T-79.5101 / Spring 2008 ML-9	1	T-79.5101 / Spring 2008 ML-9
SPECIFYING PROPERTIES USING TEMPORAL LOGIC		• For a model $\mathcal{M} = \langle S, R, v \rangle$ and a state $s_0 \in S$, the computation tree $\hat{\mathcal{M}} = \langle \hat{S}, \hat{R}, \hat{v} \rangle$, starting from s_0 is constructed as follows: (i) start with the node $\langle s_0, 0 \rangle$.
 CTL vs. LTL Examples of temporal properties 		 (ii) unfold the model using the rule: if ⟨s,n⟩ ∈ Ŝ and sRt, then ⟨t,m⟩ ∈ Ŝ and ⟨⟨s,n⟩, ⟨t,m⟩⟩ ∈ R̂ where m is a new number not used before. (iii) The valuation v̂ is given by v̂(⟨s,n⟩,P) = v(s,P) for all ⟨s,n⟩.
 Requirement specifications Fairness properties and CTL E. M. Clarke et al.: <i>Model Checking</i>, Chapter 3 (pp. 27–33). 		 Now temporal formulas are evaluated on <i>M̂</i> as follows: <i>M̂</i>, <i>ŝ</i>₀ ⊨ A(<i>P</i>U<i>Q</i>) iff for all branches of the computation tree <i>M̂</i>(<i>ŝ</i>₀, <i>ŝ</i>₁,) there is some <i>i</i> ≥ 0 such that <i>M̂</i>, <i>ŝ</i>_{<i>i</i>} ⊨ <i>Q</i> and <i>M̂</i>, <i>ŝ</i>_{<i>j</i>} ⊨ <i>P</i> for all 0 ≤ <i>j</i> < <i>i</i>. <i>M̂</i>, <i>ŝ</i>₀ ⊨ E(<i>P</i>U<i>Q</i>) iff there is some branch of <i>M̂</i>(<i>ŝ</i>₀, <i>ŝ</i>₁,) and
© 2008 TKK, Department of Information and Computer Science T-79.5101 / Spring 2008 ML-9	2	some $i \ge 0$ such that $\hat{\mathcal{M}}, \hat{s_i} \models Q$ and $\hat{\mathcal{M}}, \hat{s_j} \models P$ for all $0 \le j < i$. (c) 2008 TKK, Department of Information and Computer Science T-79.5101 / Spring 2008 ML-9 (Comparing CTL and LTL formulas)
 1. CTL vs. LTL LTL is a linear time logic and the truth of an LTL formula is evaluated on a full path given by the model. CTL is a branching time logic and the truth of a CTL formula evaluated (in effect) on a computation tree given by the model This means that when determining the truth value of a CTL formula in state s₀ in a model <i>M</i> the evaluation unfolds the model <i>M</i> as a computation tree starting from s₀ and temporal operat are evaluated in this tree. 	odel	 For model checking consider the correspondence CTL: LTL: M,s₀ ⊨ P M,x ⊨ P for all full paths x = (s₀,). CTL and LTL operators are similar but differ in some respects. For instance, "temporal possibilities" can be expressed in CTL but not in LTL. Example. For a CTL formula AGEFP, there is no corresponding LTL formula. Consider LTL formula GFP and the model M = ⟨S,R,v⟩ where S = {s₀,s₁}, R = {⟨s₀,s₀⟩, ⟨s₀,s₁⟩, ⟨s₁,s₀⟩}, v(s₀,P) = false and v(s₁,P) = true. The formula GFP is not valid in M because it is false in a full path (s₀,s₀,s₀,) although CTL formula AGEFP is valid in M.

3

4

6

 $v(s_1, O) =$ false.

Now **FG***Q* is true in a full path $(s_0, s_0, ...)$ but the CTL formula **AFAG**O is not satisfiable in \mathcal{M} and neither is **EFAG**O.

(c) 2008 TKK, Department of Information and Computer Science

T-79 5101 / Spring 2008

ML-9

2. Examples of Temporal Properties

• **EF**(*started* $\land \neg$ *ready*):

It is possible to reach a state where *started* is true but *ready* is not.

• $AG(reg \rightarrow AFack)$:

If a request is received then it will be acknowledged.

• **AGAF**enabled:

enabled is true infinitely often on every computation path.

• AGEFrestart:

From every state is it possible to reach a state where *restart* is true.

