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MORE ABOUT MODAL LOGIC1. Finite model property2. Deidability3. Translation to prediate logi4. Multi-modal logis5. Computational omplexity

M. Fitting: Basi Modal Logi, Setions 1.10, 1.12 ja 1.14(pp. 403 � 405, 408 � 410, and 416 � 419).
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1. Finite Model Property

Deidability

• Next we onsider omputational properties of modal logis. Asusual we use as the formal model of omputation Turingmahines. Hene, when saying that there is an algorithmomputing/solving some problem we mean that there is a Turingmahine apable of omputing/solving the problem.
• We say that logi L is deidable, if there is an algorithm suh thatgiven a formula as input it deides whether the formula is L-validor not.

• Suh an algorithm is alled a deision proedure for L.
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Semi-Deidability

• If there is a proof system (for example Hilbert-style proof theory)for logi L, then L is semi-deidable: there is an algorithm thathalts and says �yes� if the formula given as input is L-valid (butmight not halt if the formula is not L-valid).Proof sketh: the algorithm starts enumerating L-proofs in somesystemati way and halts if a proof for the formula is found.

=⇒ The set of L-valid formulas is reursively enumerable.
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Finite Model PropertyDe�nition. Modal logi L has the �nite model property if for everyformula P whih is not L-valid, there is a �nite L-model that has aworld where P is false.

• If a logi L has the �nite model property, then the set of formulasthat are not L-valid is semi-deidable.Proof sketh. Enumerate in some systemati way �nite modelsfrom small models to bigger ones and hek for eah of themwhether the model has a world where P is false.

• Hene, if a modal logi L has a proof system and the �nite modelproperty, then L is deidable.

• How an we show that a logi has the �nite model property?

=⇒ Filtration.© 2008 TKK, Department of Information and Computer Siene
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Example. Filtration for Modal Logi KTheorem. Modal logi K has the �nite model property.Proof. Assume that a formula Q is not K-valid. Hene, there is amodel M = 〈S,R,v〉 and a world s0 ∈ S suh that M ,s0 ||6 − Q.We onstrut a �nite (quotient) model |M | from M by �ltration.Let Sub(Q) be the set of all subformulas of Q.

• De�ne an equivalene relation ∼ for the set S: s ∼ t if for all

P ∈ Sub(Q), M ,s ||− P i� M , t ||− P.

• Let |s| = {t ∈ S : t ∼ s} and |S| = {|s| : s ∈ S}. Now |S| is �nitebeause it has at most 2n elements where n is the number ofsubformulas of Q: every |s| ∈ |S| is a set of worlds suh that exatlythe same subset of subformulas of Q are true in eah world in |s|.
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Filtration�ont'dConsider now a model |M | = 〈|S|, |R|, |v|〉 where the relation |R| isde�ned as follows:

|s||R||t| i� there are elements s′ ∈ |s| and t ′ ∈ |t| suh that s′Rt ′and the valuation |v|: |v|(|s|,P) = v(s,P).We show by strutural indution that for every P ∈ Sub(Q)

M ,s ||− P i� |M |, |s| ||− P.

• P is an atomi proposition: |v|(|s|,P) = v(s,P).

• ¬P: M ,s ||− ¬P i� M ,s ||6 − P i� (IH)

|M |, |s| ||6 − P i� |M |, |s| ||− ¬P.

• P → Q: an be proved in a similar way.

© 2008 TKK, Department of Information and Computer Siene
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• 2P: (⇐) Let M ,s ||6 − 2P. Then there is a world t suh that sRtand M , t ||6 − P. Hene, |s||R||t| and |M |, |t| ||6 − P (IH) and
|M |, |s| ||6 − 2P.

• 2P: (⇒) Let |M |, |s| ||6 − 2P hold. Then there is |t| suh that
|s||R||t| and |M |, |t| ||6 − P. Hene, M , t ||6 − P (by IH). Thus, thereare worlds s′ ∈ |s| and t ′ ∈ |t| suh that s′Rt ′ and M , t ′ ||6 − P. So

M ,s′ ||6 − 2P and M ,s ||6 − 2P.The theorem follows from the result above:
• As M ,s0 ||6 − Q and Q ∈ Sub(Q), |M |, |s0| ||6 − Q holds.

• Hene, logi K has the �nite model property.Many other normal modal logis have the �nite model property, forexample, T,K4,S4,KB,B, S5,D,D4,DB,KD45.© 2008 TKK, Department of Information and Computer Siene

AB
T-79.5101 / Spring 2008 ML-7 8

2. Deidability

• If we an give an upper bound on the size of the ounter-model,the logi is deidable.

• This observation does not lead to a very e�ient deisionproedure.

