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TABLEAU METHOD FOR MODAL LOGICSI

. Tableau method for modal logic K

[y

2. Soundness
3. Completeness
4. Other modal logics

5. Logical consequence

M. Fitting: Basic Modal Logic, 1.9 (pp. 396 — 403).
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4 1. Tableau Method of Modal Logic KI

e Motivation: Hilbert-style proofs are very hard to discover.

Applying the Modus Ponens rule: in order to derive Q, one needs
to derive P and P — Q first. But what is an appropriate P?

Example. Does {A— B, A—C} =EA— (BAC) hold?
1. A—B
2. A-C

n (A—B)— ((A—->C)— (A—(BAQ)))

e Subformula principle: To derive a formula Q it is sufficient to
consider only the subformulas of Q (or their negations)

e Proof systems obeying this principle are more suitable for
automation:

—> Resolution, sequent calculi, tableau methods.

-
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KNaming Possible Worlds. \

e The idea is to name possible worlds using prefixes in such a way

that it is possible to determine the accessibility relation between
worlds by their prefixes.

e A prefix is a non-empty finite sequence of natural numbers. For
example, (1) and (11,1,1,1,111,2) are prefixes.

e A prefixed formula is an expression of the form oP where G is a
prefix and P is a formula.
(The idea: the formula P is true in the world named by G.)
Examples of prefixed formulas: (1)(PVv—P), (11,1,1,111,2)00CP

e Notation: an is a prefix which is obtained from the prefix G by

appending to 0 the number n. For example, if = (1), then
o1l = (1,11).

e A prefix of the form on is K-accessible from the prefix G.

\ For example, (1,11,11) K-accessible from (1,11). J
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The tableau method for modal logics consists of the tableau rules for

the classical propositional logic and modal rules.

e Tableau rules for classical propositional logic and prefixed formulas
(see the o and P rules in the course refresher):

o—-—P oa op
oP ooq of1 | oB2
od2

Remark. The prefix 0 does not change.

N /
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formula (3,2,1)=((-P — Q) — P):

1 321)-((-P—-Q)—P)
2. (32,1)(-P—Q) (1)
3 (3,2,1)-P ¢8)

Applying the tableau rules for propositional logic for the prefixed
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Occurrences of Prefixes '

Definition. A prefix on a branch of a tableau is

(i) available if it appears on the branch and
any prefix occurring on the branch.

1,1).

\_

(ii) unrestricted if it is not an initial segment (proper or improper) of

Example. The prefix (1,1) is an initial segment of (1,1,12 3) and

© 2008 TKK, Department of Information and Computer Science

T-79.5101 / Spring 2008 ML-6

-

Modal Rules

For modal logic K the following modal rules are used:

O Rule: oOP

onP
for any available prefix on.
-0 Rule: o-OP

on—-P

for an unrestricted prefix on.
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1. (1)~(OP— OOP)

2. (1)oP (1)
3. (1)-00P (1)
4. (1,1)-0OP 3)
5 (1,1)P (2)
6. (1,1,1)-P (4)
7. (1,2)-0P (3)
8. (1,2,3)-P (7)
9. (1,2)P (2)

~
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Tableau Proofs '

Definition.

e A branch of a tableau is closed if it contains

1. prefixed formulas oP and 0—P
for some formula P and prefix g; or

2. a prefixed formula 0L or a prefixed formula 0—T for some
prefix O.

e A tableau is closed if every branch in it is closed.

e A proof of a formula P is a tableau that has been constructed with
the prefixed formula (1)—P as the root and that is closed.

