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MORE ABOUT MODAL LOGIC1. Finite model property2. De
idability3. Translation to predi
ate logi
4. Multi-modal logi
s5. Computational 
omplexity

M. Fitting: Basi
 Modal Logi
, Se
tions 1.10, 1.12 ja 1.14(pp. 403 � 405, 408 � 410, and 416 � 419).
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1. Finite Model Property

De
idability

• Next we 
onsider 
omputational properties of modal logi
s. Asusual we use as the formal model of 
omputation Turingma
hines. Hen
e, when saying that there is an algorithm
omputing/solving some problem we mean that there is a Turingma
hine 
apable of 
omputing/solving the problem.
• We say that logi
 L is de
idable, if there is an algorithm su
h thatgiven a formula as input it de
ides whether the formula is L-validor not.

• Su
h an algorithm is 
alled a de
ision pro
edure for L.


© 2008 TKK, Department of Information and Computer S
ien
e

AB

T-79.5101 / Spring 2008 ML-7 3

Semi-De
idability

• If there is a proof system (for example Hilbert-style proof theory)for logi
 L, then L is semi-de
idable: there is an algorithm thathalts and says �yes� if the formula given as input is L-valid (butmight not halt if the formula is not L-valid).Proof sket
h: the algorithm starts enumerating L-proofs in somesystemati
 way and halts if a proof for the formula is found.

=⇒ The set of L-valid formulas is re
ursively enumerable.
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Finite Model PropertyDe�nition. Modal logi
 L has the �nite model property if for everyformula P whi
h is not L-valid, there is a �nite L-model that has aworld where P is false.

• If a logi
 L has the �nite model property, then the set of formulasthat are not L-valid is semi-de
idable.Proof sket
h. Enumerate in some systemati
 way �nite modelsfrom small models to bigger ones and 
he
k for ea
h of themwhether the model has a world where P is false.

• Hen
e, if a modal logi
 L has a proof system and the �nite modelproperty, then L is de
idable.

• How 
an we show that a logi
 has the �nite model property?

=⇒ Filtration.
© 2008 TKK, Department of Information and Computer S
ien
e



AB

T-79.5101 / Spring 2008 ML-7 5

Example. Filtration for Modal Logi
 KTheorem. Modal logi
 K has the �nite model property.Proof. Assume that a formula Q is not K-valid. Hen
e, there is amodel M = 〈S,R,v〉 and a world s0 ∈ S su
h that M ,s0 ||6 − Q.We 
onstru
t a �nite (quotient) model |M | from M by �ltration.Let Sub(Q) be the set of all subformulas of Q.

• De�ne an equivalen
e relation ∼ for the set S: s ∼ t if for all

P ∈ Sub(Q), M ,s ||− P i� M , t ||− P.

• Let |s| = {t ∈ S : t ∼ s} and |S| = {|s| : s ∈ S}. Now |S| is �nitebe
ause it has at most 2n elements where n is the number ofsubformulas of Q: every |s| ∈ |S| is a set of worlds su
h that exa
tlythe same subset of subformulas of Q are true in ea
h world in |s|.
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Filtration�
ont'dConsider now a model |M | = 〈|S|, |R|, |v|〉 where the relation |R| isde�ned as follows:

|s||R||t| i� there are elements s′ ∈ |s| and t ′ ∈ |t| su
h that s′Rt ′and the valuation |v|: |v|(|s|,P) = v(s,P).We show by stru
tural indu
tion that for every P ∈ Sub(Q)

M ,s ||− P i� |M |, |s| ||− P.

• P is an atomi
 proposition: |v|(|s|,P) = v(s,P).

• ¬P: M ,s ||− ¬P i� M ,s ||6 − P i� (IH)

|M |, |s| ||6 − P i� |M |, |s| ||− ¬P.

