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MODEL CHECKING '

. Introduction to model checking

[y

2. CTL model checking
3. Implementation techniques
4

. LTL model checking

E. M. Clarke et al.: Model Checking, Chapter 4 (pp. 35-49).

E. A. Emerson: Automated Temporal Reasoning about Reactive
Systems, Section 3 (pp. 16-18).
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1. Introduction to Model Checking'

Question to be solved: Is a given formula P true in a model M?

e Model M: a model of the system under validation

The model is generated from a system description/specification
which is given in a modelling/design/specification language: SDL,
VHDL, process algebra, finite state automata, Petri nets, SMV,
PROMELA, ...

e Formula P: an interesting property of the system (system
requirement)

Often given in temporal logic: CTL, LTL, CTL*, ...
e Model checking can be fully automated.

e Models of the realistic system often very big.

e Current techniques are scaling up to real applications

~

© 2008 TKK, Department of Information and Computer Science

T-79.5101 / Spring 2008 ML-10

Building a Model I

For model checking of a system a possible world model M can be

generated from the system description using various techniques:

e Explicate state methods:
The model M is generated (before model checking) using
reachability analysis techniques which build a reachability graph
where each reachable state of the system is explicitly represented
(state explosion).

e On-the-fly techniques
The model M is generated using reachability analysis techniques
during model checking on demand.

e Symbolic model checking:

The reachable states are represented symbolically using Boolean

\ formulas. J
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Representing the State Space Symbolically I

e The (global) system states are given a binary representation (n
state bits).

e For each state bit i two atomic propositions are introduced: v;
(current state) and V| (new state).

e For each state bit i a formula is given specifying the transition
relation from the current state to a new state, for example,
Vi = (Vi AVig1) V Vi3
The conjunction of all these formulas T (V,V') gives the transition

relation of the whole system.

e The formula T(V,\?) specifies in a symbolic form all possible state
transitions: the system can move, for instance, from a state
(0,...,0) to a state (1,...,1) iff T(V,\_I”) true in a truth assignment

\ where all atoms v; are false and all atoms V| are true. J
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Composing the Set of Reachable States

e Now a formula R(V) expressing symbolically the set of reachable
states of the system can be formed iteratively as follows:

1. Ro(V) :=1(V) where the formula I (V) specifies the possible
initial states of the system.

2. repeat for all i =1,2,..., R(V) := IW(R_1(W) A T (W,V))
until R (V) = Ri_1(V) (are logically equivalent).
Here GwR(w) is a shorthand for R(T) VR(L) where R(T)
(R(L)) is the formula R(w) with atom w replaced by T (L1).

e The formula R(V) specifies symbolically the reachable states: for
example the state is (0,...,0) is reachable iff R(V) is true in a
truth assignment where all atoms v; are false.

e In this way very large state spaces can be represented very
compactly: for instance, R(V) = v; represent 2"~ reachable states

(i.e., all states where the state bit v1 is true).

\_ /
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Model Checkers '

e take typically as input (i) a model given using a specification

language supported by the checker and (ii) a formula given in a
temporal logic supported by the checker (requirement
specification);

e give as output a notification that the formula is true in (the initial
states of) the model or a counter example (an execution path in
the model where the formula is not true);

e and, hence, can also be used for debugging, i.e., for finding errors
in system designs.

\_ /
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Example: SMV Model Checker'

Implementation techniques
e Uses symbolic state space representation.

e Formulas representing the state space are manipulated in an
efficient OBDD normal form (ordered binary decision diagrams).

e Model checking temporal logic formulas (CTL and LTL) is also
done symbolically.