\_ /
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A tableau proof for the formula O(PAQ) — (OPADQ):

1 (1)~(3(PAQ) — (OPADQ))

2. (H)D(PAQ) (1)

3. (1)~(OPADQ) (1)
4. ()-0OP  (3) |5 ()-0Q  (3)
6. (L2-P (4 | 10. (1,3-Q (5
7. (L2PAQ (2) | 11. (L3)PAQ (2)
8. (1,2)P @) | 122 (1,3P (11)
9. (1L,2Q  (7) |13 (1,3)Q  (11)

X X
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A tableau proof for the formula T < OT:

1. (1)~(T «OT)

2. ()-T (V)| 4 @T @
3. (UOT (1) |5 (U-0T (1)
x 6. (1,2-T (5)

X
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2. Soundness.

Theorem. If there is a tableau proof for a formula P, then P is
K-valid.

Proof. (using the following steps)

e We define the concept of K-satisfiability for a tableau: a tableau is
K-satisfiable if it has a branch that corresponds to a model in a
particular way (to be defined below).

e Then we show that
(i) a K-satisfiable tableau cannot be closed.

(ii) If a formula P is not K-valid, then the tableau consisting only
of a root node (1)—-P is K-satisfiable.

(iii) Every tableau rule preserve K-satisfiability: is a tableau is
K-satisfiable before applying a rule, then it is K-satisfiable
after applying the rule.

KHence, if P is not K-valid, the tableau for P remains open. v
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K-Satisfiability of a Tableau I

Definition.

o A tableau is K-satisfiable if one of its branches is K-satisfiable.

e A branch of a tableau is K-satisfiable if the set of prefixed
formulas occurring on the branch is K-satisfiable.

o A set of prefixed formulas X is K-satisfiable if there is a model
M = (SRV) and a mapping N[ from the prefixes appearing in
to the set Ssuch that

1. If prefixes 0 and T occur in the set ¥ and T is K-accessible from
o, then AL(0)RA(1).
2. If oP € Z, then M, N(0) ||- P.

\_ /
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A More Detailed Proof'

Based on the definition above we can show the following:

(i) A K-satisfiable tableau cannot be closed.
Assume that a K-satisfiable tableau is closed. By K-satisfiability
the tableau has a K-satisfiable branch. Also this branch is closed,
i.e., contains prefixed formulas 0Q and 0—Q (or 6L or 0—T). But
this leads to a contradiction because for the branch there is a

model M and a mapping A such that M, A(0) ||~ Q and
M, N(0) ||- ~Q (or M, AN (0) ||~ L or M,A(0) ||~ —T) which

is impossible. Hence (i) holds.

\_ /
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A More Detailed Proof—cont'd.

(ii) If a formula P is not K-valid, then the tableau containing only the
root node (1)—P is K-satisfiable.

This holds because if the formula P is not K-valid, it has a
counter-model M = (SR V) such that for some world s€ S

M ,s||— —P. Hence, the tableau containing only the root node and
the branch {(1)—P} is K-satisfiable using the mapping A({(1)) =s.

(i) Let a tableau I' be K-satisfiable. Then it has a branch whose set
of prefixed formulas X is K-satisfiable for some model
M = (SR,v) and mapping AL
We show that if a tableau rule is applied to I', then the resulting
tableau ' also K-satisfiable.

\_ /
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Tableau Rules Preserve K—Satisfiability'

Consider a tableau rule that is applied to a K-satisfiable branch (and

let X be the set of prefixed formulas on the branch):

° of

oB1 | oB2
Then the tableau [’ has two branches with the sets of prefixed
formulas 1 =X U{0B1} and 2 = ZU {0}

Since oB € 2, M, A\ (0) |- B,

and, thus, M, A((0) ||— B1 or M, N (0) ||- B2
= [ is K-satisfiable.

© 2008 TKK, Department of Information and Computer Science

15

16



T-79.5101 / Spring 2008 ML-6

-

~

oa

oad1
oad2
can be shown in a similar way as the resulting tableau contains the

set of prefixed formulas 23 = XU {oa1,007}.

oOP for some available prefix on.

onP

Then the resulting tableau I’ has a branch whose set of prefixed
formulas is 23 = ZU {onP}.

As 0OP € X, then M, A(0) ||~ OP, and, hence, for all t such that
AN (0)Rt Mt ||— P holds.

