Temporal Operators

- **F**O (future)
 - $\mathcal{M}, s \mid \mid = \mathbf{F}Q$ iff $\mathcal{M}, t \mid \mid = Q$ for some $t \in S$ such that sRt.
- $\mathbf{G}O = \neg \mathbf{F} \neg O$ (globally)
- PO (past) $\mathcal{M}, s \mid\mid = \mathbf{P}Q$ iff $\mathcal{M}, t \mid\mid = Q$ for some $t \in S$ such that tRs.
- $\mathbf{H}O = \neg \mathbf{P} \neg O$ (historically)
- Always $O = \mathbf{G}Q \wedge Q \wedge \mathbf{H}Q$ (always)
- X (next):

In every/some next world?

Note that the accessibility relations R_X vs. R_F are related.

(c) 2008 TKK, Department of Information and Computer Science

T-79.5101 / Spring 2008 ML-8 1 **TEMPORAL LOGIC** 1. Introduction to temporal logic 2. Temporal logic and distributed and concurrent systems 3. CTL (Computation Tree Logic) 4. LTL (Linear Temporal Logic) 5. CTL* 6. Validity and satisfiability in CTL and LTL E. M. Clarke et al.: *Model Checking*, Chapter 3 (pp. 27–33). E. A. Emerson: Automated Temporal Reasoning about Reactive Systems, Section 2 (pp. 3–15). (c) 2008 TKK, Department of Information and Computer Science T-79 5101 / Spring 2008 ML-8 2 1. Introduction to Temporal Logic • Temporal logics are among the most widely applied logics in computer science • Time interpretation of the possible world semantics: possible worlds are seen as possible time points • Computational interpretation of the possible world semantics: possible worlds are seen as possible (global) states of the computation • Formal model: $\langle S, R, v \rangle$ where S is the set of possible points/states and sRt is interpreted: t is (some) possible future point from s and

s is (some) possible past point from t.

Typical requirements for *R*: transitive, linear/branching, discrete/continuous,

T-79 5101 / Spring 2008

Dynamic Logic

- For each action *a*, a modal operator [*a*]*P* (*P* is true after executing action *a*).
- Composite actions are also allowed:
 - *a*; *b* serial composition
 - $a \cup b$ nondeterministic choice
 - a^* repetition
 - *P*? test (if *P* is true, continue otherwise not)

Example. The following are formulas in dynamic logic:

 $[(P?;a) \cup (\neg P?;b)]Q \quad ([\text{if } P \text{ then } a \text{ else } b] Q)$

 $[(P?;a)^*;\neg P?]Q \qquad ([while P do a] Q)$

© 2008 TKK. Department of Information and Computer Science

M L-8

2. Temporal Logic and

Distributed and Concurrent Systems

Distributed and Concurrent Systems:

- Several distributed and concurrent processes
- Shared resources, coordination, communication
- Continuous operation

T-79.5101 / Spring 2008

- Reactivity and nondeterminism
- Examples: operating systems, communication protocols, device drivers, instrumentation and control systems, ...

(ii) When reasoning about the correctness of a design, infinite executions need to be handled.

© 2008 TKK, Department of Information and Computer Science

ML-8

8

7

Temporal Logic

- Provides a formal model for the executions of the system
- and a language for specifying requirements for the system.

Example.

- Mutual exclusion: $\mathbf{G} \neg (at_i(m) \land at_j(m'))$.
- Partial correctness: If a property P holds in the initial state m_0 of the program, then a property Q holds in the final state m_e : $at(m_0) \wedge P \rightarrow \mathbf{G}(at(m_e) \rightarrow Q).$
- Total correctness: requires in addition that the program always halts: $at(m_0) \wedge P \rightarrow \mathbf{F}at(m_e)$.
- No unnecessary replies: a reply v_i is given only to a received request p_i : $\mathbf{F}v_i \rightarrow (\neg v_i)\mathbf{U}p_i$.

