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MODEL CHECKING1. Introdu
tion to model 
he
king2. CTL model 
he
king3. Implementation te
hniques4. LTL model 
he
king

E. M. Clarke et al.: Model Che
king, Chapter 4 (pp. 35�49).E. A. Emerson: Automated Temporal Reasoning about Rea
tiveSystems, Se
tion 3 (pp. 16�18).
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1. Introdu
tion to Model Che
kingQuestion to be solved: Is a given formula P true in a model M?

• Model M: a model of the system under validationThe model is generated from a system des
ription/spe
i�
ationwhi
h is given in a modelling/design/spe
i�
ation language: SDL,VHDL, pro
ess algebra, �nite state automata, Petri nets, SMV,PROMELA, . . .

• Formula P: an interesting property of the system (systemrequirement)Often given in temporal logi
: CTL, LTL, CTL∗, . . .
• Model 
he
king 
an be fully automated.
• Models of the realisti
 system often very big.
• Current te
hniques are s
aling up to real appli
ations
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Building a ModelFor model 
he
king of a system a possible world model M 
an begenerated from the system des
ription using various te
hniques:
• Expli
ate state methods:The model M is generated (before model 
he
king) usingrea
hability analysis te
hniques whi
h build a rea
hability graphwhere ea
h rea
hable state of the system is expli
itly represented(state explosion).

• On-the-�y te
hniquesThe model M is generated using rea
hability analysis te
hniquesduring model 
he
king on demand.
• Symboli
 model 
he
king:The rea
hable states are represented symboli
ally using Booleanformulas.
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Representing the State Spa
e Symboli
ally

• The (global) system states are given a binary representation (nstate bits).

• For ea
h state bit i two atomi
 propositions are introdu
ed: vi(
urrent state) and v′i (new state).

• For ea
h state bit i a formula is given spe
ifying the transitionrelation from the 
urrent state to a new state, for example,

v′i ↔ (vi ∧ vi+1)∨¬vi+3 .The 
onjun
tion of all these formulas T (~v,~v′) gives the transitionrelation of the whole system.

• The formula T (~v,~v′) spe
i�es in a symboli
 form all possible statetransitions: the system 
an move, for instan
e, from a state

(0, . . . ,0) to a state (1, . . . ,1) i� T (~v,~v′) true in a truth assignmentwhere all atoms vi are false and all atoms v′i are true.
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hable States

• Now a formula R(~v) expressing symboli
ally the set of rea
hablestates of the system 
an be formed iteratively as follows:1. R0(~v) := I(~v) where the formula I(~v) spe
i�es the possibleinitial states of the system.2. repeat for all i = 1,2, . . ., Ri(~v) := ∃~w(Ri−1(~w)∧T (~w,~v))until Ri(~v) ≡ Ri−1(~v) (are logi
ally equivalent).Here ∃wR(w) is a shorthand for R(⊤)∨R(⊥) where R(⊤)(R(⊥)) is the formula R(w) with atom w repla
ed by ⊤ (⊥).

• The formula R(~v) spe
i�es symboli
ally the rea
hable states: forexample the state is (0, . . . ,0) is rea
hable i� R(~v) is true in atruth assignment where all atoms vi are false.

• In this way very large state spa
es 
an be represented very
ompa
tly: for instan
e, R(~v) = v1 represent 2n−1 rea
hable states(i.e., all states where the state bit v1 is true).
© 2008 TKK, Department of Information and Computer S
ien
e

AB

T-79.5101 / Spring 2008 ML-10 6

Model Che
kers

• take typi
ally as input (i) a model given using a spe
i�
ationlanguage supported by the 
he
ker and (ii) a formula given in atemporal logi
 supported by the 
he
ker (requirementspe
i�
ation);

• give as output a noti�
ation that the formula is true in (the initialstates of) the model or a 
ounter example (an exe
ution path inthe model where the formula is not true);

• and, hen
e, 
an also be used for debugging, i.e., for �nding errorsin system designs.
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Example: SMV Model Che
kerImplementation te
hniques

• Uses symboli
 state spa
e representation.
• Formulas representing the state spa
e are manipulated in ane�
ient OBDD normal form (ordered binary de
ision diagrams).