-
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Example: a Model Given in the SMV Specification Language

MODULE nai n VAR
state2: {s2, n2};
VAR ASSI GN
statel: {sl1, ni}; init(state2) := s2;
ASSI GN next(state2) :=
init(statel) := si; case
next(statel) := (statel = sl) &
case (state2 = s2): n2;
(statel = s1) & (state2 = n2) : {n2, s2};
(state2 = s2): nl; 1. state2;
(statel = nl) : {nl, sl}; esac;
1: statel;
esac; SPEC
AF ((statel = nl) &
= s2))

(state2
\_
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Example: Model Checking in SMVI

$ smv exanpl e. snv

-- specification AF (statel = nl & state2 = s2) is false
-- as denonstrated by the follow ng execution sequence
-- loop starts here --

state 1.1
statel = sl
state2 = s2
state 1.2:
statel = nl
state2 = n2
state 1.3:
statel = sl
state2 = s2

N /
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Global and Local Model Checking I

e Global model checking:

In which states of the model M is the formula P true?

e Local model checking:
Is the formula P true is a given state S of the model M?
e Local model checking (in conjunction with on-the-fly techniques)

enable an approach where not all (reachable) states of the model
need to be examined (nor even generated).

e However, global model checking is more straightforward to
implement and evaluation of formulas can be done more efficiently
and with smaller memory requirements.

\_ /
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2. Global CTL Model Checking'

e Global model checking methods determine the truth value of a
formula in every state of the model.

e This can be done systematically by processing all the subformulas
of the given formula starting from the atomic propositions in the
following way:

1. The subformulas of the formula P are ordered in a sequence

Po,Pi,....P(=P),
where each subformula B appears only after all its proper

subformulas have appeared in the sequence.

Example. The subformulas of the formula A(PUE(QU—P)) can be
ordered in such a sequence, e.g., as follows:

P, Q —P, E(QU-P), A(PUE(QU-P)).
\_ /
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CTL Model Checking.
2. For alli=0,1,...,n determine the truth value of B in every state

S€ Sin the model M as follows:

(a) If P is an atomic proposition, its truth value is obtained
directly from the model.

(b) If B is of the form —P; or P; AR, its truth value can be
computed from the truth values of the subformulas P;,R (as
j,1 <, the truth values of Pj,R have been determined).

(c) If B is of the form AXPj, its truth value can be computed from
the truth value of Pj in states t such that SRI.

Example. Let M = (SR,v) where S= {s5, 51},

R= {{50,%), (50,51), {81,%0) }. V(S0,P) = V(81,Q) = true and
V(s1,P) = Vv(s,Q) =false. Now M,s = =(PAQ) when i € {0,1}.
Hence, e.g.,M,s0 = AX—=(P A Q) which also holds in the state s;.

N

/
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2.(d) If R is of the form A(PjUR), its truth value can be computed
using the following equivalence:
A(PJUR) =R V (Pj AAXA(P,UR))
i. Mark B true in all states where R is true
ii. Mark P, true in a state sif
M,st=Pj and M,t =P for all states t for which sRt,
until no new such states can be found.

iii. Mark P false in all other states.

Example. Let M = (SR,v) where S= {s,51,%, %3},

R= {(s0,51) (S1,%), (S0, %2) (2. S8), (S, %) }.
v(s,P) =trueiff i # 3, and v(s,Q) =true iff i = 3.

Hence, M, s3 = A(PUQ) by case (i) and M, s, = A(PUQ) case (ii). For
all other states 5 holds M, s = A(PUQ) by case (iii).

N /
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2.(e) If B is of the form E(P,UR), its truth value can be computed
using the following equivalence:
E(PjUR) =RV (P AEXE(P;UR))
i. Mark B true in all states where B is true.
ii. Mark B true in a state sif
M,s=Pj and M,t |= P for some state t such that SR,
no new such formulas can be found.
iii. mark B false in all other states.

e The time complexity of the algorithm is O(|P|* |9 * (|5 + |R]))-

e Evaluation of formulas starting with temporal operators can be
made more efficient such that the time complexity is reduced to
O(|P[ (IS +[RI))-

e |t is also possible to combine fairness constraints into global model

)

checking.
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3. Implementation Techniques I

e Next it is shown how to make the evaluation of temporal operators
more efficient to reach the time complexity O(|P|* (|9 +|R]))
(such that each operator is evaluated in time O(|S + |R])).

e Operators E(P;UR) and EGP; are taken as the basic operators.
Notice that
A(PUR) = -E(=RU(-P; A-R)) A—-EG-R.
e For formulas of the form E(P;UR) the evaluation is based on

using the accessibility relation R backwards.

e The truth value of such a formula can be evaluated in time
O(]9/+ |R|) with the CheckEU algorithm (see the next slide).