• The tableau method provides a more e�ient approah.Example. We an show that logi K is deidable by showing that thetableau method for K provides a deision proedure that halts onevery formula.For this argument we need König's lemma:Lemma. If a tree has an in�nite number of nodes but every node hasa �nite number of hild nodes, then the tree has an in�nite branh.© 2008 TKK, Department of Information and Computer Siene
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• If σQ is of the form σ¬¬Q′, extend θ by the node σQ′.

• If σQ is of the form σα, extend θ by nodes σα1 and σα2.

• If σQ is of the form σβ, extend θ to two branhes one ontaining

σβ1 and the other σβ2.

• If σQ is of the form σ¬2P, extend θ by σn¬P with some σnwhih is unrestrited on θ and then with σnX for every σ2X thatappears on the branh θ.

• If σQ is of the σ2P, extend θ with σnP for every σn whih isavailable on θ if σnP is not already ontained in θ.2.3 Mark σQ used.© 2008 TKK, Department of Information and Computer Siene
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• Then the proedure onstruts an in�nite K-tableau, i.e., a treewhere eah node has at most to hild nodes.

• By König's lemma the tableau has an in�nite branh θ.

• In θ there is an in�nite number of pre�xed formulas, whih are alldi�erent (we are assuming that the proedure extends the branhwith a pre�xed formula only if it is not ontained in the branh).
• For every pre�x σ, if σQ ours on a branh θ, then Q is asubformula of P or the negation of a subformula. As P has only a�nite number of subformulas, eah pre�x an our only a �nitenumber of times.

• Hene, the branh θ must ontain an in�nite number of di�erentpre�xes.© 2008 TKK, Department of Information and Computer Siene
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Proof�ont'dThere are two possibilities:(i) The branh θ has an in�nite number of pre�xes of some length n.
• Let n be the smallest natural number suh that θ has in�nitelymany pre�xes of length n.

• Now it must be the ase that n 6= 1 beause the only pre�x oflength one is 〈1〉 and it ours only �nitely many times in θ.

• If n > 1, then the only way of produing a pre�x of length n is touse ¬2 or 2 rule to a formula σQ where σ is of length n−1.

• Hene, if the branh ontains an in�nite number of pre�xes oflength n, then it must have an in�nite number of pre�xes of length

(n−1), whih is in ontradition with the hoie of n.
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Proof�ont'd
=⇒ Hene, possibility (i) annot be the ase and, thus, (ii) θ has a�nite number of pre�xes of length n for every natural n.

• As there is an in�nite number of pre�xes in θ , it must ontainpre�xes of in�nitely many di�erent lenghts.

• We show that this is impossible by establishing that for everyformula σQ in θ the following property L holds:the sum of the length of σ with the number of modal operators in

Q is always at most 1+m, where m is the number modaloperators in P.

• Clearly (L) holds for the root of the tableau 〈1〉¬P.

• If a formula is obtained by α or β rules, then (L) holds also for anynew pre�xed formula obtained by the rules.© 2008 TKK, Department of Information and Computer Siene
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Proof�ont'd

• If the formula has been obtained using the 2 or ¬2 rule, it is ofthe form σkQ and it is derived from a formula of the form σQ′.Assume that (L) hold for σQ′. Now the length of the pre�x σk isthe length of the pre�x σ + 1 but the formula Q has one modaloperator less than the formula Q′. Hene, (L) holds also for σkQ.

• Sine (L) holds for every pre�xed formula on the branh, thebranh an ontain only pre�xes of the length at most m+1.

=⇒ Hene, the remaining possibility (ii) leads also to ontraditionand, hene, the proedure halts on every formula P.

• A orresponding deision proedure works for modal logis wherethe transitivity of the frames is not required.

• For logis whih assume transitivity a stronger halting ondition isneeded, i.e., a ondition for stopping of expanding branhes.© 2008 TKK, Department of Information and Computer Siene
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3. Translation to Prediate Logi

Modal logi an be translated to a restrited subset of prediate logiwhere we use

• for every atomi proposition P, a one-argument prediate symbol
P;

• two variables x1 and x2;(notation: if x one of the variables, then x′ is the other.)
• two-plae prediate symbol R.

© 2008 TKK, Department of Information and Computer Siene
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T-79.5101 / Spring 2008 ML-7 15De�nition. Let τ be a mapping from modal formulas and variables toformulas in prediate logi suh that1. τ(⊤,x) = ⊤; τ(⊥,x) = ⊥;2. τ(P,x) = P(x) for atomi propositions P;3. τ(¬P,x) = ¬τ(P,x);4. τ(P → Q,x) = τ(P,x) → τ(Q,x);5. τ(2P,x) = ∀x′(R(x,x′) → τ(P,x′));Example. τ(¬2P → 2¬2P,x1) = τ(¬2P,x1) → τ(2¬2P,x1)

= ¬τ(2P,x1) →∀x2(R(x1,x2) → τ(¬2P,x2))

= ¬(∀x2(R(x1,x2) → τ(P,x2))) →∀x2(R(x1,x2) →¬τ(2P,x2))

