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MODEL CHECKING1. Introdution to model heking2. CTL model heking3. Implementation tehniques4. LTL model heking

E. M. Clarke et al.: Model Cheking, Chapter 4 (pp. 35�49).E. A. Emerson: Automated Temporal Reasoning about ReativeSystems, Setion 3 (pp. 16�18).
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1. Introdution to Model ChekingQuestion to be solved: Is a given formula P true in a model M?

• Model M: a model of the system under validationThe model is generated from a system desription/spei�ationwhih is given in a modelling/design/spei�ation language: SDL,VHDL, proess algebra, �nite state automata, Petri nets, SMV,PROMELA, . . .

• Formula P: an interesting property of the system (systemrequirement)Often given in temporal logi: CTL, LTL, CTL∗, . . .
• Model heking an be fully automated.
• Models of the realisti system often very big.
• Current tehniques are saling up to real appliations© 2008 TKK, Department of Information and Computer Siene
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Building a ModelFor model heking of a system a possible world model M an begenerated from the system desription using various tehniques:
• Expliate state methods:The model M is generated (before model heking) usingreahability analysis tehniques whih build a reahability graphwhere eah reahable state of the system is expliitly represented(state explosion).

• On-the-�y tehniquesThe model M is generated using reahability analysis tehniquesduring model heking on demand.
• Symboli model heking:The reahable states are represented symbolially using Booleanformulas.© 2008 TKK, Department of Information and Computer Siene
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Representing the State Spae Symbolially

• The (global) system states are given a binary representation (nstate bits).

• For eah state bit i two atomi propositions are introdued: vi(urrent state) and v′i (new state).

• For eah state bit i a formula is given speifying the transitionrelation from the urrent state to a new state, for example,

v′i ↔ (vi ∧ vi+1)∨¬vi+3 .The onjuntion of all these formulas T (~v,~v′) gives the transitionrelation of the whole system.

• The formula T (~v,~v′) spei�es in a symboli form all possible statetransitions: the system an move, for instane, from a state

(0, . . . ,0) to a state (1, . . . ,1) i� T (~v,~v′) true in a truth assignmentwhere all atoms vi are false and all atoms v′i are true.© 2008 TKK, Department of Information and Computer Siene
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• Now a formula R(~v) expressing symbolially the set of reahablestates of the system an be formed iteratively as follows:1. R0(~v) := I(~v) where the formula I(~v) spei�es the possibleinitial states of the system.2. repeat for all i = 1,2, . . ., Ri(~v) := ∃~w(Ri−1(~w)∧T (~w,~v))until Ri(~v) ≡ Ri−1(~v) (are logially equivalent).Here ∃wR(w) is a shorthand for R(⊤)∨R(⊥) where R(⊤)(R(⊥)) is the formula R(w) with atom w replaed by ⊤ (⊥).

• The formula R(~v) spei�es symbolially the reahable states: forexample the state is (0, . . . ,0) is reahable i� R(~v) is true in atruth assignment where all atoms vi are false.

• In this way very large state spaes an be represented veryompatly: for instane, R(~v) = v1 represent 2n−1 reahable states(i.e., all states where the state bit v1 is true).© 2008 TKK, Department of Information and Computer Siene
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Model Chekers

• take typially as input (i) a model given using a spei�ationlanguage supported by the heker and (ii) a formula given in atemporal logi supported by the heker (requirementspei�ation);

• give as output a noti�ation that the formula is true in (the initialstates of) the model or a ounter example (an exeution path inthe model where the formula is not true);

• and, hene, an also be used for debugging, i.e., for �nding errorsin system designs.
© 2008 TKK, Department of Information and Computer Siene

AB

T-79.5101 / Spring 2008 ML-10 7

Example: SMV Model ChekerImplementation tehniques

• Uses symboli state spae representation.
• Formulas representing the state spae are manipulated in ane�ient OBDD normal form (ordered binary deision diagrams).