• Model 
he
king temporal logi
 formulas (CTL and LTL) is alsodone symboli
ally.
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Example: a Model Given in the SMV Spe
i�
ation Language

MODULE main

VAR

state1: {s1, n1};

ASSIGN

init(state1) := s1;

next(state1) :=

case

(state1 = s1) &

(state2 = s2): n1;

(state1 = n1) : {n1, s1};

1: state1;

esac;

VAR

state2: {s2, n2};

ASSIGN

init(state2) := s2;

next(state2) :=

case

(state1 = s1) &

(state2 = s2): n2;

(state2 = n2) : {n2, s2};

1: state2;

esac;

SPEC

AF ((state1 = n1) &

(state2 = s2))
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Example: Model Che
king in SMV

$ smv example.smv

-- specification AF (state1 = n1 & state2 = s2) is false

-- as demonstrated by the following execution sequence

-- loop starts here --

state 1.1:

state1 = s1

state2 = s2

state 1.2:

state1 = n1

state2 = n2

state 1.3:

state1 = s1

state2 = s2
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Global and Lo
al Model Che
king

• Global model 
he
king:In whi
h states of the model M is the formula P true?

• Lo
al model 
he
king:Is the formula P true is a given state s0 of the model M?

• Lo
al model 
he
king (in 
onjun
tion with on-the-�y te
hniques)enable an approa
h where not all (rea
hable) states of the modelneed to be examined (nor even generated).

• However, global model 
he
king is more straightforward toimplement and evaluation of formulas 
an be done more e�
ientlyand with smaller memory requirements.
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2. Global CTL Model Che
king
• Global model 
he
king methods determine the truth value of aformula in every state of the model.

• This 
an be done systemati
ally by pro
essing all the subformulasof the given formula starting from the atomi
 propositions in thefollowing way:1. The subformulas of the formula P are ordered in a sequen
e
P0,P1, . . . ,Pn(= P),where ea
h subformula Pi appears only after all its propersubformulas have appeared in the sequen
e.Example. The subformulas of the formula A(PUE(QU¬P)) 
an beordered in su
h a sequen
e, e.g., as follows:

P, Q, ¬P, E(QU¬P), A(PUE(QU¬P)).
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CTL Model Che
king2. For all i = 0,1, . . . ,n determine the truth value of Pi in every state

s ∈ S in the model M as follows:(a) If Pi is an atomi
 proposition, its truth value is obtaineddire
tly from the model.(b) If Pi is of the form ¬Pj or Pj ∧Pl , its truth value 
an be
omputed from the truth values of the subformulas Pj,Pl (as

j, l < i, the truth values of Pj,Pl have been determined).(
) If Pi is of the form AXPj, its truth value 
an be 
omputed fromthe truth value of Pj in states t su
h that sRt.Example. Let M = (S,R,v) where S = {s0,s1},

R = {〈s0,s0〉,〈s0,s1〉,〈s1,s0〉}, v(s0,P) = v(s1,Q) = true and

v(s1,P) = v(s0,Q) = false. Now M,si |= ¬(P∧Q) when i ∈ {0,1}.Hen
e, e.g.,M,s0 |= AX¬(P∧Q) whi
h also holds in the state s1.
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2.(d) If Pi is of the form A(PjUPl), its truth value 
an be 
omputedusing the following equivalen
e:

A(PjUPl) ≡ Pl ∨ (Pj ∧AXA(PjUPl))i. Mark Pi true in all states where Pl is trueii. Mark Pi true in a state s if

M,s |= Pj and M, t |= Pi for all states t for whi
h sRt,until no new su
h states 
an be found.iii. Mark Pi false in all other states.Example. Let M = (S,R,v) where S = {s0,s1,s2,s3},

R = {〈s0,s1〉,〈s1,s0〉,〈s0,s2〉,〈s2,s3〉,〈s3,s3〉},

v(si,P) = true i� i 6= 3, and v(si,Q) = true i� i = 3.Hen
e, M,s3 |= A(PUQ) by 
ase (i) and M,s2 |= A(PUQ) 
ase (ii). Forall other states si holds M,si 6|= A(PUQ) by 
ase (iii).


© 2008 TKK, Department of Information and Computer S
ien
e

AB

T-79.5101 / Spring 2008 ML-10 14

2. (e) If Pi is of the form E(PjUPl), its truth value 
an be 
omputedusing the following equivalen
e:

E(PjUPl) ≡ Pl ∨ (Pj ∧EXE(PjUPl))i. Mark Pi true in all states where Pl is true.ii. Mark Pi true in a state s if

M,s |= Pj and M, t |= Pi for some state t su
h that sRt,no new su
h formulas 
an be found.iii. mark Pi false in all other states.

• The time 
omplexity of the algorithm is O(|P| ∗ |S| ∗ (|S|+ |R|)).
• Evaluation of formulas starting with temporal operators 
an bemade more e�
ient su
h that the time 
omplexity is redu
ed to

O(|P| ∗ (|S|+ |R|)).

