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TEMPORAL LOGIC1. Introdu
tion to temporal logi
2. Temporal logi
 and distributed and 
on
urrent systems3. CTL (Computation Tree Logi
)4. LTL (Linear Temporal Logi
)5. CTL∗6. Validity and satis�ability in CTL and LTL

E. M. Clarke et al.: Model Che
king, Chapter 3 (pp. 27�33).E. A. Emerson: Automated Temporal Reasoning about Rea
tiveSystems, Se
tion 2 (pp. 3�15).
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1. Introdu
tion to Temporal Logi


• Temporal logi
s are among the most widely applied logi
s in
omputer s
ien
e

• Time interpretation of the possible world semanti
s:possible worlds are seen as possible time points

• Computational interpretation of the possible world semanti
s:possible worlds are seen as possible (global) states of the
omputation

• Formal model: 〈S,R,v〉where S is the set of possible points/states and sRt is interpreted:
t is (some) possible future point from s and
s is (some) possible past point from t.Typi
al requirements for R: transitive, linear/bran
hing,dis
rete/
ontinuous, . . .
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Temporal Operators

• FQ (future)

M ,s ||− FQ i� M , t ||− Q for some t ∈ S su
h that sRt.
• GQ = ¬F¬Q (globally)

• PQ (past)

M ,s ||− PQ i� M , t ||− Q for some t ∈ S su
h that tRs.
• HQ = ¬P¬Q (histori
ally)
• Always Q = GQ∧Q∧HQ (always)
• X (next):In every/some next world?Note that the a

essibility relations RX vs. RF are related.


© 2008 TKK, Department of Information and Computer S
ien
e

AB
T-79.5101 / Spring 2008 ML-8 4

Binary Temporal Operators

• U (until):
M ,s ||− AUB i�for some t su
h that sRt, M , t ||− B and for all u ∈ S,if sRu and uRt, then M ,u ||− A.

=⇒ FB ↔ (⊤UB)

• S (sin
e):

M ,s ||− ASB i�for some t su
h that tRs, M , t ||− B and for every u ∈ S,if uRs and tRu, then M ,u ||− A.

=⇒ PB ↔ (⊤SB)
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Dynami
 Logi


• For ea
h a
tion a, a modal operator [a]P(P is true after exe
uting a
tion a).

• Composite a
tions are also allowed:

a;b serial 
omposition

a∪b nondeterministi
 
hoi
e

a∗ repetition

P? test (if P is true, 
ontinue otherwise not)Example. The following are formulas in dynami
 logi
:

[(P?;a)∪ (¬P?;b)]Q ([if P then a else b℄ Q)

[(P?;a)∗;¬P?]Q ([while P do a℄ Q)
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2. Temporal Logi
 andDistributed and Con
urrent Systems

Distributed and Con
urrent Systems:

• Several distributed and 
on
urrent pro
esses

• Shared resour
es, 
oordination, 
ommuni
ation

• Continuous operation

• Rea
tivity and nondeterminism

• Examples: operating systems, 
ommuni
ation proto
ols, devi
edrivers, instrumentation and 
ontrol systems, . . .
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Rea
tive Systems

• Designing rea
tive systems is 
hallenging:� It is hard to reprodu
e an erroneous exe
ution� An exe
ution of the system is an in�nite sequen
e of states.

• Novel design methods are needed:(i) Errors in design should be dete
ted as early as possible in thedesign 
y
le.(ii) When reasoning about the 
orre
tness of a design, in�niteexe
utions need to be handled.
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Temporal Logi

• Provides a formal model for the exe
utions of the system

• and a language for spe
ifying requirements for the system.Example.

• Mutual ex
lusion: G¬(ati(m)∧at j(m′)).

• Partial 
orre
tness: If a property P holds in the initial state m0 ofthe program, then a property Q holds in the �nal state me:

at(m0)∧P → G(at(me) → Q).

• Total 
orre
tness: requires in addition that the program alwayshalts: at(m0)∧P → Fat(me).

• No unne
essary replies: a reply vi is given only to a re
eivedrequest pi: Fvi → (¬vi)Upi.
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Applying Temporal Logi


• Proving 
orre
tness:� The system and requirements are des
ribed in temporal logi
.� Corre
tness is established by proving (
ompositionally intemporal logi
) that the requirements are logi
al 
onsequen
esof the premises des
ribing the exe
utions of the system.� This is error prone and hard to automate.

• Program synthesis:� Detailed requirements of the system spe
i�ed in temporal logi
.� A model for the requirements gives a (skeleton of a) programsatisfying the requirements(also exe
utable temporal spe
i�
ations are possible).� Easier to automate but still 
omputationally 
hallenging.
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Applying Temporal Logi
�
ont'd

• Model 
he
king:� Given a model of the system, 
he
k whether the model satis�esa given requirement.� Requirements spe
i�ed using temporal logi
� E�
ient model 
he
kers available.

