M L-7

1

2

MORE ABOUT MODAL LOGIC

- 1. Finite model property
- 2. Decidability
- 3. Translation to predicate logic
- 4. Multi-modal logics
- 5. Computational complexity

M. Fitting: <i>Basic Modal Logic</i> ,	Sections 1.10,	1.12 ja	1.14
(pp. 403 - 405, 408 - 410, and	416 – 419).		

C 2008 TKK. Department of Information and Computer Science

T-79 5101 / Spring 2008

ML-7

1. Finite Model Property

Decidability

- Next we consider computational properties of modal logics. As usual we use as the formal model of computation Turing machines. Hence, when saying that there is an algorithm computing/solving some problem we mean that there is a Turing machine capable of computing/solving the problem.
- We say that logic L is decidable, if there is an algorithm such that given a formula as input it decides whether the formula is L-valid or not.
- \bullet Such an algorithm is called a decision procedure for L.

• If there is a proof system (for example Hilbert-style proof theory) for logic **L**, then **L** is semi-decidable: there is an algorithm that halts and says "yes" if the formula given as input is **L**-valid (but might not halt if the formula is not **L**-valid).

Proof sketch: the algorithm starts enumerating **L**-proofs in some systematic way and halts if a proof for the formula is found.

 \implies The set of L-valid formulas is recursively enumerable.

\odot 2008 TKK, Department of Information and Computer Science

T-79 5101 / Spring 2008

ML-7

Finite Model Property

Definition. Modal logic **L** has the finite model property if for every formula P which is not **L**-valid, there is a finite **L**-model that has a world where P is false.

• If a logic **L** has the finite model property, then the set of formulas that are not **L**-valid is semi-decidable.

Proof sketch. Enumerate in some systematic way finite models from small models to bigger ones and check for each of them whether the model has a world where P is false.

- Hence, if a modal logic L has a proof system and the finite model property, then L is decidable.
- How can we show that a logic has the finite model property?

 \implies Filtration.

T-79.5101 / Spring 2008 ML-7	5	T-79.5101 / Spring 2008	ML-7	7	
Example. Filtration for Modal Logic K		Filtration—cont'd • $\Box P$: (\Leftarrow) Let $\mathcal{M}, s \parallel \not\vdash \Box$	$\Box P$. Then there is a world t such the	at sRt	
Theorem. Modal logic ${f K}$ has the finite model property.		and $\mathcal{M},t \mid ot\!\!\!/ P$. Hence, $ s R t $ and $ \mathcal{M} , t \mid ot\!\!\!/ P$ (IH) and			
Proof. Assume that a formula Q is not K -valid. Hence, there is a model $\mathcal{M} = \langle S, R, v \rangle$ and a world $s_0 \in S$ such that $\mathcal{M}, s_0 \mid \not \models Q$.		$ \mathcal{M} , s \not\models \Box P.$			
We construct a finite (quotient) model $ \mathcal{M} $ from \mathcal{M} by filtration.		• $\Box P$: (\Rightarrow) Let $ \mathcal{M} , s \not\models \Box P$ hold. Then there is $ t $ such that			
Let $\operatorname{Sub}(Q)$ be the set of all subformulas of Q .		$ S K t $ and $ \mathcal{M} , t \not\models F$. Hence, $\mathcal{M}, t \not\models F$ (by in). Thus, there are worlds $s' \in s $ and $t' \in t $ such that $s'Rt'$ and $\mathcal{M}, t' \mid U \mid P$. So			
• Define an equivalence relation \sim for the set S: $s \sim t$ if for all $P \in \operatorname{Sub}(Q)$, $\mathcal{M}, s \mid \mid -P$ iff $\mathcal{M}, t \mid \mid -P$.		$\mathcal{M}, s' \mid \not\vdash \Box P$ and $\mathcal{M}, s \mid \not\vdash \Box P$.			
• Let $ s = \{t \in S : t \sim s\}$ and $ S = \{ s : s \in S\}$. Now $ S $ is finite		• As $\mathcal{M}, s_0 \mid \not\vdash Q$ and $Q \in \operatorname{Sub}(Q), \mid \mathcal{M} \mid, \mid s_0 \mid \mid \not\vdash Q$ holds.			
because it has at most 2^n elements where n is the number of subformulas of Q : every $ s \in S $ is a set of worlds such that exactly the same subset of subformulas of Q are true in each world in $ s $.		 Hence, logic K has the finite model property. 			
		Many other normal modal le example, T,K4,S4,KB,B , S	ogics have the finite model property 5 5, D, D4, DB, KD45 .	y, for	
© 2008 TKK, Department of Information and Computer Science		© 2008 TKK, Departn	nent of Information and Computer Science		
T-79.5101 / Spring 2008 ML-7	6	T-79.5101 / Spring 2008	ML-7		
Filtration—cont'd		2.	Decidability		
defined as follows: P + P + P + P + P + P + P + P + P + P + P + P + P + P P + P P		 If we can give an upper bound on the size of the counter-model, the logic is decidable 			
$ s R t $ iff there are elements $s' \in s $ and $t' \in t $ such that $s'Rt'$		 This observation does n 	ot lead to a very efficient decision		
and the valuation $ v $: $ v (s , P) = v(s, P)$.		procedure.			
We show by structural induction that for every $P \in \operatorname{Sub}(Q)$		• The tableau method provides a more efficient approach.			
$\mathcal{M}, s \mid\mid = P$ iff $ \mathcal{M} , s \mid\mid = P$.		Example. We can show that logic \mathbf{K} is decidable by showing that the			
• P is an atomic proposition: $ v (s ,P) = v(s,P)$.		tableau method for ${f K}$ provid	des a decision procedure that halts	on	
• $\neg P$: $\mathcal{M}, s \mid \mid = \neg P$ iff $\mathcal{M}, s \mid \not \vdash P$ iff (IH)		every formula.			
$ \mathcal{M} , s \mid \not\vdash P ext{ iff } \mathcal{M} , s \mid \mid = \neg P.$		For this argument we need König's lemma:			
• $P o Q$: can be proved in a similar way.		Lemma. If a tree has an infinite number of nodes but every node has a finite number of child nodes, then the tree has an infinite branch.			