• It is also possible to 
ombine fairness 
onstraints into global model
he
king.
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3. Implementation Te
hniques
• Next it is shown how to make the evaluation of temporal operatorsmore e�
ient to rea
h the time 
omplexity O(|P| ∗ (|S|+ |R|))(su
h that ea
h operator is evaluated in time O(|S|+ |R|)).
• Operators E(PjUPl) and EGPj are taken as the basi
 operators.Noti
e that

A(PjUPl) ≡ ¬E(¬PlU(¬Pj ∧¬Pl))∧¬EG¬Pl.

• For formulas of the form E(PjUPl) the evaluation is based onusing the a

essibility relation R ba
kwards.
• The truth value of su
h a formula 
an be evaluated in time

O(|S|+ |R|) with the Che
kEU algorithm (see the next slide).
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Che
kEU: Evaluating E(PjUPl) Formulas

pro
edure Che
kEU(Pj,Pl)

T := {s | M,s |= Pl};for all s ∈ T , label E(PjUPl) true in s;while T is not empty do
hoose s in T and remove it from T ;for all t su
h that (t,s) ∈ R doif E(PjUPl) is not yet labeled true in t and M, t |= Pj thenlabel E(PjUPl) true in t;add t to Tendifendforendwhile
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Strongly Conne
ted Components

• Evaluating of formulas of the form EGPj 
an be made moree�
ient by exploiting a te
hnique where the model is partitionedinto strongly 
onne
ted 
omponents (SCCs).

• A strongly 
onne
ted 
omponent of a graph is a maximalsubgraph C where every node is rea
hable from every other nodein the subgraph through a path in C.

• A 
omponent C is nontrivial i� it has more than one node or it
onsists of a node with an edge to itself.

• Strongly 
onne
ted 
omponents 
an be found in linear time usingTarjan's algorithm [SIAM J. of Computing, 1(2), 146�160, 1972℄.
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Evaluating EGPj Formulas

The evaluation is based on the restri
tion M ′ = (S′,R′,v′) of the model

M whi
h is obtained from M by removing the states where Pj is false:

• S′ = {s ∈ S | M ,s |= Pj},

• R′ = {(s, t) ∈ R | s, t ∈ S′} and

• v′(s) = v(s) for all s ∈ S′.The 
orre
tness of the evaluation builds on the following 
onne
tionsbetween models M and M ′:Lemma. M ,s |= EGPj i� s ∈ S′ and there is a path from s to a state tin M ′ su
h that t is in a nontrivial SCC of the graph (S′,R′).
☞ Now the truth value of EGPj 
an be evaluated in time
O(|S|+ |R|) using the Che
kEG algorithm (see the next slide).
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Che
kEG: Evaluating EGPj Formulas

pro
edure Che
kEG(Pj)

S′ := {s ∈ S | M ,s |= Pj}; R′ := {(s, t) ∈ R | s, t ∈ S′};
SCC := {C |C is a nontrivial SCC of (S′,R′)};
T := {s | s ∈C and C ∈ SCC} ;for all s ∈ T , label EGPj true in s;while T is not empty do
hoose s in T and remove it from T ;for all t su
h that t ∈ S′ and (t,s) ∈ R′ doif EGPj is not yet labeled true in t thenlabel EGPj true in t; add t to Tendifendforendwhile
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4. LTL Model Che
king

• Next we present a tableau based method for determining whetherthere is a full path in a given model M where a given LTL formula

P is true.

• We write M,s |= EP i�there is a full path starting from the state s su
h that P is true onthe full path.

• Using this method we 
an answer also other LTL model 
he
kingquestions:Example. An LTL formula P is true on every path starting fromthe state s i� M,s 6|= E¬P.
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The Basi
 Idea of the Method

• The question whether M,s |= EP holds is answered by 
onstru
tingan LTL tableau (Bü
hi automaton) whi
h des
ribes every full pathin the model M starting from the state s su
h that the formula Pis true on the path.

• Given a tableau it is easy to 
he
k whether there is su
h a path.

• Reminder: we 
onsider only operators ¬,∧,X,U(and other operators are seen as shorthands: for example

P∨Q = ¬(¬P∧¬Q); FP = ⊤UP; GP = ¬F¬P = ¬(⊤U¬P)).

