SPECIFYING PROPERTIES USING
TEMPORAL LOGIC

1. CTL vs. LTL
2. Examples of temporal properties
3. Requirement specifications
4. Fairness properties and CTL

E. M. Clarke et al.: Model Checking, Chapter 3 (pp. 27–33).

CTL Computation Tree

- For a model $M = (S, R, v)$ and a state $s_0 \in S$, the computation tree $\hat{M} = (\hat{S}, \hat{R}, \hat{v})$, starting from s_0 is constructed as follows:
 (i) start with the node $\langle s_0, 0 \rangle$.
 (ii) unfold the model using the rule:

 if $\langle s, n \rangle \in \hat{S}$ and sRt, then $\langle t, m \rangle \in \hat{S}$ and $\langle \langle s, n \rangle, \langle t, m \rangle \rangle \in \hat{R}$
 where m is a new number not used before.
 (iii) The valuation \hat{v} is given by $\hat{v}(\langle s, n \rangle, P) = v(s, P)$ for all $\langle s, n \rangle$.

- Now temporal formulas are evaluated on \hat{M} as follows:
 - $\hat{M}, s_0 \models A(\hat{P}U\hat{Q})$ iff for all branches of the computation tree \hat{M} (s_0, s_1, \ldots) there is some $i \geq 0$ such that $\hat{M}, s_i \models Q$ and $\hat{M}, s_j \models P$ for all $0 \leq j < i$.
 - $\hat{M}, s_0 \models E(\hat{P}U\hat{Q})$ iff there is some branch of \hat{M} (s_0, s_1, \ldots) and some $i \geq 0$ such that $\hat{M}, s_i \models Q$ and $\hat{M}, s_j \models P$ for all $0 \leq j < i$.

Comparing CTL and LTL formulas

- For model checking consider the correspondence

 CTL: $\hat{M}, s_0 \models P$ \hspace{1cm} LTL: $\hat{M}, x \models P$ for all full paths $x = (s_0, \ldots)$.

- CTL and LTL operators are similar but differ in some respects.

- For instance, “temporal possibilities” can be expressed in CTL but not in LTL.

Example. For a CTL formula $AGEFp$, there is no corresponding LTL formula.

Consider LTL formula GFp and the model $\hat{M} = (S, R, v)$ where $S = \{s_0, s_1\}$, $R = \{\langle s_0, s_0 \rangle, \langle s_0, s_1 \rangle, \langle s_1, s_0 \rangle\}$, $v(s_0, P) = \text{false}$ and $v(s_1, P) = \text{true}$.

The formula GFp is not valid in \hat{M} because it is false in a full path (s_0, s_0, s_0, \ldots) although CTL formula $AGEFp$ is valid in \hat{M}.
Differences between CTL and LTL—cont’d

- Thus, a CTL formula of the type “there is a path …” is not expressible as an LTL formula.

Example. For a CTL formula $\text{EF}P$ there is no corresponding LTL formula.

For instance, the LTL formula FP is not valid in the previous model \mathcal{M} because it is false in a full path (s_0, s_0, s_0, \ldots) but the CTL formula EFP is valid.

- Fairness properties are not expressible in CTL.

Example. For an LTL formula FGQ there is no corresponding CTL formula.

Consider the previous model \mathcal{M} where we set $v(s_0, Q) = \text{true}$ and $v(s_1, Q) = \text{false}$.

Now FGQ is true in a full path (s_0, s_0, \ldots) but the CTL formula AFAFGQ is not satisfiable in \mathcal{M} and neither is EFAGQ.

2. Examples of Temporal Properties

- $\text{EF}(\text{started} \land \neg \text{ready})$:

 It is possible to reach a state where started is true but ready is not.

- $\text{AG}(%\text{req} \rightarrow \text{AFack})$:

 If a request is received then it will be acknowledged.

- AGAFenabled:

 enabled is true infinitely often on every computation path.

- AGEFrestart:

 From every state is it possible to reach a state where restart is true.

3. Requirement Specifications

- Temporal logic can be used to state requirement specifications for reactive systems.