3. Requirement Specifications

- Temporal logic can be used to state requirement specifications for
- Typical requirement specifications can be divided into the
 - 3. Liveness properties
 - 4. Fairness properties

(c) 2008 TKK, Department of Information and Computer Science

T-79 5101 / Spring 2008

ML-9

8

Reachability Properties

- This is a simple class of properties stating that some state (where a given condition P is true) can be reached (from the initial state of the system).
- Can be expressed using temporal formulas of the form **EF***P*.
- Conditional reachability can be expressed using temporal formulas of the form $\mathbf{E}(Q\mathbf{U}P)$ (there is an execution where Q is true reaching a state where P is true).

Example. Typical reachability properties:

- 1. **EF**(*started* $\land \neg$ *ready*).
- 2 **EF**(*restart*).
- 3. $\mathbf{E}(\neg restart \mathbf{U} ready)$.

execution of the system.

counter-execution:

Safety Properties

• Safety properties state that nothing "bad" happens during an

if the system does not satisfy a safety property P, then it has a

(c) 2008 TKK, Department of Information and Computer Science

ML-9

• A safety property is a requirement which has a finite

finite execution where the property P does not hold.

Example. Examples of typical safety properties:

2. Partial correctness: $atl_0 \wedge P \rightarrow \mathbf{AG}(atl_h \rightarrow O)$.

1. Mutual exclusion: $AG \neg (atCS_1 \land atCS_2)$.

Fairness Properties

- Fairness properties are liveness properties which require that states where a given condition is true occur infinitely often.
- Fairness properties are not directly expressible in CTL but they are in LTL.

Example. Consider two atomic propositions for a process:

- en (the process is enabled) and
- ex (the process is executed).
- 1. Unconditional fairness: GFex.
- 2. Strong fairness: $\mathbf{GF}en \rightarrow \mathbf{GF}ex$.
- 3. Weak fairness: $\mathbf{FG}en \rightarrow \mathbf{GF}ex$.

© 2008 TKK, Department of Information and Computer Science

ML-9

T-79 5101 / Spring 2008

Liveness Properties

T-79.5101 / Spring 2008

- Liveness properties express that something "good" happens.
- Liveness properties do not have finite counter-executions:
 - if a system does not satisfy a liveness property P, then this can be demonstrated only using an infinite counter-execution.

Example. Typical examples of liveness properties:

- 1. (nested) reachability : AGEFrestart.
- 2. temporal implication: $AG(P \rightarrow AFQ)$.
- 3. Starvation freeness: $AG(atTry_i \rightarrow AFatCS_i)$.
- 4. Total correctness: $atl_0 \wedge P \rightarrow \mathbf{AF}(atl_h \wedge Q)$.

4. Fairness Properties and CTL

- When using CTL fairness properties are handled by modifying the semantics of the path quantifiers (A/E).
- Quantification is considered over all fair paths (and not over all paths as in the basic case).
- Fairness conditions are given as a set of formulas F and when evaluating the truth of a formula only F-fair paths are considered.

Definition. A full path x is F-fair iff every $P \in F$ is true infinitely often on the path x.

11

10

Modified Semantics

Relation \models_F is defined as \models except that path quantification is over *F*-fair paths.

- M,s ⊨_F P iff there is a F-fair full path starting from the state s and v(s,P) = true when P is an atomic proposition.
- $\mathcal{M}, s \models_F \mathbf{A}(P\mathbf{U}Q)$ iff for all *F*-fair full path (s_0, s_1, \ldots) where $s = s_0$, there is some $i \ge 0$ such that $\mathcal{M}, s_i \models_F Q$ and $\mathcal{M}, s_j \models_F P$ for all $0 \le j < i$.
- $\mathcal{M}, s \models_F \mathbf{E}(P\mathbf{U}Q)$ iff there is some *F*-fair full path $(s_0, s_1, ...)$ with $s = s_0$ and there is some $i \ge 0$ such that $\mathcal{M}, s_i \models_F Q$ and $\mathcal{M}, s_i \models_F P$ for all $0 \le j < i$.

Example. Unconditional fairness can be express using the set $F = \{ex\}$ and a fair channel using a set $F = \{send \rightarrow rec\}$.

© 2008 TKK, Department of Information and Computer Science

ML-9

T-79.5101 / Spring 2008

14

Summary

- Although CTL and LTL are based on similar temporal operators, they are different because LTL is a linear time logic where formulas are evaluated on paths whereas CTL is a branching time logic where formulas are evaluated on computation trees.
- Hence, there are CTL formulas (for instance of the form "there is a path") which cannot be expressed in LTL and LTL formulas (for example fairness formulas) which cannot be expressed in CTL.
- Temporal logics are suitable for requirement specification of reactive systems.
- Typical requirement specifications include reachability properties, safety properties, liveness properties, and fairness properties.