• For building LTL tableaux we use two auxiliary 
on
epts:1. The 
losure CL(P) of a formula P.2. Atoms (s,K) giving the nodes in a LTL tableau.(See the next slides)
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The Closure of a Formula

• The 
losure CL(P) of a formula P is the smallest set of formulas
ontaining P and satisfying the following 
onditions:1. ¬P1 ∈ CL(P) i� P1 ∈ CL(P)2. If P1 ∧P2 ∈ CL(P), then P1,P2 ∈ CL(P).3. If XP1 ∈ CL(P), then P1 ∈ CL(P)4. If ¬XP1 ∈ CL(P), then X¬P1 ∈ CL(P)5. If P1UP2 ∈ CL(P), then P1,P2,X(P1UP2) ∈ CL(P)(Here double negations are eliminated and, hen
e, a formula ¬¬Qis identi�ed with the formula Q.)

• The idea is that the 
losure CL(P) of a formula P is the set offormulas that 
an a�e
t the truth value of P.
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ExampleBuilding 
losure CL((¬H)UC) of (¬H)UC:
(¬H)UC ¬((¬H)UC)

H ¬H

C ¬C

X((¬H)UC) ¬X((¬H)UC)

X¬((¬H)UC) ¬X¬((¬H)UC)(Hen
e, the 
losure CL(P) is an extended set of subformulas of Pwhere for ea
h formula in
luded also its negation is present.)
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AtomsConsider a model M = (S,R,v) and a LTL formula P.An atom A = (sA,KA) is a pair where sA ∈ S and

KA ⊆ CL(P)∪AP∪{⊤} (AP is the set of all atomi
 propositions) su
hthat for the set of formulas KA:1. for every atomi
 proposition P ∈ AP∪{⊤}, P ∈ KA i� M,sA |= P;2. for every P1 ∈ CL(P), P1 ∈ KA i� ¬P1 6∈ KA;3. for every P1 ∧P2 ∈ CL(P), P1 ∧P2 ∈ KA i� P1 ∈ KA and P2 ∈ KA;4. for every ¬XP1 ∈ CL(P), ¬XP1 ∈ KA i� X¬P1 ∈ KA;5. for every P1UP2 ∈ CL(P), P1UP2 ∈ KA i� P2 ∈ KA or

P1,X(P1UP2) ∈ KA.Remark. When building atoms a formula ¬¬Q is identi�ed with theformula Q.
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Building AtomsAll possible atoms (s,K) 
an be 
onstru
ted using the followingapproa
h:

• The 
olle
tion of possible sets of formulas K 
an be built using a(binary) tree (atom tableau), whose root is the set of atomi
propositions and their negations true in the state s.

• The tree 
an bran
h for ea
h formula P1 ∈ CL(P) into twobran
hes where the other 
ontains P1 and the other ¬P1.(In ea
h set K for every P1 ∈ CL(P) either P1 ∈ K or ¬P1 ∈ K).

• Other 
onstru
tion rules (see the next slide) add formulasguaranteeing that atoms satisfy the required 
onditions.
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Rules to Constru
t an Atom Tableau

P1 ∈ CL(P)

P1 | ¬P1

P1 ∧P2

P1

P2

¬(P1 ∧P2)

¬P1 | ¬P2

XP1

¬X¬P1

¬XP1

X¬P1

(P1UP2)

P2 P1

X(P1UP2)

¬(P1UP2)

¬P2 ¬P2

¬P1 ¬X(P1UP2)

• A bran
h 
loses if it 
ontains a formula and its negation.
• The set of formulas K in an open bran
h whi
h is �nished (no newformulas 
an be added using the rules above and for whi
h forevery P1 ∈ CL(P), P1 ∈ K or ¬P1 ∈ K), is a valid set of formulas inan atom (s,K).
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ExampleConsider a formula (¬H)UC, AP = {H,C}, a model M and a state s1where v(s1,H) = v(s1,C) = false. The atomi
 tableau 
an be built asfollows:

⊤,¬H,¬C

(¬H)UC

C

×

¬H

X((¬H)UC)

¬X¬((¬H)UC)

¬((¬H)UC)

¬C

H

×

¬C

¬X((¬H)UC)

X¬((¬H)UC)

Now possible atoms for the state s1 are (s1,K1) and (s1,K2) where

K1 = {⊤,¬H,¬C,(¬H)UC,X((¬H)UC),¬X¬((¬H)UC)} and

K2 = {⊤,¬H,¬C,¬((¬H)UC),¬X((¬H)UC),X¬((¬H)UC)}.
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LTL TableauDe�nition. Given a M = (S,R,v) and a formula P, the LTL tableau isa graph G = (N,E) where

• the set of nodes N is the set of atoms 
onstru
ted from the model

M and the formula P and

• for the set of edge E ⊆ N ×N: (A,B) ∈ E i�1. (sA,sB) ∈ R and2. for every XP1 ∈ CL(P), XP1 ∈ KA i� P1 ∈ KB.
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ExampleConsider a formula (¬H)UC and a model M = (S,R,v) where