- 1. Take as the root of the tableau $\langle 1 \rangle \neg P$.
- 2. Until the tableau is closed or all formulas have been marked used:
- 2.1 Choose the uppermost unused node σQ in the tableau.
- 2.2 If Q is not a literal, then for each open branch θ containing σQ do:
 - If σQ is of the form $\sigma \neg \neg Q'$, extend θ by the node $\sigma Q'$.
- If σQ is of the form $\sigma \alpha$, extend θ by nodes $\sigma \alpha_1$ and $\sigma \alpha_2$.
- If σQ is of the form $\sigma\beta$, extend θ to two branches one containing $\sigma\beta_1$ and the other $\sigma\beta_2$.
- If σQ is of the form $\sigma \neg \Box P$, extend θ by $\sigma n \neg P$ with some σn which is unrestricted on θ and then with σnX for every $\sigma \Box X$ that appears on the branch θ .
- If σQ is of the $\sigma \Box P$, extend θ with σnP for every σn which is available on θ if σnP is not already contained in θ .
- 2.3 Mark σQ used.

T-79 5101 / Spring 2008

© 2008 TKK, Department of Information and Computer Science

ML-7

10

Proposition. The procedure above halts for every formula P after a finite number of steps.

Proof. Assume that there is a formula P for which the procedure does not halt after a finite number of steps.

- Then the procedure constructs an infinite K-tableau, i.e., a tree where each node has at most to child nodes.
- By König's lemma the tableau has an infinite branch $\theta.$
- In θ there is an infinite number of prefixed formulas, which are all different (we are assuming that the procedure extends the branch with a prefixed formula only if it is not contained in the branch).
- For every prefix σ, if σQ occurs on a branch θ, then Q is a subformula of P or the negation of a subformula. As P has only a finite number of subformulas, each prefix can occur only a finite number of times.
- \bullet Hence, the branch θ must contain an infinite number of different prefixes.