J
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procedure CheckEU(P},R)

CheckEU: Evaluating E(P;UR) Formulas

T:={s|M;s=R};
for all s€ T, label E(PjUR) true in s,
while T is not empty do
choose sin T and remove it from T;
for all t such that (t,s) € Rdo
if E(PjUR) is not yet labeled true in t and M,t |= P;j then
label E(PjUR) true in t;
addtto T
endif
endfor
endwhile
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Strongly Connected Components'

e Evaluating of formulas of the form EGP; can be made more

efficient by exploiting a technique where the model is partitioned
into strongly connected components (SCCs).

e A strongly connected component of a graph is a maximal
subgraph C where every node is reachable from every other node
in the subgraph through a path in C.

e A component C is nontrivial iff it has more than one node or it
consists of a node with an edge to itself.

e Strongly connected components can be found in linear time using
Tarjan's algorithm [SIAM J. of Computing, 1(2), 146-160, 1972].

\_ /
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Evaluating EGP, FormulasI

The evaluation is based on the restriction M’ = (S,R,V) of the model
M which is obtained from M by removing the states where Pj is false:

e S={seS|M,sE=P},
e R={(st)eR|steS} and
e V(s)=v(s) for all se S.

The correctness of the evaluation builds on the following connections
between models M and M":

Lemma. M,s|=EGP,; iff s€ S and there is a path from s to a state t
in M’ such that t is in a nontrivial SCC of the graph (S,R)).

Now the truth value of EGPj can be evaluated in time
O(]9 +|R|) using the CheckEG algorithm (see the next slide).

/
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procedure CheckEG(P})
S :={seS|M,s=Pj}; R:={(st)eR|steS};
CC:={C|C is a nontrivial SCC of (S,R)};
T:={s|seC and Ce XC} ;
for all s€ T, label EGP; true in s,
while T is not empty do
choose sin T and remove it from T;
for all t such that t € S and (t,s) e R do
if EGPj is not yet labeled true in t then
label EGP;j trueint; addtto T
endif
endfor
endwhile
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4. LTL Model Checking'

e Next we present a tableau based method for determining whether

there is a full path in a given model M where a given LTL formula
P is true.

e We write M, s = EP iff
there is a full path starting from the state S such that P is true on
the full path.

e Using this method we can answer also other LTL model checking
questions:

Example. An LTL formula P is true on every path starting from
the state siff M, s}~ E—-P.

\_ /
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The Basic Idea of the Method'

e The question whether M, s = EP holds is answered by constructing

~

an LTL tableau (Biichi automaton) which describes every full path
in the model M starting from the state s such that the formula P
is true on the path.

e Given a tableau it is easy to check whether there is such a path.

e Reminder: we consider only operators —, A, X,U
(and other operators are seen as shorthands: for example
PvQ=-(-PA-Q); FP=TUP; GP = —-F-P=~(TU-P)).
e For building LTL tableaux we use two auxiliary concepts:
1. The closure CL(P) of a formula P.
2. Atoms (s,K) giving the nodes in a LTL tableau.

(See the next slides)

%
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The Closure of a Formula .

e The closure CL(P) of a formula P is the smallest set of formulas

containing P and satisfying the following conditions:
1. =P, € CL(P) iff P, € CL(P)
2. If PLAP, € CL(P), then P,P, € CL(P).