- Typical requirement specifications can be divided into the following classes:
 1. Reachability properties
 2. Safety properties
 3. Liveness properties
 4. Fairness properties

Reachability Properties

- This is a simple class of properties stating that some state (where a given condition P is true) can be reached (from the initial state of the system).

- Can be expressed using temporal formulas of the form EFP.

- Conditional reachability can be expressed using temporal formulas of the form $\text{E}(\text{QUP})$ (there is an execution where Q is true reaching a state where P is true).

Example. Typical reachability properties:

1. $\text{EF}(\text{started} \land \neg \text{ready})$.
2. $\text{EF}(\text{restart})$.
3. $\text{E}(\neg \text{restartUready})$.
Safety Properties

- Safety properties state that nothing "bad" happens during an execution of the system.
- A safety property is a requirement which has a finite counter-execution:
 - if the system does not satisfy a safety property P, then it has a finite execution where the property P does not hold.

Example. Examples of typical safety properties:

1. Mutual exclusion: $\text{AG} \neg(\text{atCS}_1 \land \text{atCS}_2)$.
2. Partial correctness: $\text{atl}_0 \land P \rightarrow \text{AG}(\text{atl}_h \land Q)$.

Liveness Properties

- Liveness properties express that something "good" happens.
- Liveness properties do not have finite counter-executions:
 - if a system does not satisfy a liveness property P, then this can be demonstrated only using an infinite counter-execution.

Example. Typical examples of liveness properties:

1. (nested) reachability: AGFrestart.
2. Temporal implication: $\text{AG}(P \rightarrow \text{AF}Q)$.
3. Starvation freeness: $\text{AG}(\text{atTry}_i \rightarrow \text{AFatCS}_i)$.
4. Total correctness: $\text{atl}_0 \land P \rightarrow \text{AF}(\text{atl}_h \land Q)$.

Fairness Properties

- Fairness properties are liveness properties which require that states where a given condition is true occur infinitely often.
- Fairness properties are not directly expressible in CTL but they are in LTL.

Example. Consider two atomic propositions for a process:
- en (the process is enabled) and
- ex (the process is executed).

1. Unconditional fairness: GFex.
2. Strong fairness: $\text{GFen} \rightarrow \text{GFex}$.
3. Weak fairness: $\text{FGen} \rightarrow \text{GFex}$.

4. Fairness Properties and CTL

- When using CTL fairness properties are handled by modifying the semantics of the path quantifiers (A/E).
- Quantification is considered over all fair paths (and not over all paths as in the basic case).
- Fairness conditions are given as a set of formulas F and when evaluating the truth of a formula only F-fair paths are considered.

Definition. A full path x is F-fair iff every $P \in F$ is true infinitely often on the path x.

Modified Semantics

Relation $|=F$ is defined as $|=_{F}$ except that path quantification is over F-fair paths.

- $M, s |=_F P$ iff there is a F-fair full path starting from the state s and $v(s, P) = \text{true}$ when P is an atomic proposition.
- $M, s |=_F A(P \cup Q)$ iff for all F-fair full path (s_0, s_1, \ldots) where $s = s_0$ there is some $i \geq 0$ such that $M, s_i |=_F Q$ and $M, s_j |=_F P$ for all $0 \leq j < i$.
- $M, s |=_F E(P \cup Q)$ iff there is some F-fair full path (s_0, s_1, \ldots) with $s = s_0$ and there is some $i \geq 0$ such that $M, s_i |=_F Q$ and $M, s_j |=_F P$ for all $0 \leq j < i$.

Example. Unconditional fairness can be express using the set $F = \{ \text{ex} \}$ and a fair channel using a set $F = \{ \text{send} \rightarrow \text{rec} \}$.

Summary

- Although CTL and LTL are based on similar temporal operators, they are different because LTL is a linear time logic where formulas are evaluated on paths whereas CTL is a branching time logic where formulas are evaluated on computation trees.
- Hence, there are CTL formulas (for instance of the form “there is a path . . .”) which cannot be expressed in LTL and LTL formulas (for example fairness formulas) which cannot be expressed in CTL.
- Temporal logics are suitable for requirement specification of reactive systems.
- Typical requirement specifications include reachability properties, safety properties, liveness properties, and fairness properties.