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MORE ABOUT MODAL LOGICI

1. Finite model property

Decidability

w N

Translation to predicate logic
4. Multi-modal logics

5. Computational complexity

M. Fitting: Basic Modal Logic, Sections 1.10, 1.12 ja 1.14
(pp- 403 — 405, 408 — 410, and 416 — 419).
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1. Finite Model Property'

e Next we consider computational properties of modal logics. As

Decidability

usual we use as the formal model of computation Turing
machines. Hence, when saying that there is an algorithm
computing/solving some problem we mean that there is a Turing
machine capable of computing/solving the problem.

given a formula as input it decides whether the formula is L-valid
or not.

e Such an algorithm is called a decision procedure for L.

-

e We say that logic L is decidable, if there is an algorithm such that

)
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Semi-Decidability I

o If there is a proof system (for example Hilbert-style proof theory)
for logic L, then L is semi-decidable: there is an algorithm that
halts and says "yes" if the formula given as input is L-valid (but
might not halt if the formula is not L-valid).

Proof sketch: the algorithm starts enumerating L-proofs in some
systematic way and halts if a proof for the formula is found.

= The set of L-valid formulas is recursively enumerable.

N /
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Finite Model Property.

Definition. Modal logic L has the finite model property if for every

~

formula P which is not L-valid, there is a finite L-model that has a
world where P is false.

e If a logic L has the finite model property, then the set of formulas
that are not L-valid is semi-decidable.

Proof sketch. Enumerate in some systematic way finite models
from small models to bigger ones and check for each of them
whether the model has a world where P is false.

e Hence, if a modal logic L has a proof system and the finite model

property, then L is decidable.

e How can we show that a logic has the finite model property?

\:> Filtration. J
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Example. Filtration for Modal Logic K I

Theorem. Modal logic K has the finite model property.

Proof. Assume that a formula Q is not K-valid. Hence, there is a
model M = (SR,v) and a world 55 € Ssuch that M, s ||~ Q.

We construct a finite (quotient) model | M| from M by filtration.
Let Sub(Q) be the set of all subformulas of Q.

e Define an equivalence relation ~ for the set S s~ if for all

P € Sub(Q), M,s||— Piff Mt ||— P.

o Let|s|={teS:t~s}and |§={|s]:s€S}. Now | is finite
because it has at most 2" elements where n is the number of
subformulas of Q: every |s| € |§ is a set of worlds such that exactly
the same subset of subformulas of Q are true in each world in |g.

\_ /
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Filtration—cont’d

Consider now a model |M| = (|S,|R|,|v|} where the relation |R| is

defined as follows:
|s||R|[t] iff there are elements S’ € || and t’ € |t| such that SRt
and the valuation |v|: |V|(]5],P) = v(s,P).
We show by structural induction that for every P € Sub(Q)
M,s || Piff [M],]s] || P.
e P is an atomic proposition: |v|(|s],P) = v(s,P).
o —P: M,s||- P iff M,s||- P iff (IH)
| M, |s] ||/~ P iff [M], |s] || =P

e P — Q: can be proved in a similar way.

\_ /
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Filtration—cont’d
e UP: (<) Let M,s ||~ OP. Then there is a world t such that sRt

and Mt ||~ P. Hence, |§/|R/[t| and |#],]t| ||~ P (IH) and
|M|,|s| ||~ OP.

e UP: (=) Let |9],|s| ||/~ OP hold. Then there is [t| such that
|s||RI[t|] and ||, [t] ||~ P. Hence, Mt ||~ P (by IH). Thus, there
are worlds s € |s| and t’ € |t| such that SRt' and 2t ||~ P. So
M,S ||~ OP and M,s ||~ OP.

The theorem follows from the result above:

o As M, ||/~ Q and Q € Sub(Q), |M|, |so| ||~ Q holds.
e Hence, logic K has the finite model property.

Many other normal modal logics have the finite model property, for
Kexample, T,K4,54,KB,B, S5,D,D4,DB,KD45.

~

%
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2. Decidability'

e If we can give an upper bound on the size of the counter-model,
the logic is decidable.

e This observation does not lead to a very efficient decision

procedure.
e The tableau method provides a more efficient approach.

Example. We can show that logic K is decidable by showing that the
tableau method for K provides a decision procedure that halts on

every formula.
For this argument we need Konig's lemma:

Lemma. If a tree has an infinite number of nodes but every node has
a finite number of child nodes, then the tree has an infinite branch.