• P → Q: 
an be proved in a similar way.
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• 2P: (⇐) Let M ,s ||6 − 2P. Then there is a world t su
h that sRtand M , t ||6 − P. Hen
e, |s||R||t| and |M |, |t| ||6 − P (IH) and
|M |, |s| ||6 − 2P.

• 2P: (⇒) Let |M |, |s| ||6 − 2P hold. Then there is |t| su
h that
|s||R||t| and |M |, |t| ||6 − P. Hen
e, M , t ||6 − P (by IH). Thus, thereare worlds s′ ∈ |s| and t ′ ∈ |t| su
h that s′Rt ′ and M , t ′ ||6 − P. So

M ,s′ ||6 − 2P and M ,s ||6 − 2P.The theorem follows from the result above:
• As M ,s0 ||6 − Q and Q ∈ Sub(Q), |M |, |s0| ||6 − Q holds.

• Hen
e, logi
 K has the �nite model property.Many other normal modal logi
s have the �nite model property, forexample, T,K4,S4,KB,B, S5,D,D4,DB,KD45.
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2. De
idability

• If we 
an give an upper bound on the size of the 
ounter-model,the logi
 is de
idable.

• This observation does not lead to a very e�
ient de
isionpro
edure.

• The tableau method provides a more e�
ient approa
h.Example. We 
an show that logi
 K is de
idable by showing that thetableau method for K provides a de
ision pro
edure that halts onevery formula.For this argument we need König's lemma:Lemma. If a tree has an in�nite number of nodes but every node hasa �nite number of 
hild nodes, then the tree has an in�nite bran
h.
© 2008 TKK, Department of Information and Computer S
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edure de
iding whether a formula P is K-valid:1. Take as the root of the tableau 〈1〉¬P.2. Until the tableau is 
losed or all formulas have been marked used:2.1 Choose the uppermost unused node σQ in the tableau.2.2 If Q is not a literal, then for ea
h open bran
h θ 
ontaining σQ do:

• If σQ is of the form σ¬¬Q′, extend θ by the node σQ′.

• If σQ is of the form σα, extend θ by nodes σα1 and σα2.

• If σQ is of the form σβ, extend θ to two bran
hes one 
ontaining

σβ1 and the other σβ2.

• If σQ is of the form σ¬2P, extend θ by σn¬P with some σnwhi
h is unrestri
ted on θ and then with σnX for every σ2X thatappears on the bran
h θ.

• If σQ is of the σ2P, extend θ with σnP for every σn whi
h isavailable on θ if σnP is not already 
ontained in θ.2.3 Mark σQ used.
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edure above halts for every formula P after a�nite number of steps.Proof. Assume that there is a formula P for whi
h the pro
edure doesnot halt after a �nite number of steps.

• Then the pro
edure 
onstru
ts an in�nite K-tableau, i.e., a treewhere ea
h node has at most to 
hild nodes.

• By König's lemma the tableau has an in�nite bran
h θ.

• In θ there is an in�nite number of pre�xed formulas, whi
h are alldi�erent (we are assuming that the pro
edure extends the bran
hwith a pre�xed formula only if it is not 
ontained in the bran
h).
• For every pre�x σ, if σQ o

urs on a bran
h θ, then Q is asubformula of P or the negation of a subformula. As P has only a�nite number of subformulas, ea
h pre�x 
an o

ur only a �nitenumber of times.

• Hen
e, the bran
h θ must 
ontain an in�nite number of di�erentpre�xes.
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Proof�
ont'dThere are two possibilities:(i) The bran
h θ has an in�nite number of pre�xes of some length n.
• Let n be the smallest natural number su
h that θ has in�nitelymany pre�xes of length n.

• Now it must be the 
ase that n 6= 1 be
ause the only pre�x oflength one is 〈1〉 and it o

urs only �nitely many times in θ.

• If n > 1, then the only way of produ
ing a pre�x of length n is touse ¬2 or 2 rule to a formula σQ where σ is of length n−1.

