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TEMPORAL LOGIC I Temporal OperatorsI

1. Introduction to temporal logic e FQ (future)
M,s||—- FQ iff M,t |- Q for some t € Ssuch that sR.

2. Temporal logic and distributed and concurrent systems

3. CTL (Computation Tree Logic) e GQ=-F-Q (globally)

4. LTL (Linear Temporal Logic) * PQ (past)

5 CTL* M,s||— PQiff Mt ||~ Q for some t € Ssuch that tRs.

e HQ = —P-Q (historically)
o AlwaysQ=GQAQAHQ (always)

6. Validity and satisfiability in CTL and LTL

E. M. Clarke et al.: Model Checking, Chapter 3 (pp. 27-33). e X (next):
E. A. Emerson: Automated Temporal Reasoning about Reactive In every/some next world?
Systems, Section 2 (pp. 3-15). Note that the accessibility relations Ry vs. Rg are related.
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1. Introduction to Temporal Logic' Binary Temporal OperatorsI

e Temporal logics are among the most widely applied logics in e U (until):
computer science M,s ||— AUB iff
e Time interpretation of the possible world semantics: for some t such that SR, .t ||~ B and for all u€ S
[l Pl —

possible worlds are seen as possible time points

e Computational interpretation of the possible world semantics: if SRu and UR, then 24, u || A.

possible worlds are seen as possible (global) states of the = FB« (TUB)
computation oS (since):
e Formal n:10de|: (SRV) . . . M, || ASB iff
where Sis the set of possible points/states and SRt is interpreted:
t is (some) possible future point from s and for some t such that tRs, Mt |- B and for every u€ S
sis (some) possible past point from t. if URS and tRu, then ,u || A

Typical requirements for R: transitive, linear/branching,

\ discrete/continuous, . .. J

— PB< (TSB)
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Dynamic Logic I

e For each action @, a modal operator [a]P

(P is true after executing action a).
e Composite actions are also allowed:
a;b  serial composition
aub nondeterministic choice
a*  repetition
P? test (if P is true, continue otherwise not)
Example. The following are formulas in dynamic logic:
[(P?Za)U(-P?2b)]Q (]if P then aelse b] Q)
[(P?2)*;-P7Q ([while P do a] Q)

-
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2. Temporal Logic and

Distributed and Concurrent Systems

Distributed and Concurrent Systems:
e Several distributed and concurrent processes

e Shared resources, coordination, communication

Continuous operation

Reactivity and nondeterminism

Examples: operating systems, communication protocols, device
drivers, instrumentation and control systems, . ..

-
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Reactive Systems I

e Designing reactive systems is challenging:

— It is hard to reproduce an erroneous execution

— An execution of the system is an infinite sequence of states.

e Novel design methods are needed:

(i) Errors in design should be detected as early as possible in the
design cycle.

(i) When reasoning about the correctness of a design, infinite
executions need to be handled.
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Temporal Logic I

e Provides a formal model for the executions of the system

e and a language for specifying requirements for the system.
Example.

e Mutual exclusion: G—(atj(m) Aatj(n)).

e Partial correctness: If a property P holds in the initial state mg of
the program, then a property Q holds in the final state me:

at(mp) AP — G(at(me) — Q).

e Total correctness: requires in addition that the program always
halts: at(mg) AP — Fat(me).

e No unnecessary replies: a reply Vj is given only to a received
request pi: Fvi — (=vi)Up;.

)
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Applying Temporal Logic I

e Proving correctness:

— The system and requirements are described in temporal logic.

— Correctness is established by proving (compositionally in
temporal logic) that the requirements are logical consequences
of the premises describing the executions of the system.

— This is error prone and hard to automate.

e Program synthesis:
— Detailed requirements of the system specified in temporal logic.
— A model for the requirements gives a (skeleton of a) program
satisfying the requirements

(also executable temporal specifications are possible).

K — Easier to automate but still computationally challenging. j
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Applying Temporal Logic—cont’d I

e Model checking:
— Given a model of the system, check whether the model satisfies

a given requirement.
— Requirements specified using temporal logic

— Efficient model checkers available.

e CTL and LTL are among the most widely applied temporal logics.