• CTL and LTL are among the most widely applied temporal logi
s.
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3. CTL (Computation Tree Logi
)
• In CTL temporal operators are pairs of(i) path quanti�ers (A/E) and(ii) temporal operators (X/U/G/F).
• CTL syntax� Every atomi
 proposition is a CTL-formula� If P,Q are CTL-formulas, then P∧Q, ¬P, AXP, A(PUQ),

E(PUQ) are CTL-formulas.Example. CTL-formulas
(P∧Q)∧¬Q

AX(P∧¬Q)

E((AXP)UQ)
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CTL Syntax�
ont'd

• Note that nesting of temporal operators X/U and their Boolean
ombinations are limited in CTL.For example, AXAXP is a CTL-formula but AXXP and A¬XP arenot.

• Other operator pairs (EX,AG,EG,AF,EF) 
an be de�ned asshorthands using the basi
 operators (AX, A(.U.), E(.U.)).

• In CTL, exe
utions of the system are seen as a 
omputation tree(more details given in the next le
ture) and given a state pathquanti�ers spe
ify whether the property in question holds for someor all paths (bran
hes) starting from the state.Example. AXP (For all paths in the next world P)

E(PUQ) (There exists a path where P until Q).
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• CTL models are possible world models 〈S,R,v〉where the a

essibility relation is serial.(Typi
ally in CTL models possible worlds in S are 
alled states ofthe model).

• Note that the relation R here is that for the operator X.

• A full path is an in�nite sequen
e s0,s1, . . . of states su
h that forall i: siRsi+1. (A full path is one of the possible exe
utions fromthe state s0).Example. Consider the model M in the �gure.

s2 s5

s3 s4

s1 Examples of full paths:

s1,s5,s4,s5,s4, . . .

s2,s4,s5,s4, . . .

s2,s3,s4,s5,s4, . . .
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Truth in a ModelNext we de�ned when a CTL-formula is true in a state s (M ,s |= P):

• M ,s |= P i� v(s,P) = true, when P an atomi
 proposition.

• M ,s |= ¬P i� M ,s 6|= P.

• M ,s |= P∧Q i� M ,s |= P and M ,s |= Q.

• M ,s |= AXP i� M , t |= P for all t su
h that sRt.

• M ,s |= A(PUQ) i� for all full paths (s0,s1, . . .) where s = s0, thereis some i ≥ 0 su
h that M ,si |= Q and M ,s j |= P for all 0 ≤ j < i.
• M ,s |= E(PUQ) i� there is a full path (s0,s1, . . .) with s = s0 andwith some i ≥ 0 su
h that M ,si |= Q and M ,s j |= P for all

0 ≤ j < i.
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ExampleConsider again the model M:

s2 s5

s3 s4

s1

with a valuation:

v(P,s4) = true and otherwise v(P,s) = false;
v(Q,s2) = true and otherwise v(Q,s) = false.1. M ,s2 6|= AXP but M ,s3 |= AXP.2. M ,s2 6|= A(QUP) but M ,s2 |= E(QUP).3. M ,s3 6|= E(QUP) but M ,s4 |= A(QUP).
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More Temporal Operators

• We 
an de�ne further operators as shorthands:

EXP ≡def ¬AX¬P

AFP ≡def A(⊤UP)

EFP ≡def E(⊤UP)

AGP ≡def ¬EF¬P

EGP ≡def ¬AF¬P

• Noti
e the re�exivity and transitivity of the operator U:Example. If M ,s0 |= P, then M ,s0 |= A(QUP) and

M ,s0 |= E(QUP) (and, for example, M ,s0 |= AFP).If s0Rs1, s1Rs2 and M ,s2 |= P, then M ,s0 |= E(⊤UP) (= EFP).
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4. LTL (Linear Temporal Logi
)

• LTL is a linear time temporal logi
 with operators X,U,G,F.

• Syntax:� Every atomi
 proposition is a LTL-formula� If P,Q are LTL-formulas, then P∧Q, ¬P, XP, PUQ areLTL-formulas.

• Examples: ¬X(P∧¬Q) and X(X(XPU(Q∧P))∧P).

• For example, operators G and F 
an be de�ned as shorthandsusing the basi
 operators: FP ≡def ⊤UP and GP ≡def ¬F¬P.

• Note that nesting of operators X and U and their Boolean
ombinations are possible: For instan
e, (X(¬XP))U(X(XP)) areLTL-formulas.
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• An LTL model is a possible world model with a serial a

essibilityrelation as for CTL but the formulas are interpreted on full paths(and not on states as in CTL).