T-79.5101 / Spring 200	8 ML-8	9	T-79.5101 / Spring 2008 ML-8
Applying Temporal	Logic		3. CTL (Computation Tree Logic)
 Proving correctness The system an Correctness is temporal logic, of the premises This is error pr Program synthesis Detailed requir A model for th satisfying the (also executab) Easier to auto 	ss: d requirements are described in temporal established by proving (compositionally in) that the requirements are logical consequents of describing the executions of the system. Frone and hard to automate. The requirements gives a (skeleton of a) pro- requirements le temporal specifications are possible). mate but still computationally challenging	logic. uences Il logic. gram	 In CTL temporal operators are pairs of (i) path quantifiers (A/E) and (ii) temporal operators (X/U/G/F). CTL syntax Every atomic proposition is a CTL-formula If P,Q are CTL-formulas, then P∧Q, ¬P, AXP, A(PUQ), E(PUQ) are CTL-formulas. Example. CTL-formulas (P∧Q) ∧ ¬Q AX(P∧¬Q) E((AXP)UQ)
© 2008 TKK, 1 T-79.5101 / Spring 200	Department of Information and Computer Science 8 ML-8	10	© 2008 TKK, Department of Information and Computer Science T-79.5101 / Spring 2008 ML-8
 Applying Temporal Model checking: Given a model a given require Requirements Efficient mode CTL and LTL are 	Logic-cont'd of the system, check whether the model s ement. specified using temporal logic I checkers available. among the most widely applied temporal	atisfies logics.	 CTL Syntax—cont'd Note that nesting of temporal operators X/U and their Boolean combinations are limited in CTL. For example, AXAXP is a CTL-formula but AXXP and A¬XP are not. Other operator pairs (EX, AG, EG, AF, EF) can be defined as shorthands using the basic operators (AX, A(.U.), E(.U.)). In CTL, executions of the system are seen as a computation tree (more details given in the next lecture) and given a state path quantifiers specify whether the property in question holds for some or all paths (branches) starting from the state.

Possible World Semantics

- CTL models are possible world models (S, R, v) where the accessibility relation is serial.
 (Typically in CTL models possible worlds in S are called states of the model).
- Note that the relation R here is that for the operator \mathbf{X} .
- A full path is an infinite sequence s_0, s_1, \ldots of states such that for all *i*: $s_i R s_{i+1}$. (A full path is one of the possible executions from the state s_0).

Example. Consider the model *M* in the figure.

 \odot 2008 TKK, Department of Information and Computer Science

ML-8

Truth in a Model

T-79 5101 / Spring 2008

Next we defined when a CTL-formula is true in a state s ($\mathcal{M}, s \models P$):

- $\mathcal{M}, s \models P$ iff v(s, P) =true, when P an atomic proposition.
- $\mathcal{M}, s \models \neg P$ iff $\mathcal{M}, s \not\models P$.
- $\mathcal{M}, s \models P \land Q$ iff $\mathcal{M}, s \models P$ and $\mathcal{M}, s \models Q$.
- $\mathcal{M}, s \models \mathbf{AXP}$ iff $\mathcal{M}, t \models P$ for all t such that sRt.
- $\mathcal{M}, s \models \mathbf{A}(P\mathbf{U}Q)$ iff for all full paths (s_0, s_1, \ldots) where $s = s_0$, there is some $i \ge 0$ such that $\mathcal{M}, s_i \models Q$ and $\mathcal{M}, s_j \models P$ for all $0 \le j < i$.
- $\mathcal{M}, s \models \mathbf{E}(P\mathbf{U}Q)$ iff there is a full path $(s_0, s_1, ...)$ with $s = s_0$ and with some $i \ge 0$ such that $\mathcal{M}, s_i \models Q$ and $\mathcal{M}, s_j \models P$ for all $0 \le j < i$.

T-79.5101 / Spring 2008

^{© 2008} TKK, Department of Information and Computer Science

4. LTL (Linear Temporal Logic)

- LTL is a linear time temporal logic with operators $\boldsymbol{X}, \boldsymbol{U}, \boldsymbol{G}, \boldsymbol{F}.$
- Syntax:
 - Every atomic proposition is a LTL-formula
 - If P,Q are LTL-formulas, then $P \land Q$, $\neg P$, **X**P, P**U**Q are LTL-formulas.
- Examples: $\neg \mathbf{X}(P \land \neg Q)$ and $\mathbf{X}(\mathbf{X}(\mathbf{X}P\mathbf{U}(Q \land P)) \land P)$.
- For example, operators **G** and **F** can be defined as shorthands using the basic operators: $\mathbf{F}P \equiv_{def} \top \mathbf{U}P$ and $\mathbf{G}P \equiv_{def} \neg \mathbf{F} \neg P$.
- Note that nesting of operators X and U and their Boolean combinations are possible: For instance, $(X(\neg XP))U(X(XP))$ are LTL-formulas.

 \odot 2008 TKK, Department of Information and Computer Science

T-79.5101	/	Spring	2008

ML-8

18

LTL Models

- An LTL model is a possible world model with a serial accessibility relation as for CTL but the formulas are interpreted on full paths (and not on states as in CTL).
- If $x = (s_0, s_1, ...)$ is a full path, then $x^i = (s_i, s_{i+1}, ...)$ is the suffix of x starting at s_i .

Definition. Let \mathcal{M} be a LTL model and $x = (s_0, s_1, \ldots)$ one of its full paths.