\_ /
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CTL Syntax—cont'd I
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3. CTL (Computation Tree Logic)'

e In CTL temporal operators are pairs of
(i) path quantifiers (A/E) and
(i) temporal operators (X/U/G/F).

~

e CTL syntax
— Every atomic proposition is a CTL-formula

— If PQ are CTL-formulas, then PAQ, =P, AXP, A(PUQ),
E(PUQ) are CTL-formulas.

Example. CTL-formulas
(PAQA—Q
AX(PA-Q)
E((AXP)UQ)

\_ /

© 2008 TKK, Department of Information and Computer Science

T-79.5101 / Spring 2008 ML-8

~

e Note that nesting of temporal operators X/U and their Boolean
combinations are limited in CTL.
For example, AXAXP is a CTL-formula but AXXP and A—=XP are

not.

e Other operator pairs (EX,AG,EG,AF,EF) can be defined as
shorthands using the basic operators (AX, A(.U.), E(.U.)).

e In CTL, executions of the system are seen as a computation tree
(more details given in the next lecture) and given a state path
quantifiers specify whether the property in question holds for some
or all paths (branches) starting from the state.

Example. AXP (For all paths in the next world P)

E(PUQ) (There exists a path where P until Q).

/
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Possible World Semantics

e CTL models are possible world models (S R,v)
where the accessibility relation is serial.
(Typically in CTL models possible worlds in S are called states of
the model).

e Note that the relation R here is that for the operator X.

e A full path is an infinite sequence Sy, S1,... of states such that for
all i: sRs+1. (A full path is one of the possible executions from
the state ).

Example. Consider the model M in the figure.

2 st ® Examples of full paths:

s1,s5,54,5, 4, ...
2,4, 5,4, ...

3 4 2,53, 54,5, 4, ...

\_ /
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Truth in a Model'

Next we defined when a CTL-formula is true in a state s (M,s|=P):

o M,s= P iff v(s,P) = true, when P an atomic proposition.
o M,sl=-Piff M, sl=P.

o M sEPAQIff M ,sEPand M,sEQ.

o M,sk=AXPiff Mt =P for all t such that sRt.

o M, sk=A(PUQ) iff for all full paths (so,S1,...) where s= s, there
is some i > 0 such that M,5 =Q and M,s; =P forall 0< j <.

e M,sk=E(PUQ) iff there is a full path (s,S1,...) with s=sy and
with some i > 0 such that M,s = Q and M, sj = P for all
0<j<i.
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Consider again the model M:
2 sl s5

s3 7]

with a valuation:
V(P,s4) = true and otherwise v(P,s) = false;
V(Q,s2) = true and otherwise v(Q,s) = false.

1. M, s, = AXP but M, s3 = AXP.
2. M, = A(QUP) but M,s; = E(QUP).
3. M55 = E(QUP) but M, s = A(QUP).
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More Temporal Operators'

e We can define further operators as shorthands:

EXP =gt ~AX-P
AFP =g A(TUP)
EFP =q4 E(TUP)

AGP =g —EF-P
EGP =def -AF-P

e Notice the reflexivity and transitivity of the operator U:
Example. If M,y =P, then M, 50 = A(QUP) and
M, s = E(QUP) (and, for example, M, sy = AFP).
If soRs1, s1Rs, and M ;sp =P, then M, 59 = E(TUP) (= EFP).

%
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4. LTL (Linear Temporal Logic)I

e LTL is a linear time temporal logic with operators X, U, G,F.

e Syntax:
— Every atomic proposition is a LTL-formula
— If P,Q are LTL-formulas, then PAQ, =P, XP, PUQ are
LTL-formulas.
e Examples: =X (PA—=Q) and X(X(XPU(QAP))AP).

e For example, operators G and F can be defined as shorthands
using the basic operators: FP =g TUP and GP =g¢ ~F—P.

e Note that nesting of operators X and U and their Boolean
combinations are possible: For instance, (X(—=XP))U(X(XP)) are
LTL-formulas.