-

~

%
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1. Take as the root of the tableau (1)—P.
2. Until the tableau is closed or all formulas have been marked used:

decision procedure deciding whether a formula P is K-valid:

2.1 Choose the uppermost unused node 0Q in the tableau.
2.2 If Qis not a literal, then for each open branch 8 containing 0Q do:

e If 0Q is of the form 0——Q/, extend 0 by the node oQ'.

e If 0Q is of the form oa, extend 6 by nodes oa1 and ga.

e If 0Q is of the form of3, extend 6 to two branches one containing
01 and the other of3;.

e If 0Q is of the form 0—OP, extend 8 by on—P with some on
which is unrestricted on 8 and then with anX for every OX that
appears on the branch 6.

e If 0Q is of the 0OP, extend 8 with onP for every on which is
available on 6 if onP is not already contained in 6.

.3 Mark 0Q used.

C p,
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fProposition. The procedure above halts for every formula P after a \
finite number of steps.

Proof. Assume that there is a formula P for which the procedure does
not halt after a finite number of steps.
e Then the procedure constructs an infinite K-tableau, i.e., a tree
where each node has at most to child nodes.
e By Konig's lemma the tableau has an infinite branch 6.
e In B there is an infinite number of prefixed formulas, which are all

different (we are assuming that the procedure extends the branch
with a prefixed formula only if it is not contained in the branch).

e For every prefix g, if 0Q occurs on a branch 6, then Qis a
subformula of P or the negation of a subformula. As P has only a
finite number of subformulas, each prefix can occur only a finite
number of times.

e Hence, the branch 6 must contain an infinite number of different

K prefixes. j
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There are two possibilities:

(i) The branch 8 has an infinite number of prefixes of some length n.

e Let n be the smallest natural number such that 8 has infinitely
many prefixes of length n.

e Now it must be the case that n# 1 because the only prefix of
length one is (1) and it occurs only finitely many times in 6.

e If n> 1, then the only way of producing a prefix of length n is to
use -0 or O rule to a formula 6Q where 0 is of length n— 1.

e Hence, if the branch contains an infinite number of prefixes of
length n, then it must have an infinite number of prefixes of length
(n—1), which is in contradiction with the choice of n.
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= Hence, possibility (i) cannot be the case and, thus, (ii) 6 has a
finite number of prefixes of length n for every natural n.

e As there is an infinite number of prefixes in 6 , it must contain
prefixes of infinitely many different lenghts.

e We show that this is impossible by establishing that for every
formula 0Q in 8 the following property L holds:
the sum of the length of 0 with the number of modal operators in
Q is always at most 1+ m, where mis the number modal
operators in P.

e Clearly (L) holds for the root of the tableau (1)-P.

e If a formula is obtained by o or (3 rules, then (L) holds also for any

%

new prefixed formula obtained by the rules.

%
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o If the formula has been obtained using the O or =0 rule, it is of
the form okQ and it is derived from a formula of the form cQ'.
Assume that (L) hold for cQ'. Now the length of the prefix ok is
the length of the prefix @ + 1 but the formula Q has one modal
operator less than the formula Q. Hence, (L) holds also for akQ.

e Since (L) holds for every prefixed formula on the branch, the
branch can contain only prefixes of the length at most m+ 1.

= Hence, the remaining possibility (ii) leads also to contradiction
and, hence, the procedure halts on every formula P.

e A corresponding decision procedure works for modal logics where
the transitivity of the frames is not required.

e For logics which assume transitivity a stronger halting condition is

needed, i.e., a condition for stopping of expanding branches.

~

J
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3. Translation to Predicate Logic'

Modal logic can be translated to a restricted subset of predicate logic

where we use

e for every atomic proposition P, a one-argument predicate symbol
P;

e two variables X; and Xxp;

(notation: if X one of the variables, then X' is the other.)

e two-place predicate symbol R.