Since on occurs on the branch and is K-accessible from o, then

A(0)RA((an) holds. Hence, M, A (an) || P holds.

K — [’ on K-satisfiable. j
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o-0OP for some unrestricted prefix on.
on—-P

Then the resulting tableau I’ has a branch whose set of prefixed
formulas 1 = U {on-P}.

Since 0-0OP € X, M, N[(0) ||~ ~OP, and, thus, there is a world t
such that A((0)Rt and M.t ||— —P.

Because on is not an initial segment of any prefix in Z, the
mapping A can be extended: A((on) =t. Then M, A (on) ||- —P
holds.

— [’ on K-satisfiable.
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3. Completeness I

e How to guarantee that every valid formula has a tableau proof
when the branches of a tableau can be infinite?

e When have the rules been applied fairly/enough times?

e For constructing tableaux a systematic method is needed where all
the rules have been applied sufficiently, i.e., for every open branch
0 it holds that

(i) f 0-—P €8, then cP € 6.
(ii) If oB €6, then of3; €6 or of3, € 6.
(iii) If oa € 8, then cay € 8 and ca; € 6.
(iv) If 0-0Q € 6, then on—Q € B, for some n.
(v) If c0Q € 6, onQ € 6 for all on available on 6.
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e The systematic method guarantees completeness but can allow
infinite tableau if the formula considered is not valid.

e A decision method guarantees that the construction of the
tableau terminates after a finite number of step regardless whether
the considered formula is valid or not.

e We will considered the question about decision methods later.
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Systematic K-Tableau for a Formula P:

1. Take as the root of the tableau (1)—P.
2.1 Choose the top unused node oQ in the tableau.

e If 0Q is of the form 0——Q/, extend 0 by the node 0Q'.

e If 0Q is of the form oq, extend 8 by nodes oa; and ods.

e If 0Q is of the form of3, extend 6 to two branches one containing
o1 and the other o3;.

e If 0Q is of the form o—OP, extend 6 by an—P for some prefix on
unrestricted in 6.

e If 0Q is of the form gOP, extend 6 for all prefixes an available on
0 with onP and |then with the node oOP |

2.3 Mark 0Q used.

\_

2. Until the tableau is closed or all formulas have been marked used do:

2.2 If Qs not a literal, then for every open branch 8 containing 0Q do:

%
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Theorem. (Completeness) If a formula P is K-valid, then the
systematic K-tableau for P will be closed.

Proof. We show that if the systematic K-tableau for P has an open
branch, then P is not K-valid. Let 8 be such a branch and
M = (SR,V) a counter-model based on it:

1. Sis the set of prefixes occurring in 6.
2. oRu iff T is K-accessible from o

3. v(0,Q) = true iff 0Q occurs on the branch 8 for every atomic
proposition Q.

To prove the theorem it is enough to show the following lemma:
if 0Q € 8, then M,0 |- Q.

This implies the theorem because (1)—P occurs on every branch and,

thus, M, (1) ||~ —P. This implies that P is not K-valid. [ |

~

%
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T-79.5101 / Spring 2008 ML-6

We show for all prefixed formulas oQ that
if 0Q €6, then M,0 ||- Q.
Proof. This is done by induction on the length of the formula Q.

e (Q is an atomic proposition) If dQ € 6, then v(o,Q) = true and
M,o |- Q.

e (Q is the negation of an atomic proposition) If 0—Q €8 and Q' is
an atomic proposition, then 0Q ¢ 6 and, hence, M,0 ||~ Q and

M,o |- Q.
Induction hypothesis [IH]:
If Q shorter that j and 0Q € 6, then M ,0 |- Q.

Let the length of Q be j. Then Q is one of the following forms

\_ /
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e (-—Q) If 60-—Q € 0, then 0Q € 6.
By [IH] M70 H— Q Hence, M7O- H_ —\—\Q

(B-formula) If of € 6, then of1 € 0 or oP3, € 6.
By [IH] M,0 ||— By or M,0 || B2. Thus, M,0 || B.