N

/
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KLTL Models

e An LTL model is a possible world model with a serial accessibility
relation as for CTL but the formulas are interpreted on full paths
(and not on states as in CTL).

o If X=(%0,51,...) is a full path, then X = (s,5,1,...) is the suffix
of X starting at S.

Definition. Let M be a LTL model and x = (o, S1,...) one of its full
paths.

o M, x|= P iff v(sp,P) = true where P is an atomic proposition.

o M, x| —Piff M, xP.

o M XEPAQIff M,xEPand M xEQ.

o M ,x|=XP iff M,x =P.

o M x|=PUQ iff there is some i > 0 such that

K M, X =Qand M,x) =P forall 0< j <i.

~
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Consider again the model M:
2@ sl 3

s3 4

the valuation:
V(P,s1) = true, otherwise v(P,s) = fase,
V(Q,sp) = true, otherwise v(Q,s) = false.

For full paths x3 = (s2,53,54,55,%4,...) and xp = (s2,4,85,4,...):
1. M,x; £ XP but M, = XP.
2. M, xq = QUP but M,x; = QUP.
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More Temporal Operators.

e We adopt the following shorthands:

FP =g TUP GP =ggt -F-P
FP = GFP GP =ue FGP
PBQ =get —~((—-P)UQ) (before)

e Note the reflexivity and transitivity of the operator U:
Example. If M ,x}= P, then M, x = (QUP).
If M ,x = X'P for some i >0, then M, x|= (TUP).
In fact, for all M, x holds, for example: M ,x = GP — P and
M, x =GP — GGP.
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e The idea: CTL" = CTL (state formulas) + LTL (path formulas).

e CTL*-formulas are state formulas obtained by the following rules:
— Every atomic proposition is a state formula.

— If P,Q are state formulas, then PAQ and —P are, too.

If P is a path formula, then EP and AP are state formulas.

Every state formula is a path formula.

If P,Q are path formulas, then PAQ and —P are, too.
If P,Q path formulas, then XP and PUQ are, too.

Example. Note that, for instance, E-(PUQ) is a CTL*-formula but
—(PUQ) is not (it is a path formula but not a state formula).

J
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A CTL* model is like a CTL model.

Definition.

M, s = P iff v(s,P) = true, where P is an atomic proposition.
M,sk=—Piff M, sp=P.
M,sEPAQIff M,sE=Pand M, sEQ.

M, s |= EP iff there is a full path X= (S, S1,...) where Sg=s and
for which M, x |= P holds.

M ,s= AP iff for every full path x=(s0,51,...) where sp=s holds
that M ,x = P.

Relation M ,X |= P is defined next.

N /
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Truth in a Model—cont'd'

Definition.
Let X = (S0,S1,...) be a full path in a CTL* model M.

o M ,xEPiff M,s0 =P, where P is a state formula.
M, X = P iff M x - P.

M, xE=PAQIff M ,xE=Pand M ,xE Q.
M, x = XP iff M xt =P

M ,x |= PUQ iff there is some i > 0 such that M, X |= Q and
M,xl =P forall 0< j<i

N /
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6. Validity and Satisfiability I

o CTL/CTL*

A (state) formula P is valid in a model M (M = P) iff
M ,s = P for all states s in the model M.

A formula P is satisfiable iff there is a model M and a state S such
that M,s=P.

o LTL
A (path) formula P is valid in a model M (M = P) iff
M, x = P for all full paths x in the model M.
A formula P is satisfiable if there is a model M with a full path x
such that M, x |= P.

e A formula is valid iff it is valid in every model

\ iff its negation is not satisfiable. J
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Temporal logics are among the most widely applied logics in
computer science

Temporal logic is employed especially in the design methods for
distributed and concurrently systems.

It can be applied to prove correctness of designs, to synthesize
automatically designs satisfying given requirements, and to model
check designs.

Model checking is already now applied industrially.

CTL and LTL are among the most widely applied temporal logics.
The rest of course is focusing on CTL and LTL.

%

© 2008 TKK, Department of Information and Computer Science

25