• Model heking temporal logi formulas (CTL and LTL) is alsodone symbolially.
© 2008 TKK, Department of Information and Computer Siene
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Example: a Model Given in the SMV Spei�ation Language

MODULE main

VAR

state1: {s1, n1};

ASSIGN

init(state1) := s1;

next(state1) :=

case

(state1 = s1) &

(state2 = s2): n1;

(state1 = n1) : {n1, s1};

1: state1;

esac;

VAR

state2: {s2, n2};

ASSIGN

init(state2) := s2;

next(state2) :=

case

(state1 = s1) &

(state2 = s2): n2;

(state2 = n2) : {n2, s2};

1: state2;

esac;

SPEC

AF ((state1 = n1) &

(state2 = s2))© 2008 TKK, Department of Information and Computer Siene
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Example: Model Cheking in SMV

$ smv example.smv

-- specification AF (state1 = n1 & state2 = s2) is false

-- as demonstrated by the following execution sequence

-- loop starts here --

state 1.1:

state1 = s1

state2 = s2

state 1.2:

state1 = n1

state2 = n2

state 1.3:

state1 = s1

state2 = s2© 2008 TKK, Department of Information and Computer Siene
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Global and Loal Model Cheking

• Global model heking:In whih states of the model M is the formula P true?

• Loal model heking:Is the formula P true is a given state s0 of the model M?

• Loal model heking (in onjuntion with on-the-�y tehniques)enable an approah where not all (reahable) states of the modelneed to be examined (nor even generated).

• However, global model heking is more straightforward toimplement and evaluation of formulas an be done more e�ientlyand with smaller memory requirements.

© 2008 TKK, Department of Information and Computer Siene
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2. Global CTL Model Cheking
• Global model heking methods determine the truth value of aformula in every state of the model.

• This an be done systematially by proessing all the subformulasof the given formula starting from the atomi propositions in thefollowing way:1. The subformulas of the formula P are ordered in a sequene
P0,P1, . . . ,Pn(= P),where eah subformula Pi appears only after all its propersubformulas have appeared in the sequene.Example. The subformulas of the formula A(PUE(QU¬P)) an beordered in suh a sequene, e.g., as follows:

P, Q, ¬P, E(QU¬P), A(PUE(QU¬P)).© 2008 TKK, Department of Information and Computer Siene
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CTL Model Cheking2. For all i = 0,1, . . . ,n determine the truth value of Pi in every state

s ∈ S in the model M as follows:(a) If Pi is an atomi proposition, its truth value is obtaineddiretly from the model.(b) If Pi is of the form ¬Pj or Pj ∧Pl , its truth value an beomputed from the truth values of the subformulas Pj,Pl (as

j, l < i, the truth values of Pj,Pl have been determined).() If Pi is of the form AXPj, its truth value an be omputed fromthe truth value of Pj in states t suh that sRt.Example. Let M = (S,R,v) where S = {s0,s1},

R = {〈s0,s0〉,〈s0,s1〉,〈s1,s0〉}, v(s0,P) = v(s1,Q) = true and

v(s1,P) = v(s0,Q) = false. Now M,si |= ¬(P∧Q) when i ∈ {0,1}.Hene, e.g.,M,s0 |= AX¬(P∧Q) whih also holds in the state s1.© 2008 TKK, Department of Information and Computer Siene
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2.(d) If Pi is of the form A(PjUPl), its truth value an be omputedusing the following equivalene:

A(PjUPl) ≡ Pl ∨ (Pj ∧AXA(PjUPl))i. Mark Pi true in all states where Pl is trueii. Mark Pi true in a state s if

M,s |= Pj and M, t |= Pi for all states t for whih sRt,until no new suh states an be found.iii. Mark Pi false in all other states.Example. Let M = (S,R,v) where S = {s0,s1,s2,s3},

R = {〈s0,s1〉,〈s1,s0〉,〈s0,s2〉,〈s2,s3〉,〈s3,s3〉},

v(si,P) = true i� i 6= 3, and v(si,Q) = true i� i = 3.Hene, M,s3 |= A(PUQ) by ase (i) and M,s2 |= A(PUQ) ase (ii). Forall other states si holds M,si 6|= A(PUQ) by ase (iii).