= ¬(∀x2(R(x1,x2) → P(x2))) →

∀x2(R(x1,x2) →¬(∀x1(R(x2,x1) → τ(P,x1))))

= ¬(∀x2(R(x1,x2) → P(x2))) →

∀x2(R(x1,x2) →¬(∀x1(R(x2,x1) → P(x1)))).© 2008 TKK, Department of Information and Computer Siene
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Mapping τ Preserves ValidityTheorem. Let P be a modal formula.1. P is K-valid i� ∀x1τ(P,x1) is valid in prediate logi.2. Σ |=K /0 =⇒ P i� τ(Σ) |=cl ∀x1τ(P,x1),where τ(Σ) = {∀x1τ(Q,x1) | Q ∈ Σ} and

|=cl is the logial onsequene relation in prediate logi.

• Modal logi T:

P is T-valid i� {∀x1R(x1,x1)} |=cl ∀x1τ(P,x1).

• Modal logi S5:

P is S5-valid i� ΣS5 |=cl ∀x1τ(P,x1)where ΣS5 = {∀x1R(x1,x1),∀x1∀x2(R(x1,x2) → R(x2,x1)),

∀x1∀x2∀x3(R(x1,x2)∧R(x2,x3) → R(x1,x3))}.© 2008 TKK, Department of Information and Computer Siene
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4. Multi-modal Logi

Example. Multi-agent logi of knowledge S5n:

• n agents and orresponding knowledge operators Ki, i = 1, . . . ,n.For example, formulas of the form K1K2¬K1P allowed.

• Models are tuples of the form 〈S,R1, . . . ,Rn,v〉 and

M ,s ||− KiP i� M , t ||− P for every t ∈ S suh that sRit.

• A (Hilbert-style) proof system onsists of S5 axioms for every Ki.

• Everybody knows (EP):

M ,s ||− EP i� M ,s ||− KiP for all i = 1, . . . ,n.

• Axiom: EP ↔ K1P∧·· ·∧KnP.

© 2008 TKK, Department of Information and Computer Siene
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Common Knowledge: CP

• M ,s ||− CP i� M ,s ||− EkP for every k = 1,2, . . .

=⇒ M ,s ||− CP i� M , t ||− P for eah t ∈ Ssuh that the world t is C-aessible from the world s(i.e., there is k ≥ 1 and a sequene (s =)t0, t1, . . . , tk(= t)where for every j = 0, . . . ,k−1, t jRit j+1 holds for some

i,1 ≤ i ≤ n.)

• Axiom: CP → E(P∧CP).

• Inferene rule:

P → E(Q∧P)

P →CQ

• Example. CP → K1K2 · · ·KnP is S5n-valid
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5. Computational Complexity

Di�erent omputational problems

• Model heking (Is a formula true in a model?)
• Satis�ability (Does a formula have a model where it is true?)
• Validity

• Logial onsequeneWe onsider here model heking and satis�ability beause1. a formula P is valid i� ¬P is not satis�able;2. {} |=L {Q1, . . .Qn} =⇒ P i�
(Q1 ∧·· ·∧Qn) → P is valid i�
Q1 ∧·· ·∧Qn ∧¬P is not satis�able.
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Computational Complexity of Model Cheking

• Whether a formula is true in a given world of a model an beheked in polynomial time (w.r.t. the size of the model and lengthof the formula) for all modal logis we have onsidered so far.

• However, not every modal logi has this property (for example,many temporal logis do not).

• All problems solvable in polynomial time an be redued toevaluating a propositional formula:Evaluating the truth value of a Boolean iruit is a P-ompleteproblem!
© 2008 TKK, Department of Information and Computer Siene
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Computational Complexity of Satis�ability

• Deiding satis�ability is NP-omplete for propositional logi.

• All normal modal logis ontain propositional logi as a speial, sodeiding satis�ability for them is NP-hard.

• For modal logis S5,KD45 deiding satis�ability is NP-omplete.For these logis, non-valid formulas have small ounter-models(the number of worlds is at most the number of subformulaswhih implies that deiding satis�ability is in NP).

• For modal logis K,T,S4 the problem is PSPACE-omplete:in these logis ounter-models an be of exponential size.

• For logis S5n,KD45n the problem is PSPACE-ompete.

• For modal logis S5C
n ,KD45C

n the problem is EXPTIME-omplete.© 2008 TKK, Department of Information and Computer Siene
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Summary

• Modal logis have varying omputational properties.

• Deidability an often be established by providing a proof systemand showing that the logi has the �nite model property.

• More e�ient deision proedures an be obtained using thetableau method.

• Many modal logis an be translated in a systemati way to arestrited subset of prediate logi.

• The one modal operator ase an be generalized to themulti-modal ase in the possible world semantis by introduingan aessibility relation to eah of the modal operators.
• Modal logis di�er in their inherent omputational omplexity.

© 2008 TKK, Department of Information and Computer Siene