• Hen
e, if the bran
h 
ontains an in�nite number of pre�xes oflength n, then it must have an in�nite number of pre�xes of length

(n−1), whi
h is in 
ontradi
tion with the 
hoi
e of n.
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Proof�
ont'd
=⇒ Hen
e, possibility (i) 
annot be the 
ase and, thus, (ii) θ has a�nite number of pre�xes of length n for every natural n.

• As there is an in�nite number of pre�xes in θ , it must 
ontainpre�xes of in�nitely many di�erent lenghts.

• We show that this is impossible by establishing that for everyformula σQ in θ the following property L holds:the sum of the length of σ with the number of modal operators in

Q is always at most 1+m, where m is the number modaloperators in P.

• Clearly (L) holds for the root of the tableau 〈1〉¬P.

• If a formula is obtained by α or β rules, then (L) holds also for anynew pre�xed formula obtained by the rules.
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Proof�
ont'd

• If the formula has been obtained using the 2 or ¬2 rule, it is ofthe form σkQ and it is derived from a formula of the form σQ′.Assume that (L) hold for σQ′. Now the length of the pre�x σk isthe length of the pre�x σ + 1 but the formula Q has one modaloperator less than the formula Q′. Hen
e, (L) holds also for σkQ.

• Sin
e (L) holds for every pre�xed formula on the bran
h, thebran
h 
an 
ontain only pre�xes of the length at most m+1.

=⇒ Hen
e, the remaining possibility (ii) leads also to 
ontradi
tionand, hen
e, the pro
edure halts on every formula P.

• A 
orresponding de
ision pro
edure works for modal logi
s wherethe transitivity of the frames is not required.

• For logi
s whi
h assume transitivity a stronger halting 
ondition isneeded, i.e., a 
ondition for stopping of expanding bran
hes.
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3. Translation to Predi
ate Logi


Modal logi
 
an be translated to a restri
ted subset of predi
ate logi
where we use

• for every atomi
 proposition P, a one-argument predi
ate symbol
P;

• two variables x1 and x2;(notation: if x one of the variables, then x′ is the other.)
• two-pla
e predi
ate symbol R.
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ate logi
 su
h that1. τ(⊤,x) = ⊤; τ(⊥,x) = ⊥;2. τ(P,x) = P(x) for atomi
 propositions P;3. τ(¬P,x) = ¬τ(P,x);4. τ(P → Q,x) = τ(P,x) → τ(Q,x);5. τ(2P,x) = ∀x′(R(x,x′) → τ(P,x′));Example. τ(¬2P → 2¬2P,x1) = τ(¬2P,x1) → τ(2¬2P,x1)

= ¬τ(2P,x1) →∀x2(R(x1,x2) → τ(¬2P,x2))

= ¬(∀x2(R(x1,x2) → τ(P,x2))) →∀x2(R(x1,x2) →¬τ(2P,x2))

= ¬(∀x2(R(x1,x2) → P(x2))) →

∀x2(R(x1,x2) →¬(∀x1(R(x2,x1) → τ(P,x1))))

= ¬(∀x2(R(x1,x2) → P(x2))) →

∀x2(R(x1,x2) →¬(∀x1(R(x2,x1) → P(x1)))).
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Mapping τ Preserves ValidityTheorem. Let P be a modal formula.1. P is K-valid i� ∀x1τ(P,x1) is valid in predi
ate logi
.2. Σ |=K /0 =⇒ P i� τ(Σ) |=cl ∀x1τ(P,x1),where τ(Σ) = {∀x1τ(Q,x1) | Q ∈ Σ} and

|=cl is the logi
al 
onsequen
e relation in predi
ate logi
.

• Modal logi
 T:

P is T-valid i� {∀x1R(x1,x1)} |=cl ∀x1τ(P,x1).