© 2008 TKK, Department of Information and Computer Siene
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2. (e) If Pi is of the form E(PjUPl), its truth value an be omputedusing the following equivalene:

E(PjUPl) ≡ Pl ∨ (Pj ∧EXE(PjUPl))i. Mark Pi true in all states where Pl is true.ii. Mark Pi true in a state s if

M,s |= Pj and M, t |= Pi for some state t suh that sRt,no new suh formulas an be found.iii. mark Pi false in all other states.

• The time omplexity of the algorithm is O(|P| ∗ |S| ∗ (|S|+ |R|)).
• Evaluation of formulas starting with temporal operators an bemade more e�ient suh that the time omplexity is redued to

O(|P| ∗ (|S|+ |R|)).

• It is also possible to ombine fairness onstraints into global modelheking.© 2008 TKK, Department of Information and Computer Siene
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3. Implementation Tehniques
• Next it is shown how to make the evaluation of temporal operatorsmore e�ient to reah the time omplexity O(|P| ∗ (|S|+ |R|))(suh that eah operator is evaluated in time O(|S|+ |R|)).
• Operators E(PjUPl) and EGPj are taken as the basi operators.Notie that

A(PjUPl) ≡ ¬E(¬PlU(¬Pj ∧¬Pl))∧¬EG¬Pl.

• For formulas of the form E(PjUPl) the evaluation is based onusing the aessibility relation R bakwards.
• The truth value of suh a formula an be evaluated in time

O(|S|+ |R|) with the ChekEU algorithm (see the next slide).

© 2008 TKK, Department of Information and Computer Siene
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ChekEU: Evaluating E(PjUPl) Formulas

proedure ChekEU(Pj,Pl)

T := {s | M,s |= Pl};for all s ∈ T , label E(PjUPl) true in s;while T is not empty dohoose s in T and remove it from T ;for all t suh that (t,s) ∈ R doif E(PjUPl) is not yet labeled true in t and M, t |= Pj thenlabel E(PjUPl) true in t;add t to Tendifendforendwhile
© 2008 TKK, Department of Information and Computer Siene
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Strongly Conneted Components

• Evaluating of formulas of the form EGPj an be made moree�ient by exploiting a tehnique where the model is partitionedinto strongly onneted omponents (SCCs).

• A strongly onneted omponent of a graph is a maximalsubgraph C where every node is reahable from every other nodein the subgraph through a path in C.

• A omponent C is nontrivial i� it has more than one node or itonsists of a node with an edge to itself.

• Strongly onneted omponents an be found in linear time usingTarjan's algorithm [SIAM J. of Computing, 1(2), 146�160, 1972℄.

© 2008 TKK, Department of Information and Computer Siene
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Evaluating EGPj Formulas

The evaluation is based on the restrition M ′ = (S′,R′,v′) of the model

M whih is obtained from M by removing the states where Pj is false:

• S′ = {s ∈ S | M ,s |= Pj},

• R′ = {(s, t) ∈ R | s, t ∈ S′} and

• v′(s) = v(s) for all s ∈ S′.The orretness of the evaluation builds on the following onnetionsbetween models M and M ′:Lemma. M ,s |= EGPj i� s ∈ S′ and there is a path from s to a state tin M ′ suh that t is in a nontrivial SCC of the graph (S′,R′).
☞ Now the truth value of EGPj an be evaluated in time
O(|S|+ |R|) using the ChekEG algorithm (see the next slide).© 2008 TKK, Department of Information and Computer Siene
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ChekEG: Evaluating EGPj Formulas

proedure ChekEG(Pj)