(a-formula) If oa € B, then ooy € 8 and oa; € 6.
By [IH] M,0 ||~ a1 and M,0 || 2. Hence, M,0 |- a.

(—0Q) If 0-0Q €6, on—Q € B for some n.
By [IH] #,0on ||- —=Q. So M, 0 ||/~ OQ as oRon.

(OQ) If c0Q €6, anQ € 6 for all on available on 6. By [IH]
M ,on||— Q. Hence, M,0 ||- OQ.

So for every open branch 6, prefix 0 and a formula Q:

if 0Q €6, then M,0 ||- Q. [ ]

\_ /
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Example. We study whether OP — OOP is K-valid

by constructing a systematic K-tableau:

1. (1)-(OP— OOP) As the tableau cannot be closed, we

2. (1oOP (1) can construct from the open branch

3. (1)-00P (1) a counter-model

4 (op 2 M = (SR, V) where
S={(1),(1.2).(1.2.3)}

5 (12-0pP B R = {((2),(1,2),((1,2),(1,23))}

6. (1,2)P (4) and v(o,P) =trueiff 0 =(1,2).

7. (LHoP (4) Now 9, (1) ||/~ OP — OOP .

8 (1,2,3)-P (5)

9. (1,2)P (7)

10. (1)oP (7)

~
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4. Other Modal Logics'

e We extend the tableau method for K to handle also other modal
logics.
Definition. A prefix T is a simple extension of a prefix @,
if T is of the form on for some natural number n.
e The tableau method of a modal logic L:
=0 rule:
o-0OP olP
P TP

where T is a simple extension of the prefix G unrestricted on the

branch.

-

)
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Tableau Method of a Modal Logic L—cont’d.

e O rule:
fojm] a-OP
P P
where T L-accessible from the prefix o and
1. for logics K,KB,K4

T is available on the branch;
2. for logics D, T,DB,B,D4,4,S5

(a) T is available on the branch or

(Obs. non-serial)

(Obs. serial)

(b) T is a simple extension of 0 unrestricted on the branch.

N /
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Accessibility between Prefixes.

For defining L-accessibility between prefixes we need a couple of
additional concepts.

Definition. An accessibility relation between prefixes is
1. general if on is accessible from & for all n;
2. reverse if O is accessible from an for all n;
3. reflexive if 0 is accessible from itself.

4. transitive if T is accessible from 0 whenever g is a proper initial
segment of T.

5. universal if a prefix is accessible from any prefix.
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L-Accessibility of Prefixes—cont'd.

L -Accessibility for some logics L:

Logic L | L-accessibility

K,D general

T general, reflexive
KB,DB | general, reverse

B general, reflexive, reverse
K4,D4 | general, transitive

A general, reflexive, transitive

S5 universal

\_
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Example: D-validity I

We search for a D-tableau proof for the formula OP — —O-P:

1. (1)-~(OP— -0O-P)

2. (1OP (1)

3. ()-—-O0-P (1)

4. (1Ho-P (3)

5 (1,2)-P (4) Observe: 2. (b)
6. (1,2)P (2)

(D-accessibility: general)

\_

© 2008 TKK, Department of Information and Computer Science

29

30

T-79.5101 / Spring 2008 ML-6

-

-

2
3.
4

(

(
(
(

Example: T-validity I

We construct a T-tableau proof for the formuladOP — P:
1

1)—~(0OP — P)

1)aP (1)

1)-P (1)

P (2) Obs. reflexivity

X

(T-accessibility: general and reflexive)

T-
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Example: K4-validity I

We search for a K4 tableau proof for the formula OP — OOP:

1)~(0OP — OOP)

1HoP (€8]

1)-00P (1)

1,2)-0P (3)

1,2,3)-P (4)

1,2,3)P (2)Obs. transitivity

(K4-accessibility: general and transitive)
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Example: KB-validity I

