $O(|M| \cdot exp(|P|))$ Satisfiability: **2EXPTIME**-complete

© 2008 TKK, Department of Information and Computer Science

T-79 5101 / Spring 2008

ML-11

Restricted Subclasses

- Satisfiability can be decided in polynomial time, for instance, in subclasses which are interesting for program synthesis.
- For example SCTL (Simplified CTL):

```
P_1 \lor \cdots \lor P_n, \mathbf{AG}(P_1 \lor \cdots \lor P_n)\mathbf{AG}(P_0 \to \mathbf{AF}(P_1 \lor \cdots \lor P_n)),
```

```
\mathbf{AG}(P_0 \to \mathbf{A}(P_1 \lor \cdots \lor P_n \mathbf{U}Q_1 \lor \cdots \lor Q_m))
```

 $\mathbf{AG}(P_0 \to \mathbf{AX}(P_1 \lor \cdots \lor P_n) \land \mathbf{EX}(Q_1 \lor \cdots \lor Q_m) \land \cdots \land \mathbf{EX}(R_1 \lor \cdots \lor R_l))$ where P_i, Q_i, R_i atomic propositions such that the ESC-assumption holds (eventualities are "history-free").

• For example, RLTL (Restricted LTL) $\mathbf{G}(P_1 \lor \cdots \lor P_n)$ $\mathbf{G}(P_0 \to \mathbf{F}(P_1 \lor \cdots \lor P_n))$ $\mathbf{G}(P_0 \to \mathbf{X}(P_1 \lor \cdots \lor P_n))$

where each P_i is an atomic proposition.

Summary

- Methods for deciding satisfiability (and validity) in temporal logics are typically based on tableau techniques and automata theory.
- The tableau method for CTL can be seen as a systematic procedure to build a model for a formula (in positive normal form).
- In the tableau method first an initial tableau is built which is then reduced using pruning rules. If the reduced tableau satisfies a given condition, a model of the original formula can be obtained from the reduced tableau.
- The method can be used for synthesizing (control skeletons of) programs.
- Satisfiability of a LTL formula can be reduced to satisfiability of a CTL formula and, hence, the CTL tableau method can be used for deciding satisfiability (and validity) in LTL.

 \odot 2008 TKK, Department of Information and Computer Science