S′ := {s ∈ S | M ,s |= Pj}; R′ := {(s, t) ∈ R | s, t ∈ S′};
SCC := {C |C is a nontrivial SCC of (S′,R′)};
T := {s | s ∈C and C ∈ SCC} ;for all s ∈ T , label EGPj true in s;while T is not empty dohoose s in T and remove it from T ;for all t suh that t ∈ S′ and (t,s) ∈ R′ doif EGPj is not yet labeled true in t thenlabel EGPj true in t; add t to Tendifendforendwhile

© 2008 TKK, Department of Information and Computer Siene
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4. LTL Model Cheking

• Next we present a tableau based method for determining whetherthere is a full path in a given model M where a given LTL formula

P is true.

• We write M,s |= EP i�there is a full path starting from the state s suh that P is true onthe full path.

• Using this method we an answer also other LTL model hekingquestions:Example. An LTL formula P is true on every path starting fromthe state s i� M,s 6|= E¬P.

© 2008 TKK, Department of Information and Computer Siene
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The Basi Idea of the Method

• The question whether M,s |= EP holds is answered by onstrutingan LTL tableau (Bühi automaton) whih desribes every full pathin the model M starting from the state s suh that the formula Pis true on the path.

• Given a tableau it is easy to hek whether there is suh a path.

• Reminder: we onsider only operators ¬,∧,X,U(and other operators are seen as shorthands: for example

P∨Q = ¬(¬P∧¬Q); FP = ⊤UP; GP = ¬F¬P = ¬(⊤U¬P)).

• For building LTL tableaux we use two auxiliary onepts:1. The losure CL(P) of a formula P.2. Atoms (s,K) giving the nodes in a LTL tableau.(See the next slides)© 2008 TKK, Department of Information and Computer Siene
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The Closure of a Formula

• The losure CL(P) of a formula P is the smallest set of formulasontaining P and satisfying the following onditions:1. ¬P1 ∈ CL(P) i� P1 ∈ CL(P)2. If P1 ∧P2 ∈ CL(P), then P1,P2 ∈ CL(P).3. If XP1 ∈ CL(P), then P1 ∈ CL(P)4. If ¬XP1 ∈ CL(P), then X¬P1 ∈ CL(P)5. If P1UP2 ∈ CL(P), then P1,P2,X(P1UP2) ∈ CL(P)(Here double negations are eliminated and, hene, a formula ¬¬Qis identi�ed with the formula Q.)

• The idea is that the losure CL(P) of a formula P is the set offormulas that an a�et the truth value of P.

© 2008 TKK, Department of Information and Computer Siene
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ExampleBuilding losure CL((¬H)UC) of (¬H)UC:
(¬H)UC ¬((¬H)UC)

H ¬H

C ¬C

X((¬H)UC) ¬X((¬H)UC)

X¬((¬H)UC) ¬X¬((¬H)UC)(Hene, the losure CL(P) is an extended set of subformulas of Pwhere for eah formula inluded also its negation is present.)

© 2008 TKK, Department of Information and Computer Siene
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AtomsConsider a model M = (S,R,v) and a LTL formula P.An atom A = (sA,KA) is a pair where sA ∈ S and

KA ⊆ CL(P)∪AP∪{⊤} (AP is the set of all atomi propositions) suhthat for the set of formulas KA:1. for every atomi proposition P ∈ AP∪{⊤}, P ∈ KA i� M,sA |= P;2. for every P1 ∈ CL(P), P1 ∈ KA i� ¬P1 6∈ KA;3. for every P1 ∧P2 ∈ CL(P), P1 ∧P2 ∈ KA i� P1 ∈ KA and P2 ∈ KA;4. for every ¬XP1 ∈ CL(P), ¬XP1 ∈ KA i� X¬P1 ∈ KA;5. for every P1UP2 ∈ CL(P), P1UP2 ∈ KA i� P2 ∈ KA or

P1,X(P1UP2) ∈ KA.Remark. When building atoms a formula ¬¬Q is identi�ed with theformula Q.© 2008 TKK, Department of Information and Computer Siene
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Building AtomsAll possible atoms (s,K) an be onstruted using the followingapproah:

• The olletion of possible sets of formulas K an be built using a(binary) tree (atom tableau), whose root is the set of atomipropositions and their negations true in the state s.