3. If XPy € CL(P), then P € CL(P)

4. If =XPy € CL(P), then X—=P, € CL(P)

5. If PLUP, € CL(P), then Py, P, X(PLUP;) € CL(P)

(Here double negations are eliminated and, hence, a formula =—Q

is identified with the formula Q.)

e The idea is that the closure CL(P) of a formula P is the set of
formulas that can affect the truth value of P.

\_ /
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Building closure CL((—H)UC) of (—=H)UC:

(-H)uC ~((=H)UC)
H —H

c -C
X((-H)UC)  —X((-H)UC)

X=((=H)UC) —X—((—=H)UC)

(Hence, the closure CL(P) is an extended set of subformulas of P
where for each formula included also its negation is present.)

\_ /
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Consider a model M = (S R)v) and a LTL formula P.

An atom A= (sa,Ka) is a pair where s, € Sand
Ka C CL(P)UAPU{T} (AP is the set of all atomic propositions) such
that for the set of formulas Ka:

1. for every atomic proposition P € APU{T}, P € Ka iff M,sp = P;
for every P; € CL(P), Py € Ka iff =P & Ka;

for every PLAP, € CL(P), PLAP, € Ky iff Pp € Ka and P2 € Ka;
for every =XPy € CL(P), =XPy € Kp iff X=P € Kp;

for every PLUP, € CL(P), PLUP, € Ka iff P, € Ka or
Pl,X(P;LUPz) c KA.

AR N

Remark. When building atoms a formula =—Q is identified with the

formula Q.

N /
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Building Atoms.

All possible atoms (s,K) can be constructed using the following
approach:

e The collection of possible sets of formulas K can be built using a
(binary) tree (atom tableau), whose root is the set of atomic
propositions and their negations true in the state s.

o The tree can branch for each formula Py € CL(P) into two
branches where the other contains P, and the other —P;.

(In each set K for every Py € CL(P) either Py € K or =P € K).

e Other construction rules (see the next slide) add formulas
guaranteeing that atoms satisfy the required conditions.

\_ /
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Rules to Construct an Atom Tableau '

P, e CL(P) Pi AP, —(PLAP,)
PP P Py | P,
P
XPL  -XP (PLUR,) ~(PLUP)
“X-P,  X—Py P, Py P, P,
X (PLUP,) -PL | =X(PUPy)

e A branch closes if it contains a formula and its negation.

e The set of formulas K in an open branch which is finished (no new
formulas can be added using the rules above and for which for
every Pp € CL(P), P € K or =P € K), is a valid set of formulas in
an atom (s,K).

\_ /
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Consider a formula (-H)UC, AP={H,C}, a model M and a state
where v(s1,H) = v(s1,C) = fase. The atomic tableau can be built as

follows:
T,~H,-C
(-H)uUC ~((=H)UC)
C -H -C -C
x X((=H)UC) H —X((~H)UC)
-X=((=H)UC) x X=((=H)UC)

Now possible atoms for the state s; are (s1,K1) and (s1,K2) where
Ki={T,-H,-C,(=H)UC,X((—H)UC), ~X~((=H)UC)} and
Kz ={T,-H,=C,~((=H)UC), -X((-H)UC), X=((=H)UC)}.
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LTL Tableau

Definition. Given a M = (SR,V) and a formula P, the LTL tableau is
a graph G = (N,E) where

e the set of nodes N is the set of atoms constructed from the model
M and the formula P and

e for the set of edge E C N x N: (A,B) € E iff
1. (sa,s8) € Rand
2. for every XPy € CL(P), XP; € Ka iff P1 € Kg.

© 2008 TKK, Department of Information and Computer Science
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Consider a formula (-H)UC and a model M = (S R,v) where

o S={s1,%} R={(s1,%),(2,%)} and
e V(s,H) =v(s1,C) =V(52,H) = v(s,C) =Tfalse.
Then the LTL tableau is the graph G = (N,E) where

N = { (s1,K1),(s2,K1), (s1,K2), (s2,K2) } and
E = {((s1,K1), (%2, K1)), (2, K1), (2, K1),
((s1,K2), (s2,K2)), (32, K2). (32, K2)) }
where sets Ky,K> are above
Ky ={T,-H,-C,(-H)UC,X((-H)UC),-X~((—-H)UC)} and
Ko ={T,-H,-C,~((-H)UC),-X((-H)UC),X—-((=H)UC)}.