-

~
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formulas in predicate logic such that

efinition. Let T be a mapping from modal formulas and variables to

LT, x)=T,t(Lx)=1

2. 1(P,x) = P(x) for atomic propositions P;
3. 1(=P,x) = —-1(P,X);

4. 1(P—Qx) =1(PX) — 1(Q,X);

5. 1(OP,x) = VX (R(X,X) — T(P,X));

Example. T1(-0P — O-0P,x1) = T(—OP,x1) — T(O—-0P, X1)
=-T(OP,x1) — VX2(R(X1,X2) — T(—OP, X2))
= =(Vx2(R(X1,%2) — T(P,X2))) — VX2(R(X1,X2) — —T(OP, X2))
= —|(VX2 R(X]_,Xz) — P(Xz)))
X2 (R(X1,X2) — —(VX1(R(X2,%1) — T(P,X1))))
= —|(VX2 R(X]_,Xz) — P(Xz))) —
\ Vx2(R(X1,X%2) — —(Vx1(R(X2,X1) — P(x1)))).

—_ =~

—~

~
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Mapping T Preserves Validity I

Theorem. Let P be a modal formula.

1. Pis K-valid iff VX1 T(P,x1) is valid in predicate logic.

2. Tk 0= Piff 1(Z) Fa VT1(P,X1),

where T(Z) = {¥x11(Q,x1) | Q€ X} and

=g is the logical consequence relation in predicate logic.
e Modal logic T:

P is T-valid iff {¥x1R(x1,X1)} Ea VXaT(P,X1).
e Modal logic Sb:

P is S5-valid iff Zg5 =¢ VX1T(P,X1)

where Zs5 = {VXlR(Xl,X1),VX1VX2(R(X1,X2) — R(Xz,X;L)),
VX1VX2VX3(R(X1,X2) A R(Xz,Xg) — R(X1,X3))}.
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4. Multi-modal Logic'

Example. Multi-agent logic of knowledge S5y:

e N agents and corresponding knowledge operators Kj,i =1,...,n.
For example, formulas of the form K;Ky—K1P allowed.

e Models are tuples of the form (SRy,...,Ry,V) and
M, ||— KiP iff M ,t||— P for every t € Ssuch that sRit.

Everybody knows (EP):
M,s||—- EPiff M,s|— KiPforalli=1,...,n

e Axiom: EP <« K{PA--- AKyP.

-

A (Hilbert-style) proof system consists of S5 axioms for every K;.
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Common Knowledge: CPI

o M,s||— CP iff M,s||— EXP for every k=1,2,...

= M,s||-CPiff M,t|— P foreachtecS
such that the world t is C-accessible from the world s
(i.e., there is k> 1 and a sequence (S=)tp,t1,...,tk(=1)
where for every j =0,...,k—1, tjRitj;1 holds for some
i,1<i<n.)

e Axiom: CP — E(PACP).

o Inference rule:
P—E(QAP)
P—CQ

e Example. CP — K31K5---KyP is Sby-valid

-
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5. Computational Complexity'

Different computational problems

e Model checking (Is a formula true in a model?)
e Satisfiability (Does a formula have a model where it is true?)
o Validity
e Logical consequence
We consider here model checking and satisfiability because

1. a formula P is valid iff =P is not satisfiable;

2. {} FL{Q1,...Qn} = Piff
(QLA---AQp) — Pis valid iff
Q1A AQnA—P is not satisfiable.
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Computational Complexity of Model Checking.

e Whether a formula is true in a given world of a model can be
checked in polynomial time (w.r.t. the size of the model and length
of the formula) for all modal logics we have considered so far.

e However, not every modal logic has this property (for example,
many temporal logics do not).

e All problems solvable in polynomial time can be reduced to
evaluating a propositional formula:

Evaluating the truth value of a Boolean circuit is a P-complete
problem!
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Computational Complexity of Satisfiability

Deciding satisfiability is NP-complete for propositional logic.

All normal modal logics contain propositional logic as a special, so
deciding satisfiability for them is NP-hard.

For modal logics S5,KD45 deciding satisfiability is NP-complete.

For these logics, non-valid formulas have small counter-models
(the number of worlds is at most the number of subformulas
which implies that deciding satisfiability is in NP).

For modal logics K, T, S4 the problem is PSPACE-complete:

in these logics counter-models can be of exponential size.

For logics S5,,KD45,, the problem is PSPACE-compete.

For modal logics S5, K D45S the problem is EXPTIME-complete.
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Modal logics have varying computational properties.

Decidability can often be established by providing a proof system
and showing that the logic has the finite model property.

More efficient decision procedures can be obtained using the
tableau method.

Many modal logics can be translated in a systematic way to a
restricted subset of predicate logic.

The one modal operator case can be generalized to the
multi-modal case in the possible world semantics by introducing
an accessibility relation to each of the modal operators.

Modal logics differ in their inherent computational complexity.

%
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