• The tree an branh for eah formula P1 ∈ CL(P) into twobranhes where the other ontains P1 and the other ¬P1.(In eah set K for every P1 ∈ CL(P) either P1 ∈ K or ¬P1 ∈ K).

• Other onstrution rules (see the next slide) add formulasguaranteeing that atoms satisfy the required onditions.

© 2008 TKK, Department of Information and Computer Siene
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Rules to Construt an Atom Tableau

P1 ∈ CL(P)

P1 | ¬P1

P1 ∧P2

P1

P2

¬(P1 ∧P2)

¬P1 | ¬P2

XP1

¬X¬P1

¬XP1

X¬P1

(P1UP2)

P2 P1

X(P1UP2)

¬(P1UP2)

¬P2 ¬P2

¬P1 ¬X(P1UP2)

• A branh loses if it ontains a formula and its negation.
• The set of formulas K in an open branh whih is �nished (no newformulas an be added using the rules above and for whih forevery P1 ∈ CL(P), P1 ∈ K or ¬P1 ∈ K), is a valid set of formulas inan atom (s,K).

© 2008 TKK, Department of Information and Computer Siene
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ExampleConsider a formula (¬H)UC, AP = {H,C}, a model M and a state s1where v(s1,H) = v(s1,C) = false. The atomi tableau an be built asfollows:

⊤,¬H,¬C

(¬H)UC

C

×

¬H

X((¬H)UC)

¬X¬((¬H)UC)

¬((¬H)UC)

¬C

H

×

¬C

¬X((¬H)UC)

X¬((¬H)UC)

Now possible atoms for the state s1 are (s1,K1) and (s1,K2) where

K1 = {⊤,¬H,¬C,(¬H)UC,X((¬H)UC),¬X¬((¬H)UC)} and

K2 = {⊤,¬H,¬C,¬((¬H)UC),¬X((¬H)UC),X¬((¬H)UC)}.© 2008 TKK, Department of Information and Computer Siene
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LTL TableauDe�nition. Given a M = (S,R,v) and a formula P, the LTL tableau isa graph G = (N,E) where

• the set of nodes N is the set of atoms onstruted from the model

M and the formula P and

• for the set of edge E ⊆ N ×N: (A,B) ∈ E i�1. (sA,sB) ∈ R and2. for every XP1 ∈ CL(P), XP1 ∈ KA i� P1 ∈ KB.

© 2008 TKK, Department of Information and Computer Siene
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ExampleConsider a formula (¬H)UC and a model M = (S,R,v) where

• S = {s1,s2}, R = {(s1,s2),(s2,s2)} and

• v(s1,H) = v(s1,C) = v(s2,H) = v(s2,C) = false.Then the LTL tableau is the graph G = (N,E) where

N = { (s1,K1),(s2,K1),(s1,K2),(s2,K2) } and

E = { ((s1,K1),(s2,K1)),((s2,K1),(s2,K1)),

((s1,K2),(s2,K2)),((s2,K2),(s2,K2)) }where sets K1,K2 are above

K1 = {⊤,¬H,¬C,(¬H)UC,X((¬H)UC),¬X¬((¬H)UC)} and

K2 = {⊤,¬H,¬C,¬((¬H)UC),¬X((¬H)UC),X¬((¬H)UC)}.