Proof—cont'd

There are two possibilities:

- (i) The branch θ has an infinite number of prefixes of some length n.
 - Let *n* be the smallest natural number such that θ has infinitely many prefixes of length *n*.
- Now it must be the case that $n \neq 1$ because the only prefix of length one is $\langle 1 \rangle$ and it occurs only finitely many times in θ .
- If n > 1, then the only way of producing a prefix of length n is to use ¬□ or □ rule to a formula σQ where σ is of length n-1.
- Hence, if the branch contains an infinite number of prefixes of length n, then it must have an infinite number of prefixes of length (n-1), which is in contradiction with the choice of n.

C 2008 TKK, Department of Information and Computer Science

ML-7

12

Proof—cont'd

 \implies Hence, possibility (i) cannot be the case and, thus, (ii) θ has a finite number of prefixes of length *n* for every natural *n*.

- As there is an infinite number of prefixes in θ , it must contain prefixes of infinitely many different lenghts.
- We show that this is impossible by establishing that for every formula σQ in θ the following property L holds: the sum of the length of σ with the number of modal operators in Q is always at most 1 + m, where m is the number modal operators in P.
- Clearly (L) holds for the root of the tableau $\langle 1 \rangle \neg P$.
- If a formula is obtained by α or β rules, then (L) holds also for any new prefixed formula obtained by the rules.

Proof—cont'd

T-79 5101 / Spring 2008

- If the formula has been obtained using the □ or ¬□ rule, it is of the form σkQ and it is derived from a formula of the form σQ'. Assume that (L) hold for σQ'. Now the length of the prefix σk is the length of the prefix σ + 1 but the formula Q has one modal operator less than the formula Q'. Hence, (L) holds also for σkQ.
- Since (L) holds for every prefixed formula on the branch, the branch can contain only prefixes of the length at most m + 1.

 \implies Hence, the remaining possibility (ii) leads also to contradiction and, hence, the procedure halts on every formula *P*.

- A corresponding decision procedure works for modal logics where the transitivity of the frames is not required.
- For logics which assume transitivity a stronger halting condition is needed, i.e., a condition for stopping of expanding branches.

 \odot 2008 TKK, Department of Information and Computer Science

ML-7

14

3. Translation to Predicate Logic

Modal logic can be translated to a restricted subset of predicate logic where we use $% \left({{{\mathbf{r}}_{i}}} \right)$

- for every atomic proposition *P*, a one-argument predicate symbol *P*;
- two variables x_1 and x_2 ;

(notation: if x one of the variables, then x' is the other.)

• two-place predicate symbol R.

Definition. Let τ be a mapping from modal formulas and variables to formulas in predicate logic such that

- 1. $\tau(\top, x) = \top; \ \tau(\bot, x) = \bot;$
- 2. $\tau(P,x) = P(x)$ for atomic propositions P;
- 3. $\tau(\neg P, x) = \neg \tau(P, x);$
- 4. $\tau(P \rightarrow Q, x) = \tau(P, x) \rightarrow \tau(Q, x);$
- 5. $\tau(\Box P, x) = \forall x'(R(x, x') \rightarrow \tau(P, x'));$
- Example. $\tau(\neg \Box P \rightarrow \Box \neg \Box P, x_1) = \tau(\neg \Box P, x_1) \rightarrow \tau(\Box \neg \Box P, x_1)$ $= \neg \tau(\Box P, x_1) \rightarrow \forall x_2(R(x_1, x_2) \rightarrow \tau(\neg \Box P, x_2))$ $= \neg(\forall x_2(R(x_1, x_2) \rightarrow \tau(P, x_2))) \rightarrow \forall x_2(R(x_1, x_2) \rightarrow \neg \tau(\Box P, x_2))$ $= \neg(\forall x_2(R(x_1, x_2) \rightarrow P(x_2))) \rightarrow$ $\forall x_2(R(x_1, x_2) \rightarrow \neg(\forall x_1(R(x_2, x_1) \rightarrow \tau(P, x_1))))$ $= \neg(\forall x_2(R(x_1, x_2) \rightarrow P(x_2))) \rightarrow$ $\forall x_2(R(x_1, x_2) \rightarrow \neg(\forall x_1(R(x_2, x_1) \rightarrow P(x_1)))).$
 - C 2008 TKK, Department of Information and Computer Science