We search for a KB-tableau proof for P — OOP:
1. (1)~(P— OOP)

2. ()P (1)
3. (1)-00P (1)
4. (1,2)-COP (3)
5 (1)-P (4) Obs. reverse

X

(KB-accessibility: general and reverse)

\_
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A Systematic L-Tableau for a Formula P:

Change the systematic K-tableau point 2.2: If Q is not a literal, then
for every open branch 0 containing 0Q:
e If 6Q is of the form g—OP (oOP), extend 8 by an—P (anP) for
some prefix on unrestricted in 6.

e If 0Q is of the form cOP (0—OP),
(a) if L is one of K,KB,K4,T,B,$4,S5:
for every prefix @’ available on 0 that is L-accessible from o,
extend 6 by 0’P (¢’=P) and finally by dOP (0-CP);
(b) if L is one of D,DB, D4:
for every prefix @’ available on 0 that is L-accessible from o,
extend 0 by o’P (0’=P). If no such prefix 0’ exists, extend 8 by
onP (on—P) for some an unrestricted in 6. In both cases add to
the end of the branch 8 cOP (g—OP).
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S5-tableaux

e In modal logic S5 accessibility relation for models is an
equivalence relation and it is enough to consider only universal
frames (see, ML-4).

e As prefixes it is sufficient use natural numbers.

=0 rule: n-0OP n<oP
k-P kP
where k does not occur on the branch.
O rule: noOP n—-OP
kP k—-P
for any k.
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Example: S5-validity I

We search of a S5-tableau proof for a ~OP — O-0OP:

1-(-0P — 0O-0P)

1-0P (1)
1-0-0P (1)
2-P (2)
3--0OP (3)
30P (5)
2P (6)
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Systematic S5-tableau for a Formula P:

1. Take as the root of the tableau 1-P.
2. Until the tableau is closed or all nodes have been marked used do:

2.1 Choose the topmost unused node nQ.
2.2 If Q is not a literal, then for every open branch 8 including nQ:
e If 0Q is of the form 0——Q/, extend 0 by the node oQ'.

e If nQ is of the form na, extend O by naj and nas.

e If NQ is of the form nf3, extend B to two branches one containing
NPy and the other NBs.

e If NQ is of the form n—OP, extend 6 by k=P for some k
unrestricted in 8 and after this by kX for every jOX on the branch.

e If nQ is of the form NnOP extend 6 by adding for all k available on
0 kP.

2.3 Mark nQ used.

\_ /
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K D45-Tableaux .

e In modal logic KD45 it is sufficient to consider models of the form
(see. ML-4):

M= ({0} US {(st) | s€ {so} USt e Shv).

e It is enough to use natural numbers as prefixes.

=0 rule: n-0OP noP
kP kP

where Kk does not occur on the branch.

O rule: noOP n—-oP
kP kP

for any k# 1.
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Example: KD45-Validity I

Compare the two KD45-tableaux:

(OP—P): 1. 1-(OP— P)

2. 10P (1)
3 1-pP (1)
0O0OP—P): 1. 1-0(0P—P)
2. 22(OP—P) (1)
3. 20P (2)
4. 2-P (2)
5 2P (3)
X

\_ /
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5. Logical Consequence'

e The task is to determine whether £ = Y'=> P holds.

e In the tableau method we start in the usual way and take (1)—P
as the root node and then use the standard rules for the modal
logic L and two new rules for the premises:

Global rule: A prefixed formula 0Q can be added to any branch for
any prefix 0 available on the branch and for any global premise
Qex

Local rule: A prefixed formula (1)Q can be added to any branch for
any local premise Q€Y.

\_ /
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Example: K-Logical Consequence Relation I

We show {P} =« {OP — Q} = Q:

L (1)-Q
2. (JOP—Q (LP)

3 ()-0P (2 |4 1Q (2
5 (L2)-P (2) x
6. (L2P (GP)

X

\_
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