• S = {s1,s2}, R = {(s1,s2),(s2,s2)} and

• v(s1,H) = v(s1,C) = v(s2,H) = v(s2,C) = false.Then the LTL tableau is the graph G = (N,E) where

N = { (s1,K1),(s2,K1),(s1,K2),(s2,K2) } and

E = { ((s1,K1),(s2,K1)),((s2,K1),(s2,K1)),

((s1,K2),(s2,K2)),((s2,K2),(s2,K2)) }where sets K1,K2 are above

K1 = {⊤,¬H,¬C,(¬H)UC,X((¬H)UC),¬X¬((¬H)UC)} and

K2 = {⊤,¬H,¬C,¬((¬H)UC),¬X((¬H)UC),X¬((¬H)UC)}.
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esDe�nition. An eventuality sequen
e is an in�nite path π in a LTLtableau G su
h that if P1UP2 ∈ KA for some atom A in the path π,then there is an atom B whi
h is rea
hable from A along the path πsu
h that P2 ∈ KB.Example. The path ((s1,K1),(s2,K1),(s2,K1),(s2,K1), . . .) is not aneventuality sequen
e be
ause (¬H)UC ∈ K1 and C 6∈ K1. On the otherhand, ((s1,K2),(s2,K2),(s2,K2),(s2,K2), . . .) is an eventuality sequen
e.An eventuality sequen
e in an LTL tableau for a model M and aformula P provides a full path in M where the formula P is true.Lemma. Let M be a model, P an LTL formula and G the
orresponding LTL tableau. Then M,s |= EP i� there is an eventualitysequen
e π in G starting at an atom (s,K) su
h that P ∈ K.Eventuality sequen
es 
an be found e�
iently from an LTL tableauusing self-ful�lling strongly 
onne
ted 
omponents.
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Self-Ful�lling SCCsDe�nition. A strongly 
onne
ted 
omponent C of a LTL tableau G is
alled self-ful�lling i� for every atom A ∈C and every formula
P1UP2 ∈ KA there is an atom B ∈C su
h that P2 ∈ KB.Lemma. An LTL tableau G has an eventuality sequen
e starting at anatom (s,K) i� there is a path from the atom (s,K) to someself-ful�lling SCC of G.Example. (Cont'd) There is no eventuality sequen
e from the atom

(s1,K1) be
ause there is no path from it to a self-ful�lling SCC. Noti
ethat {(s2,K1)} is not self-ful�lling.There is an eventuality sequen
e from the atom (s1,K2) be
ause thereis a path from it to a self-ful�lling SCC {(s2,K2)}.
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Properties LTL TableauxTheorem. Let M be a model, P an LTL formula and G the
orresponding LTL tableau.Then M,s |= EP i� there is an atom (s,K) in G su
h that P ∈ K andthere is a path in G from the atom (s,K) to some self-ful�lling SCC of

G.Example. (Cont'd) The LTL tableau G has no atom (s1,K) su
h that

(¬H)UC ∈ K and there is a path from it to a self-ful�lling SCC.Hen
e, M,s1 6|= E((¬H)UC).
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LTL Model Che
king AlgorithmThe theorem above provides a basis for the following LTL model
he
king algorithm whose time 
omplexity is O((|S|+ |R|)∗2O(|P|)).To determine whether M,s |= EP holds:1. Constru
t the LTL tableau G for M,P.2. Compute the strongly 
onne
ted 
omponents of G.3. Identify the self-ful�lling SCCs.4. Che
k for all atoms (s,K) in G, where P ∈ K, if there is a pathfrom the atom (s,K) to some self-ful�lling SCC of G.5. If su
h a path is found, then M,s |= EP holds otherwise it doesnot hold.
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Computational Complexity

• CTLModel 
he
king: P-
omplete

O(|M| · |P|)

• LTLModel 
he
king: PSPACE-
omplete

O(|M| · exp(|P|))

• CTL∗Model 
he
king: PSPACE-
omplete

O(|M| · exp(|P|))
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Summary

• Typi
al model 
he
king tools take as input a model given using aspe
i�
ation language supported by the 
he
ker and a temporallogi
 formula and give as output a noti�
ation that the formula istrue in the model or otherwise a 
ounter example.
• CTL and LTL are among the most widely applied temporal logi
sin model 
he
king.

• CTL model 
he
king 
an be done in linear time w.r.t. the size ofthe model and the size of the temporal formula.
• LTL model 
he
king 
an be done in linear time w.r.t. the size ofthe model but even the best known methods take exponentialtime in the size of the temporal formula in the worst 
ase.
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