19

20

ML-7 ML-7 17 5. Computational Complexity 4. Multi-modal Logic Different computational problems **Example.** Multi-agent logic of knowledge $S5_n$: • Model checking (Is a formula true in a model?) • *n* agents and corresponding knowledge operators K_i , $i = 1, \ldots, n$. • Satisfiability (Does a formula have a model where it is true?) For example, formulas of the form $K_1K_2 \neg K_1P$ allowed. • Validity • Models are tuples of the form $\langle S, R_1, \ldots, R_n, v \rangle$ and $\mathcal{M}, s \mid \mid = K_i P$ iff $\mathcal{M}, t \mid \mid = P$ for every $t \in S$ such that $sR_i t$. Logical consequence We consider here model checking and satisfiability because • A (Hilbert-style) proof system consists of **S5** axioms for every K_i . 1. a formula P is valid iff $\neg P$ is not satisfiable: • Everybody knows (EP): 2. $\{\} \models_{\mathbf{I}} \{O_1, \dots, O_n\} \Longrightarrow P$ iff $\mathcal{M}, s \mid \mid = EP$ iff $\mathcal{M}, s \mid \mid = K_i P$ for all $i = 1, \dots, n$ $(O_1 \wedge \cdots \wedge O_n) \rightarrow P$ is valid iff • Axiom: $EP \leftrightarrow K_1P \wedge \cdots \wedge K_nP$. $O_1 \wedge \cdots \wedge O_n \wedge \neg P$ is not satisfiable. © 2008 TKK, Department of Information and Computer Science (c) 2008 TKK, Department of Information and Computer Science T-79 5101 / Spring 2008 ML-7 18 T-79.5101 / Spring 2008 ML-7 Common Knowledge: CP Computational Complexity of Model Checking • $\mathcal{M}, s \mid \mid -CP$ iff $\mathcal{M}, s \mid \mid -E^k P$ for every k = 1, 2, ...• Whether a formula is true in a given world of a model can be $\implies \mathcal{M}, s \mid \mid = CP \text{ iff } \mathcal{M}, t \mid \mid = P \text{ for each } t \in S$ checked in polynomial time (w.r.t. the size of the model and length such that the world t is C-accessible from the world sof the formula) for all modal logics we have considered so far. (i.e., there is k > 1 and a sequence $(s =)t_0, t_1, \ldots, t_k (= t)$ where for every j = 0, ..., k - 1, $t_i R_i t_{i+1}$ holds for some • However, not every modal logic has this property (for example, $i, 1 \leq i \leq n$.) many temporal logics do not). • Axiom: $CP \rightarrow E(P \land CP)$. • All problems solvable in polynomial time can be reduced to evaluating a propositional formula: • Inference rule: Evaluating the truth value of a Boolean circuit is a **P**-complete $\frac{P \to E(Q \land P)}{P \to CO}$ problem! • **Example.** $CP \rightarrow K_1 K_2 \cdots K_n P$ is $S5_n$ -valid

Computational Complexity of Satisfiability

- Deciding satisfiability is NP-complete for propositional logic.
- All normal modal logics contain propositional logic as a special, so deciding satisfiability for them is **NP**-hard.
- For modal logics **S5**, **KD45** deciding satisfiability is **NP**-complete. For these logics, non-valid formulas have small counter-models (the number of worlds is at most the number of subformulas which implies that deciding satisfiability is in **NP**).
- For modal logics **K**,**T**,**S4** the problem is **PSPACE**-complete: in these logics counter-models can be of exponential size.
- For logics $S5_n, KD45_n$ the problem is **PSPACE**-compete.
- \bullet For modal logics $S5^C_n, KD45^C_n$ the problem is <code>EXPTIME-complete.</code>

© 2008 TKK, Department of Information and Computer Science

	$\left(\right)$	
V C	()	•

ML-7

22

Summary

T-79.5101 / Spring 2008

- Modal logics have varying computational properties.
- Decidability can often be established by providing a proof system and showing that the logic has the finite model property.
- More efficient decision procedures can be obtained using the tableau method.
- Many modal logics can be translated in a systematic way to a restricted subset of predicate logic.
- The one modal operator case can be generalized to the multi-modal case in the possible world semantics by introducing an accessibility relation to each of the modal operators.
- Modal logics differ in their inherent computational complexity.