• If x = (s0,s1, . . .) is a full path, then xi = (si,si+1, . . .) is the su�xof x starting at si.De�nition. Let M be a LTL model and x = (s0,s1, . . .) one of its fullpaths.

• M ,x |= P i� v(s0,P) = true where P is an atomi
 proposition.
• M ,x |= ¬P i� M ,x 6|= P.

• M ,x |= P∧Q i� M ,x |= P and M ,x |= Q.

• M ,x |= XP i� M ,x1 |= P.

• M ,x |= PUQ i� there is some i ≥ 0 su
h that
M ,xi |= Q and M ,x j |= P for all 0 ≤ j < i.
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ExampleConsider again the model M:

s2 s5

s3 s4

s1

the valuation:

v(P,s4) = true, otherwise v(P,s) = false;
v(Q,s2) = true, otherwise v(Q,s) = false.For full paths x1 = (s2,s3,s4,s5,s4, . . .) and x2 = (s2,s4,s5,s4, . . .):1. M,x1 6|= XP but M,x2 |= XP.2. M,x1 6|= QUP but M,x2 |= QUP.
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More Temporal Operators

• We adopt the following shorthands:

FP ≡def ⊤UP GP ≡def ¬F¬P
∞
FP ≡def GFP

∞
GP ≡def FGP

PBQ ≡def ¬((¬P)UQ) (before)

• Note the re�exivity and transitivity of the operator U:Example. If M ,x |= P, then M ,x |= (QUP).If M ,x |= XiP for some i ≥ 0, then M ,x |= (⊤UP).In fa
t, for all M ,x holds, for example: M ,x |= GP → P and

M ,x |= GP → GGP.
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5. CTL∗
• The idea: CTL∗ = CTL (state formulas) + LTL (path formulas).

• CTL∗-formulas are state formulas obtained by the following rules:� Every atomi
 proposition is a state formula.� If P,Q are state formulas, then P∧Q and ¬P are, too.� If P is a path formula, then EP and AP are state formulas.� Every state formula is a path formula.� If P,Q are path formulas, then P∧Q and ¬P are, too.� If P,Q path formulas, then XP and PUQ are, too.

Example. Note that, for instan
e, E¬(PUQ) is a CTL∗-formula but

¬(PUQ) is not (it is a path formula but not a state formula).
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CTL∗ ModelsA CTL∗ model is like a CTL model.De�nition.

• M ,s |= P i� v(s,P) = true, where P is an atomi
 proposition.

• M ,s |= ¬P i� M ,s 6|= P.

• M ,s |= P∧Q i� M ,s |= P and M ,s |= Q.

• M ,s |= EP i� there is a full path x = (s0,s1, . . .) where s0 = s andfor whi
h M ,x |= P holds.

• M ,s |= AP i� for every full path x = (s0,s1, . . .) where s0 = s holdsthat M ,x |= P.Relation M ,x |= P is de�ned next.


© 2008 TKK, Department of Information and Computer S
ien
e

AB

T-79.5101 / Spring 2008 ML-8 23

Truth in a Model�
ont'dDe�nition.Let x = (s0,s1, . . .) be a full path in a CTL∗ model M .
• M ,x |= P i� M ,s0 |= P, where P is a state formula.
• M ,x |= ¬P i� M ,x 6|= P.

• M ,x |= P∧Q i� M ,x |= P and M ,x |= Q.
• M ,x |= XP i� M ,x1 |= P

• M ,x |= PUQ i� there is some i ≥ 0 su
h that M ,xi |= Q and

M ,x j |= P for all 0 ≤ j < i.
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6. Validity and Satis�ability

• CTL/CTL∗A (state) formula P is valid in a model M (M |= P) i�

M ,s |= P for all states s in the model M .A formula P is satis�able i� there is a model M and a state s su
hthat M ,s |= P.

• LTLA (path) formula P is valid in a model M (M |= P) i�

M ,x |= P for all full paths x in the model M .A formula P is satis�able if there is a model M with a full path xsu
h that M ,x |= P.

• A formula is valid i� it is valid in every modeli� its negation is not satis�able.
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Summary

• Temporal logi
s are among the most widely applied logi
s in
omputer s
ien
e

• Temporal logi
 is employed espe
ially in the design methods fordistributed and 
on
urrently systems.

• It 
an be applied to prove 
orre
tness of designs, to synthesizeautomati
ally designs satisfying given requirements, and to model
he
k designs.

• Model 
he
king is already now applied industrially.

• CTL and LTL are among the most widely applied temporal logi
s.The rest of 
ourse is fo
using on CTL and LTL.
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