N
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KEventuality Sequences I

Definition. An eventuality sequence is an infinite path Ttin a LTL
tableau G such that if PLUP, € Ka for some atom A in the path T,
then there is an atom B which is reachable from A along the path Tt
such that P, € Kg.

Example. The path ((s1,K1), (S2,K1),(S2,K1),(52,K1),-..) is not an

An eventuality sequence in an LTL tableau for a model M and a
formula P provides a full path in M where the formula P is true.

Lemma. Let M be a model, P an LTL formula and G the

sequence Tt in G starting at an atom (S,K) such that Pe K.

Eventuality sequences can be found efficiently from an LTL tableau

Kusing self-fulfilling strongly connected components.

eventuality sequence because (—H)UC € K1 and C ¢ K;. On the other
hand, ((s1,K2),(52,K2), (s2,K2), (52,Kz2),...) is an eventuality sequence.

corresponding LTL tableau. Then M,s|= EP iff there is an eventuality
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Self-Fulfilling sccsI

Definition. A strongly connected component C of a LTL tableau G is

called self-fulfilling iff for every atom A € C and every formula
P,UP, € Kp there is an atom B € C such that P, € Kg.

Lemma. An LTL tableau G has an eventuality sequence starting at an
atom (s,K) iff there is a path from the atom (s,K) to some
self-fulfilling SCC of G.

Example. (Cont'd) There is no eventuality sequence from the atom
(s1,K1) because there is no path from it to a self-fulfilling SCC. Notice
that {(s2,K1)} is not self-fulfilling.

There is an eventuality sequence from the atom (s1,K2) because there
is a path from it to a self-fulfilling SCC {(s2,K2)}.

\_ /
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Properties LTL Tableaux.

Theorem. Let M be a model, P an LTL formula and G the
corresponding LTL tableau.

Then M, s|= EP iff there is an atom (s,K) in G such that P € K and
there is a path in G from the atom (s,K) to some self-fulfilling SCC of
G.

Example. (Cont'd) The LTL tableau G has no atom (s1,K) such that
(mH)UC € K and there is a path from it to a self-fulfilling SCC.

Hence, M,s; = E((—H)UC).

\_ /

© 2008 TKK, Department of Information and Computer Science

31

32



T-79.5101 / Spring 2008 ML-10

33

LTL Model Checking Algorithm I

The theorem above provides a basis for the following LTL model
checking algorithm whose time complexity is O((|S + |R]) % 2°(PD).

To determine whether M, s|= EP holds:

1. Construct the LTL tableau G for M, P.
2. Compute the strongly connected components of G.
3. Identify the self-fulfilling SCCs.

4. Check for all atoms (s,K) in G, where P € K, if there is a path
from the atom (s,K) to some self-fulfilling SCC of G.

5. If such a path is found, then M,s|= EP holds otherwise it does
not hold.

\_
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Computational Complexity I

e CTL
Model checking: P-complete
O(IM[-[PI)

o LTL
Model checking: PSPACE-complete
O(IM[ - exp(|P]))

o CTL*
Model checking: PSPACE-complete
O(IM] - exp(|P|))

\_
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e Typical model checking tools take as input a model given using a
specification language supported by the checker and a temporal
logic formula and give as output a notification that the formula is
true in the model or otherwise a counter example.

e CTL and LTL are among the most widely applied temporal logics
in model checking.

e CTL model checking can be done in linear time w.r.t. the size of
the model and the size of the temporal formula.

e LTL model checking can be done in linear time w.r.t. the size of
the model but even the best known methods take exponential
time in the size of the temporal formula in the worst case.

~
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