© 2008 TKK, Department of Information and Computer Siene
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T-79.5101 / Spring 2008 ML-10 30Eventuality SequenesDe�nition. An eventuality sequene is an in�nite path π in a LTLtableau G suh that if P1UP2 ∈ KA for some atom A in the path π,then there is an atom B whih is reahable from A along the path πsuh that P2 ∈ KB.Example. The path ((s1,K1),(s2,K1),(s2,K1),(s2,K1), . . .) is not aneventuality sequene beause (¬H)UC ∈ K1 and C 6∈ K1. On the otherhand, ((s1,K2),(s2,K2),(s2,K2),(s2,K2), . . .) is an eventuality sequene.An eventuality sequene in an LTL tableau for a model M and aformula P provides a full path in M where the formula P is true.Lemma. Let M be a model, P an LTL formula and G theorresponding LTL tableau. Then M,s |= EP i� there is an eventualitysequene π in G starting at an atom (s,K) suh that P ∈ K.Eventuality sequenes an be found e�iently from an LTL tableauusing self-ful�lling strongly onneted omponents.© 2008 TKK, Department of Information and Computer Siene
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Self-Ful�lling SCCsDe�nition. A strongly onneted omponent C of a LTL tableau G isalled self-ful�lling i� for every atom A ∈C and every formula
P1UP2 ∈ KA there is an atom B ∈C suh that P2 ∈ KB.Lemma. An LTL tableau G has an eventuality sequene starting at anatom (s,K) i� there is a path from the atom (s,K) to someself-ful�lling SCC of G.Example. (Cont'd) There is no eventuality sequene from the atom

(s1,K1) beause there is no path from it to a self-ful�lling SCC. Notiethat {(s2,K1)} is not self-ful�lling.There is an eventuality sequene from the atom (s1,K2) beause thereis a path from it to a self-ful�lling SCC {(s2,K2)}.

© 2008 TKK, Department of Information and Computer Siene
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Properties LTL TableauxTheorem. Let M be a model, P an LTL formula and G theorresponding LTL tableau.Then M,s |= EP i� there is an atom (s,K) in G suh that P ∈ K andthere is a path in G from the atom (s,K) to some self-ful�lling SCC of

G.Example. (Cont'd) The LTL tableau G has no atom (s1,K) suh that

(¬H)UC ∈ K and there is a path from it to a self-ful�lling SCC.Hene, M,s1 6|= E((¬H)UC).
© 2008 TKK, Department of Information and Computer Siene
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LTL Model Cheking AlgorithmThe theorem above provides a basis for the following LTL modelheking algorithm whose time omplexity is O((|S|+ |R|)∗2O(|P|)).To determine whether M,s |= EP holds:1. Construt the LTL tableau G for M,P.2. Compute the strongly onneted omponents of G.3. Identify the self-ful�lling SCCs.4. Chek for all atoms (s,K) in G, where P ∈ K, if there is a pathfrom the atom (s,K) to some self-ful�lling SCC of G.5. If suh a path is found, then M,s |= EP holds otherwise it doesnot hold.
© 2008 TKK, Department of Information and Computer Siene
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Computational Complexity

• CTLModel heking: P-omplete

O(|M| · |P|)

• LTLModel heking: PSPACE-omplete

O(|M| · exp(|P|))

• CTL∗Model heking: PSPACE-omplete

O(|M| · exp(|P|))

© 2008 TKK, Department of Information and Computer Siene

AB

T-79.5101 / Spring 2008 ML-10 35

Summary

• Typial model heking tools take as input a model given using aspei�ation language supported by the heker and a temporallogi formula and give as output a noti�ation that the formula istrue in the model or otherwise a ounter example.
• CTL and LTL are among the most widely applied temporal logisin model heking.

• CTL model heking an be done in linear time w.r.t. the size ofthe model and the size of the temporal formula.
• LTL model heking an be done in linear time w.r.t. the size ofthe model but even the best known methods take exponentialtime in the size of the temporal formula in the worst ase.
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