• Modal logi
 S5:

P is S5-valid i� ΣS5 |=cl ∀x1τ(P,x1)where ΣS5 = {∀x1R(x1,x1),∀x1∀x2(R(x1,x2) → R(x2,x1)),

∀x1∀x2∀x3(R(x1,x2)∧R(x2,x3) → R(x1,x3))}.
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4. Multi-modal Logi


Example. Multi-agent logi
 of knowledge S5n:

• n agents and 
orresponding knowledge operators Ki, i = 1, . . . ,n.For example, formulas of the form K1K2¬K1P allowed.

• Models are tuples of the form 〈S,R1, . . . ,Rn,v〉 and

M ,s ||− KiP i� M , t ||− P for every t ∈ S su
h that sRit.

• A (Hilbert-style) proof system 
onsists of S5 axioms for every Ki.

• Everybody knows (EP):

M ,s ||− EP i� M ,s ||− KiP for all i = 1, . . . ,n.

• Axiom: EP ↔ K1P∧·· ·∧KnP.
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Common Knowledge: CP

• M ,s ||− CP i� M ,s ||− EkP for every k = 1,2, . . .

=⇒ M ,s ||− CP i� M , t ||− P for ea
h t ∈ Ssu
h that the world t is C-a

essible from the world s(i.e., there is k ≥ 1 and a sequen
e (s =)t0, t1, . . . , tk(= t)where for every j = 0, . . . ,k−1, t jRit j+1 holds for some

i,1 ≤ i ≤ n.)

• Axiom: CP → E(P∧CP).

• Inferen
e rule:

P → E(Q∧P)

P →CQ

• Example. CP → K1K2 · · ·KnP is S5n-valid
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5. Computational Complexity

Di�erent 
omputational problems

• Model 
he
king (Is a formula true in a model?)
• Satis�ability (Does a formula have a model where it is true?)
• Validity

• Logi
al 
onsequen
eWe 
onsider here model 
he
king and satis�ability be
ause1. a formula P is valid i� ¬P is not satis�able;2. {} |=L {Q1, . . .Qn} =⇒ P i�
(Q1 ∧·· ·∧Qn) → P is valid i�
Q1 ∧·· ·∧Qn ∧¬P is not satis�able.
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Computational Complexity of Model Che
king

• Whether a formula is true in a given world of a model 
an be
he
ked in polynomial time (w.r.t. the size of the model and lengthof the formula) for all modal logi
s we have 
onsidered so far.

• However, not every modal logi
 has this property (for example,many temporal logi
s do not).

• All problems solvable in polynomial time 
an be redu
ed toevaluating a propositional formula:Evaluating the truth value of a Boolean 
ir
uit is a P-
ompleteproblem!
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Computational Complexity of Satis�ability

• De
iding satis�ability is NP-
omplete for propositional logi
.

• All normal modal logi
s 
ontain propositional logi
 as a spe
ial, sode
iding satis�ability for them is NP-hard.

• For modal logi
s S5,KD45 de
iding satis�ability is NP-
omplete.For these logi
s, non-valid formulas have small 
ounter-models(the number of worlds is at most the number of subformulaswhi
h implies that de
iding satis�ability is in NP).

• For modal logi
s K,T,S4 the problem is PSPACE-
omplete:in these logi
s 
ounter-models 
an be of exponential size.

• For logi
s S5n,KD45n the problem is PSPACE-
ompete.

• For modal logi
s S5C
n ,KD45C

n the problem is EXPTIME-
omplete.
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Summary

• Modal logi
s have varying 
omputational properties.

• De
idability 
an often be established by providing a proof systemand showing that the logi
 has the �nite model property.

• More e�
ient de
ision pro
edures 
an be obtained using thetableau method.

• Many modal logi
s 
an be translated in a systemati
 way to arestri
ted subset of predi
ate logi
.

• The one modal operator 
ase 
an be generalized to themulti-modal 
ase in the possible world semanti
s by introdu
ingan a

essibility relation to ea
h of the modal operators.
• Modal logi
s di�er in their inherent 
omputational 
omplexity.
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