- $\mathcal{M}, x \models P$ iff $v(s_0, P) =$ true where P is an atomic proposition.
- $\mathcal{M}, x \models \neg P$ iff $\mathcal{M}, x \not\models P$.
- $\mathcal{M}, x \models P \land Q$ iff $\mathcal{M}, x \models P$ and $\mathcal{M}, x \models Q$.
- $\mathcal{M}, x \models \mathbf{X}P$ iff $\mathcal{M}, x^1 \models P$.
- $\mathcal{M}, x \models P \mathbf{U} Q$ iff there is some $i \ge 0$ such that $\mathcal{M}, x^i \models Q$ and $\mathcal{M}, x^j \models P$ for all $0 \le j < i$.

```
T-79.5101 / Spring 2008
```


T-79.5101 / Spring 2008	ML-8	_
More Temporal Operators	l	
• We adopt the following sh	• orthands:	
$\mathbf{F}P \equiv_{\mathrm{def}} \top \mathbf{U}P$	$\mathbf{G}P \equiv_{\mathrm{def}} \neg \mathbf{F} \neg P$	
$\stackrel{\circ}{\mathbf{F}}_{P} \equiv_{\mathrm{def}} \mathbf{GFP}$	$\overset{\infty}{\mathbf{G}} P \equiv_{\mathrm{def}} \mathbf{F} \mathbf{G} P$	
$P\mathbf{B}Q \equiv_{\mathrm{def}} \neg((\neg P)\mathbf{U}Q)$	(before)	
 Note the reflexivity and transmission 	ansitivity of the operator ${f U}$:	
Example . If $\mathcal{M}, x \models P$, the	en $\mathcal{M}, x \models (Q\mathbf{U}P)$.	
If $\mathcal{M}, x \models \mathbf{X}^i P$ for some $i \geq$	≥ 0 , then $\mathcal{M}, x \models (\top \mathbf{U} P)$.	
In fact, for all \mathcal{M}, x holds,	for example: $\mathcal{M}, x \models \mathbf{G}P o P$ and	
$\mathcal{M}, x \models \mathbf{G}P \to \mathbf{G}\mathbf{G}P.$		

Truth in a Model—cont'd

Definition.

- Let $x = (s_0, s_1, ...)$ be a full path in a CTL^{*} model \mathcal{M} .
- $\mathcal{M}, x \models P$ iff $\mathcal{M}, s_0 \models P$, where P is a state formula.
- $\mathcal{M}, x \models \neg P$ iff $\mathcal{M}, x \not\models P$.
- $\mathcal{M}, x \models P \land Q$ iff $\mathcal{M}, x \models P$ and $\mathcal{M}, x \models Q$.
- $\mathcal{M}, x \models \mathbf{X}P$ iff $\mathcal{M}, x^1 \models P$
- $\mathcal{M}, x \models P \mathbf{U} Q$ iff there is some $i \ge 0$ such that $\mathcal{M}, x^i \models Q$ and $\mathcal{M}, x^j \models P$ for all $0 \le j < i$.

5. CTL*

- The idea: $CTL^* = CTL$ (state formulas) + LTL (path formulas).
- CTL*-formulas are state formulas obtained by the following rules:
 - Every atomic proposition is a state formula.
 - If P,Q are state formulas, then $P \wedge Q$ and $\neg P$ are, too.
 - If P is a path formula, then $\mathbf{E}P$ and $\mathbf{A}P$ are state formulas.
 - Every state formula is a path formula.
 - If P,Q are path formulas, then $P \wedge Q$ and $\neg P$ are, too.
 - If P, Q path formulas, then **X**P and PUQ are, too.

Example. Note that, for instance, $\mathbf{E}\neg(P\mathbf{U}Q)$ is a CTL*-formula but $\neg(P\mathbf{U}Q)$ is not (it is a path formula but not a state formula).

 \odot 2008 TKK, Department of Information and Computer Science

ML-8

A CTL* model is like a CTL model.

Definition.

CTL* Models

- $\mathcal{M}, s \models P$ iff v(s, P) = true, where P is an atomic proposition.
- $\mathcal{M}, s \models \neg P$ iff $\mathcal{M}, s \not\models P$.

T-79 5101 / Spring 2008

- $\mathcal{M}, s \models P \land Q$ iff $\mathcal{M}, s \models P$ and $\mathcal{M}, s \models Q$.
- $\mathcal{M}, s \models \mathbf{E}P$ iff there is a full path $x = (s_0, s_1, ...)$ where $s_0 = s$ and for which $\mathcal{M}, x \models P$ holds.
- $\mathcal{M}, s \models \mathbf{A}P$ iff for every full path $x = (s_0, s_1, ...)$ where $s_0 = s$ holds that $\mathcal{M}, x \models P$.

Relation $\mathcal{M}, x \models P$ is defined next.

Summary

- Temporal logics are among the most widely applied logics in computer science
- Temporal logic is employed especially in the design methods for distributed and concurrently systems.
- It can be applied to prove correctness of designs, to synthesize automatically designs satisfying given requirements, and to model check designs.
- Model checking is already now applied industrially.
- CTL and LTL are among the most widely applied temporal logics. The rest of course is focusing on CTL and LTL.

© 2008 TKK, Department of Information and Computer Science